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Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn’s

disease (CD), is one of the main types of intestinal inflammatory diseases with intestine

mucosal immune disorder. Intestine mucosal immune system plays a remarkable and

important role in the etiology and pathogenesis of IBD. Therefore, understanding the

intestine mucosal immune mechanism is a key step to develop therapeutic interventions

for IBD. Intestine mucosal immune system and IBD are influenced by various factors,

such as inflammation, gut permeability, gut microbiota, and nutrients. Among these

factors, emerging evidence show that nutrients play a key role in inflammation activation,

integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding

glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly

found in mammalian milk. Notably, LF has been reported to perform diverse biological

functions including antibacterial activity, anti-inflammatory activity, intestinal barrier

protection, and immune cell modulation, and is involved in maintaining intestine mucosal

immune homeostasis. The improved understanding of the properties of LF in intestine

mucosal immune system and IBDwill facilitate its application in nutrition, clinical medicine,

and health. Herein, this review outlines the recent advancements on LF as a potential

therapeutic intervention for IBD associated with intestine mucosal immune system

dysfunction. We hope this review will provide a reference for future studies and lay a

theoretical foundation for LF-based therapeutic interventions for IBD by understanding

the particular effects of LF on intestine mucosal immune system.

Keywords: cytokine, intestinal epithelial cells, immunocytes, lactoferrin, inflammatory bowel disease, intestine

mucosal immune system

INTRODUCTION

Lactoferrin (LF), an ∼80 kDa iron-binding glycoprotein present in most biological fluids (saliva,
milk, tears, and mucous secretions), was first identified in 1939, and isolated and purified from
human and bovine milk in 1960 (1–4). LF is a safe and reliable natural substance, which is widely
used in disease prevention, nutritional supplements, food and drug preservation, and cosmetics.
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Due to a structure similar to that of serum transferrin
(∼60%), LF can reversibly bind with ferric (Fe3+) ion (5,
6). As an iron transporter, LF protects the nervous system
by chelating with iron by reducing oxidative stress and
improving iron metabolism (7). Additionally, accumulating
evidence demonstrated that LF also possesses antimicrobial, anti-
inflammatory, immunomodulatory, anti-carcinogenic, and anti-
oxidative activities, thereby highlighting the therapeutic values of
this multifunctional protein (8–15).

Bacteriostatic effect of LF is attributed to the binding capacity
with free iron, which is an essential element for the growth
of bacteria (16). The lack of iron suppresses the growth of
Escherichia coli (E. coli.), an iron-dependent bacteria (17).
Conversely, LF may serve as an iron donor to support the
growth of some bacteria with lower iron demands, such as
Lactobacillus sp. or Bifidobacterium sp., which is generally
considered as a beneficial effect (18, 19). In addition to its
antibacterial properties, LF also has both epithelial barrier
protection and immunomodulatory properties, which play key
roles in the intestine mucosal immune system (20–22). The
studies cited above indicate that the physiological functions
of LF not only depend on the iron-binding capacity but also
on the interaction with molecular and cellular components
of both the host and pathogens (23). The intestine mucosal
immune system provides a protective barrier against invasion
of infectious pathogens and harmful non-self antigens reaching
systemic sites within the intestinal tract, and prevents systemic
immune responses to commensal bacteria and food antigens (8–
10, 13, 14). Inflammatory bowel disease (IBD), mainly divided
into ulcerative colitis (UC) and Crohn’s disease (CD), is a chronic
inflammatory and relapsing disorder of the gastrointestinal tract,
in which the interactions among mucosal immune, barrier
function, nutrition, and commensal enteric flora are involved
(24–28). Accumulating studies report that LF can be considered
as a potent anti-inflammatory and immunomodulatory substrate
for the prevention and treatment of IBD through regulating
intestine mucosal immune response (9, 22, 29, 30). Breakdown
of intestinal barrier underpins IBD and other diseases (31). In
vitro and in vivo studies have reported that LF and its derivatives
exhibit barrier protection through restoring tight junction (TJ)
morphometry, blocking the cleavage of caspase-3, and resuming
the drop in transepithelial resistance (TER) in IBD models (30,
32, 33). Furthermore, the LF treatment reduced the secretion
and gene expression of tumor necrosis factor alpha (TNF-α),
interleukin-8 (IL-8), interleukin-6 (IL-6), and nuclear factor-κB
(NF-κB), and signal transducer and activator of transcription
3 (STAT3) signaling pathway activation, both in cultured and
Crohn-derived intestinal cells (29, 33–36). It was noted that
LF effectively causes dendritic cells (DCs) and macrophages
to be tolerogenic phenotype by inhibiting the proliferation of
CD4+ T cells and enhancing Treg cell differentiation from
CD4+ T cells in the colon, which is key for tissue homeostasis
(37, 38).

Accumulating evidence indicate that LF has been reported
to enhance intestinal epithelial cell proliferation, cytokines
production, and immune cell functions in counteracting
inflammatory processes and maintaining immune homeostasis

(9, 22, 29, 30). This review aims to outline the intestine
mucosal immune system and the functional role of LF
(bovine LF, bLF; human LF, hLF; porcine LF, pLF; LF
enzymatic hydrolysate; LF peptide-derivatives) on the intestine
mucosal immune system and IBD. We hope this review
will lay a theoretical foundation for therapeutic interventions
of IBD based on molecular basis and intestine mucosal
immune mechanism.

INTESTINE MUCOSAL IMMUNE SYSTEM

The intestine mucosal immune system, which is mainly
composed of intestinal epithelial cells (IECs) and immunocytes
(Figure 1), provides a large area for the digestion and
absorption of nutrients, serves as a barrier against harmful
non-self antigens and infectious pathogens, protects the host
against systemic immune responses to commensal bacteria
and food antigens, and prevents the trillions of commensal
microorganisms living in the gut from reaching systemic
sites (39–43). Intestinal epithelial cells not only act as a
physical barrier to segregate the intestinal microbiota from the
immune cells but also as a coordinator between the intestinal
microbiota and immune cells (44). Once the barrier is disrupted,
uncontrolled antigens may ingress into the lamina propria
(LP) resulting in the release of multiple cytokines, which
aggravates the development of inflammation in the intestine
(45). Epidemiological observations indeed suggest that patients
with IBD have increased intestinal permeability with reduced
expression of TJ proteins (46, 47). Additionally, overproduction
of proinflammatory cytokines impair the intestinal barrier and
induce the accumulation and activation of immune cells, which
drive further immune responses and sustain chronic intestinal
inflammation in IBD (48, 49). Collectively, IECs and intestinal
immunocytes appear of characteristic importance for intestine
mucosal immune system and play a key role in pathogenesis
of IBD.

Intestinal Epithelial Cells
The IECs lining the gastrointestinal tract in a single-cell
form contain multiple cell types including absorptive columnar
epithelial cells, goblet cells, Paneth cells, endocrine cells (ECs),
microfold (M) cells, cup cells, and tuft cells, which play important
roles in the digestion of food, absorption of nutrients, and
protection against microbial infection (48, 50, 51). Additionally,
IECs participate in immune activities such as immunoglobulin
(Ig)A antibody transportation, antigens uptake, and chemokines
and cytokines secretion (44, 52–54). Mounting evidence have
demonstrated that IECs produce inflammation and chemokines
[such as Interleukin (IL)-18, IL-6, TNF-α, and macrophage
chemoattractant protein-1 (MCP-1)] in response to stimulation
of intestinal bacteria. Inflammation and chemokines play a vital
role in the recruitment, proliferation, activation, and immune
response of intestinal immune cells (44, 50, 55). Additionally,
IECs directly kill bacteria and regulate the homeostasis of
intestinal flora through secreting antibacterial substances, such as
defensins, cathelicidins, C-type lectins, ribonucleases (RNases),
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FIGURE 1 | Intestine mucosal immune system landscape. The intestine mucosal immune system is composed of different types of functional cells. Enterocytes, the

main functional cells of intestine mucosal immune, are responsible for the absorption of nutrients and water, and also produce antimicrobial peptides (such as RegIIIγ

and β-defensin). Paneth cells located at the bottom of the crypt produce amounts of specific antimicrobial peptides (α-defensin). M cells function to sample and

transport antigens to immune cells. Goblet cells secrete mucins and promote luminal antigen transfer to DCs. In addition, there are a large number of immune cells

distributed in the intestinal epithelium and LP, including DCs, B cells, and T cells. DCs are specialized antigen-presenting cells. After antigens stimulation, they secrete

cytokine IFN-γ, which further stimulates monocyte macrophages to secrete IL-10. The DCs that migrate to the MLNs promote the differentiation and maturation of

initial T cells. These differentiated and mature T cells can secrete immune factors to participate in intestine mucosal immune system. DCs, dendritic cells; IFN-γ,

interferon-γ; IL-10, interleukin-10; LP, lamina propria; M, microfold; MLNs, mesenteric lymph nodes; RegIIIγ, regenerating islet-derived protein IIIγ.

and S100 proteins (56). Taken together, IECs serve not only as

a physical barrier to prevent intestinal bacteria from invading

the intestinal mucosa but also as a bridge between innate and

adaptive immune systems.

Intraepithelial Lymphocytes and Lamina
Propria Innate Lymphoid Cells
Intestinal innate lymphocytes consist of intestinal intraepithelial
lymphocytes (IELs) and LP innate lymphoid cells (ILCs), which
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FIGURE 2 | The functional role of LF on intestine mucosal immune system in the context of IBD. Without LF (Left), the intestine mucosal immune system follows the

path of autoimmune regulation. The presence of LF (Right) promotes TJ between epithelial cells, enhances the expression of β-catenin, and activates the Wnt

signaling pathway. LF downregulates the protein abundance of MLCK, reduces the level of ROS and MDA, enhances GSH-Px activity, and upregulates the expression

level of Nrf2 in epithelial cells. LF enhances the expression level of TLRs and activates the NF-κB pathway. LF also reduces the secretion and the gene expression of

IL-1β, enhances the function of immune cells, promotes the production of cytokines, and promotes the recruitment of immune cells. GSH-Px, glutathione peroxidase;

IL-1β, interleukin-1β; LF, lactoferrin; NF-κB, nuclear factor kappa-B; Nrf2, nuclear factor erythroid 2-related factor 2; MDA, malondialdehyde; MLCK, myosin light chain

kinase; ROS, reactive oxygen species; TJ, tight junction; TLRs, toll-like receptors.

are the effector compartments of the intestine mucosal immune
system (57). IELs represent one of the largest, non-organized
lymphocyte population (58) and constitute one of the most
abundant T cell populations of barrier immune cells (59–
61). Furthermore, IELs with abundant cytoplasmic granules
for cytotoxic activity and expression of effector cytokines
[interferon-γ (IFN-γ), IL-2, IL-4, or IL-17] play a crucial role in
limiting the dissemination of infectious pathogens andmalignant
cells and control of infiltration of epithelial surfaces by systemic
cells (62, 63). ILCs, identified in the recent years as an important
subgroup of natural immune cells, have the dual characteristics
of natural immune and acquired immune cells (64). ILCs, which
lack T cell receptor (TCR) expression, are innate counterparts
of T cells involved in host defense against infection, metabolic
homeostasis, tissue repair, and chronic inflammatory diseases

by secreting effector cytokines and regulating the functions of
other innate and adaptive immune cells (64–66). Under the
stimulation of intestinal bacteria, ILCs produce large quantities
of cytokines, such as TNF-α, IFN-γ, and IL-17, which in turn
stimulate the immune response to eliminate pathogens. However,
excessive activation of ILCs in the intestine results in intestinal
inflammation and IBD (57, 64). It is noteworthy that the
phenotype and function of both IELs and ILCs are disrupted
under inflammatory conditions, where they help to exacerbate
intestine immune responses (65).

Dendritic Cells, T Cells, and B Cells
Dendritic cells that reside in the LP of the intestine are the
CD103−/CX3CR1+ subgroup, which patrol among enterocytes
and extend dendrites toward the lumen to capture antigens,
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and then present the antigens to the T cells (67). Additionally,
CD103+/CX3CR1 subset of DCs can be further divided into
two small subgroups, CD11b+/CD8α− and CD11b−/CD8α+,
which can migrate into Peyer’s lymph nodes and mesenteric
lymph nodes (MLNs) (68). DCs continuously migrate through
lymphatics to MLNs where they contribute to initial T cell
differentiation, maturation, and immune tolerance which is key
for intestine mucosal immune system (68).

Intestinal T cells are widely distributed in the Peyer’s
lymph nodes, MLNs, LP, and intestinal epithelial tissues (69).
According to TCR, intestinal T cells are classified into two
major subsets, αβT cells and γδT cells, which play a key role
in intestinal immune response (70, 71). Furthermore, studies
have shown that γδT cells can produce cytokine IFN-γ in
response to the stimulation of E. coli, followed by IFN-γ
stimulating macrophages to release IL-15 which contribute to the
accumulation and activation of γδT cells at the site of infection,
and anti-infective immunity (72). Additionally, recent evidence
have suggested that γδ T cells can secrete IL-17, which recruit
neutrophils, macrophages, and natural killer (NK) cells to resist
intestinal bacterial pathogens, especially early in infection (73,
74). T cells in the intestinal tract of healthy individuals play a
critical role in the process of intestine mucosal immune and
intestinal homeostasis (75). However, T cells in IBD patients are
excessively active due to intestine mucosal immune dysfunction.
Interestingly, reports have found that T cells in the intestine and
peripheral blood of patients with CD and UC are significantly
elevated, and those T cells in the inflammatory part of the
patients show the characteristics of Th17 and Th1 cells, which can
secrete IL-17 and IFN-γ inflammation (76). Correspondingly, the
treatment of T cells is of considerable importance for the clinical
treatment of intestinal inflammatory diseases.

There are a large number of B cells in the intestine; IgA+ B
cells migrate from Peyer’s patches (PPs) to the LP by activation,
where they differentiate into IgA-producing plasma cells (77).
Under specific immune microenvironment of the intestine,
cytokines such as TGF-β and IL-10 are abundant, which promote
the differentiation of B cells into secretory IgA plasma cells, and
the secreted IgA is transported into the intestinal lumen through
IECs to control the invasion of intestinal bacteria by antibody
neutralization (78, 79). Therefore, IgA secretory B cells play an
extremely important role in the regulation of intestinal flora
and the intestinal mucosa defense. Although IgM is the first Ig
produced by B cells, the B cells are stimulated by antigens in the
germinal center of lymphoid tissues and follicular helper T cells
(TFHs), which cause antibody class-switch recombination (CSR)
to produce IgG, IgA, and IgE (80).

IMMUNOMODULATORY ROLE OF
LACTOFERRIN IN INTESTINE MUCOSAL
IMMUNE SYSTEM

Lactoferrin, an ∼80 kDa single polypeptide chain glycoprotein
belonging to transferrin family, is widely present in external
secretions (milk, seminal fluid, saliva, tears, and mucous
secretions) and in some granules of polymorphonuclear

leukocytes (20, 81). The presence of disulfide bonds between
cysteine residues in LF partly contribute to the secondary
structure comprising 33–34% helices and 17–18% strands
(82). The three-dimensional structure of LF consists of
two highly homologous lobes, the N- and C-lobes (83).
Each lobe further consists of two sub-lobes or domains
which have high affinity with single Fe3+ (84). Accumulating
evidence indicate that LF can regulate the proliferation
of IECs, development and maturation of immune cells,
and production of cytokines to counteract inflammatory
processes and maintain intestine mucosal immune homeostasis
in the context of IBD (Figure 2) (85, 86). Antimicrobial
activity, modulation of cytokine production, immune cell
migration, and the maturation and growth of immune or
epithelial cells are partly due to LF interactions with pathogen-
associated microbial patterns (PAMPs), glycosaminoglycans,
or iron (86, 87). Thus, the functional role and underlying
mechanisms of LF on IECs, immune cell response, and cytokine
production are overviewed in Table 1 and discussed in the
ensuing sections.

Lactoferrin Performs Protection of
Intestinal Epithelial Cells
Many studies have suggested that LF has anti-inflammatory
effects, but the protective effect on small IECs is still poorly
understood. Hu et al. took the intestinal porcine epithelial
cell line-J2 (IPEC-J2) as the research model to investigate
the protective effects and underlying mechanisms of bLF on
lipopolysaccharides (LPS)-challenged IPEC-J2 cells in vitro.
Treatment with bLF resulted in reduced cell permeability,
enhanced Claudin-1 protein abundance, and inhibition of
myosin light chain kinase (MLCK) protein abundance in
LPS-challenged cells (36). Mounting evidence demonstrated
that sIgA and the polymeric immunoglobulin receptor (pIgR)
play a pivotal role in immune homeostasis by limiting the
access of microbial and environmental antigens into the body,
maintaining the integrity of the epithelial barrier, and shaping
the composition of the commensal microbiota (100–102). bLF
supplementation enhances the production of sIgA in small-
bowel, supports intestinal barrier integrity by upregulating TJ
protein express, and protects intestine from bacterial infections
(93). Additionally, previous study reported that formula
supplemented with bLF enhanced intestinal crypt proliferation
and crypt depth. Furthermore, jejunal crypt cells isolated by using
laser capture microdissection (LCM) had enhanced β-catenin
mRNA expression, which suggests that the Wnt signaling may
partly be involved in cell proliferation induced by bLF (95).
Tanaka et al. found that oral administration of bLF protected
the mucus barrier overlying the intestinal epithelium against
dextran sodium sulfate (DSS)-mediated damage. Notably, bLF
supplementation led to the inhibition of cell division in intestinal
crypts, which in turn affected carcinogenesis in the colon of
LPS-challenged mice (92). Despite mounting basic researches
on LF, which is abundant in mammalian colostrum and milk,
very little is known about the effects of metal saturation (iron-
depleted, iron-saturated, and manganese-saturated forms) of LF
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TABLE 1 | An overview of the properties of lactoferrin in the intestine mucosal immune system.

Model Source Dose Time Findings References

In vitro, Caco-2

cells/J774A.1 cells

Bovine apo-, native-

and holo-LF

5 mg/mL 24 h Neutralized microbial-derived antigens; Reduced

pro-inflammatory effect

(88)

In vitro, IPEC-J2 cells Bovine native-LF 0.1, 0.25, 0.5, 1.0, 1.5,

or 3.0 mg/mL

24 h Alleviated the LPS-induced cellular inflammation;

Reduced NF-κB/MAPK pathways; Maintaining cellular

barrier integrity and mitigating oxidative stress; Reduced

intracellular reactive oxygen species level and

malondialdehyde level; Upregulated the glutathione

peroxidase activity and the expression of nuclear factor

erythroid 2-related factor 2 (Nrf2) protein; Reduced the

IL-1β secretion; Downregulated the phosphorylation

levels of NF-κB, IκB, p38, and ERK1/2 in

LPS-challenged cells

(36)

In vitro, Caco-2/TC7

cells

Bovine LF 0.5, 1, 2, 5 or 10

mg/mL

24 h Altered the expression of TLR2, TLR4, and TLR9

receptors; Reduced expression levels of TLR4;

Maintaining redox homeostasis

(89)

In vivo, zebrafish Bovine LF 0, 0.5, 1, or 1.5 g/kg 3 d Enhanced the neutrophil migration and intestinal

mucosal barrier functions related genes expression;

Improved performance against bacterial infection

(90)

In vivo, mice Bovine holo-LF 0, 50, 500, or 5000

µg/day

7 d Enhanced level of total and specific IgA, protein

expression of a-chain and pIgR, mRNA transcripts of

a-chain, IL-2 and IL-5, and level of plasma corticosterone

(91)

In vivo, mice Bovine LF 2.0% bLF in water or

diet

84 d Improved fecal score, lesions in the colon, and body

weight loss

(92)

In vivo, rats Bovine LF 0.5 g/kg/d 18 d Enhanced small-bowel sIgA concentrations and tight

junction proteins expression; Reduced intestinal

permeability; Supported intestinal barrier integrity;

Protected against bacterial infections

(93)

In vivo, neonatal piglet Bovine LF 130, 367 or 1300

mg/kg BW/d

14 d Altered the capacity of MLNs and spleen immune cells;

Initiated immune responses in immunologically

challenged neonates

(94)

In vivo, piglet Bovine LF 0.4, 1.0, or 3.6 g/L 14 d Enhanced intestinal crypt proliferation and crypt depth;

Enhanced β-catenin mRNA expression

(95)

In vivo, piglet Recombinant human

LF

2, 11, or 20 mg/g 30 d Reduced diarrhea; Boosted humoral immunity, Th1, and

Th2 cell response; Improved intestinal morphology;

Activated the immune-related genes expression

(96)

In vivo, human Recombinant human

LF

1500 mg/d 90 d Did not reduce inflammation and immune activation (97)

In vitro, bacteria Peptide-derived from

Bovine LF

0.3-150 mg/mL 16 to

20 h

Attenuated the LPS induced immune disorders;

Sustained the balance of CD3+/CD8+ T cells, B cells

and NK cells; Activated cellular defense and stimulated B

cells to secrete certain IgG

(98)

In vivo, mice Peptide-derived from

Porcine LF

0, 2.5, 5, or 10 mg/kg 7 d Balanced Th1 and Th2 response; Triggered cellular

defense mechanisms and induced B cells to produce

antibodies to defend against LPS stimulation

(99)

on intestinal barrier function. For this goal, researchers used
Caco-2, a human intestinal epithelial cell line, to investigate
the effects of bLF with iron and manganese saturation on the
health of the host. Results indicated that no changes of TJ
proteins were observed in response to bLF metal saturation
status. Notably, different bLF forms markedly suppressed the
pro-inflammatory response in macrophage through binding
and neutralizing LPS (88). Additionally, LF was also able
to neutralize microbial-derived antigens, thereby potentially
reducing their pro-inflammatory effect (103). The effect of bLF
as a regulator of intestinal innate immunity and oxidative

stress on IECs was investigated in a previous study. Innate
immune Toll-like receptors (TLRs) mRNA expression, lipid
peroxidation, and protein carbonyl levels were determined
in enterocyte-like Caco-2/TC7 cells incubated with bLF for
24 h. Results demonstrated that bLF seemed to maintain redox
homeostasis and modulate inflammatory response via activation
of TLRs when exposed to LPS (89). Additionally, LF reduced
intracellular ROS level and malondialdehyde (MDA) level as
well as upregulated glutathione peroxidase (GSH-Px) activity
and the expression of nuclear factor erythroid 2-related factor 2
(Nrf2) protein (36).
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Lactoferrin Modulates Immune Cell
Function and Cytokine Production
Dietary bLF alters the capacity of MLNs and spleen immune cells
in response to stimulation, providing a protective role for LF
in the initiation of immune responses in these immunologically
challenged neonates (94). It is noted that recombinant human
LF (rhLF) secreted by transgenic cattle was used to investigate
the immunomodulatory effects of rhLF on the systemic and
intestinal immune system in piglets, which are good models
widely used in infant nutrition study. Results showed that rhLF
milk significantly reduced diarrhea, boosted humoral immunity,
Th1 and Th2 cell response, improved intestinal morphology,
and activated the transcription of important immune-related
genes expression (96). Study on incorporation bLF into soybean
meal-based diet demonstrated that 1.5 g/kg bLF supplemented
to soybean meal reduced the neutrophils in the intestine
when compared with control. Likewise, bLF supplementation
enhanced the neutrophil migration and intestinal mucosal
barrier functions related to genes expression. These findings
suggested that bLF acts as an intestinal anti-inflammatory
agent and improves performance against bacterial infection
(90). These results indicate a potential role of LF in intestine
mucosal immune. Ingestion of soybean meal resulted in
intestinal inflammation which is a harmful condition in fish.
Interestingly, peptide derived from bLF is also capable of
conserving the biological activity (98). LFP-20, a twenty-amino
acid antimicrobial peptide in the N terminus of pLF, has
been reported to modulate inflammatory response in colitis
(99). Pre-treatment with LFP-20 attenuated the LPS-induced
immune disorders in ileum and sustained the balance of
CD3+/CD8+ T cells, B cells, and NK cells. Furthermore,
LFP-20 facilitated a balanced Th1 and Th2 response. Of
note, LFP-20 activated the cellular defense and stimulated
the B cells to secrete certain IgG (99). Although mounting
researches have focused on exogenous LF, there is little
information available regarding the expression of endogenous
LF in response to bacterial infection. Previous study indicated
that distribution of LF in mice intestine during E. coli K88
infection was upregulated in duodenum, ileum, and colon,
but reduced in jejunum, by using PCR and immunohistology
staining. These data pave the way for a better understanding
of the key role of LF in intestine mucosal immune (104).
A large number of studies have reported that LF regulates
mucosal immune and targets the mechanism that induce
inflammation (105). A clinical trial on rhLF conducted with 54
human immunodeficiency virus-infected participants with viral
suppression demonstrated that no differences were observed
in IL-6, D-dimer levels, monocyte/T-cell activation, mucosal
integrity, or intestinal microbiota diversity when compared
with controls (97).

Under physiological conditions, bLF supplementation led
to the upregulation of sIgA, the protein expression of α-
chain and pIgR, and the mRNA expression of α-chain, IL-2,
and IL-5 (91). The result suggested that bLF contributed to
maintain intestinal homeostasis through an interleukins profile
that favored the IgA antibody response (91). Recently, studies
indicated that LF was essential for the development of the early

stages of B cells in mice by regulating the microenvironment of
bone marrow stroma through C-X-C motif chemokine ligand
12 (CXCL12) release (106). Correspondingly, a previous study
found that bLF treatment reduced the IL-1β secretion andmRNA
expression, and downregulated the phosphorylation levels of
NF-κB, IκB, p38, and ERK1/2 in LPS-challenged cells (36).
Interestingly, peptide derived from bLF is also capable of
conserving the biological activity (98). LFP-20, a twenty-amino
acid antimicrobial peptide derived from pLF, has been reported
to modulate inflammatory response in colitis (99). Pre-treatment
with LFP-20 facilitated a balanced Th1 and Th2 response,
which is consistent with the modulation of Th1 cytokines (IL-
12p70, IFN-γ, and TNF-α) and Th2 cytokines (IL-4, IL-5,
and IL-6) (99).

FUNCTIONAL ROLE OF LACTOFERRIN IN
INFLAMMATORY BOWEL DISEASE

IBD, mainly divided into UC and CD, is a chronic
inflammatory and relapsing disorder of the gastrointestinal
tract in which the interactions among mucosal immune,
barrier function, nutrition, and commensal enteric flora
are involved (24–28, 107). IBD has become a global disease
with rapidly increasing incidence and prevalence, and
been diagnosed in developed and developing countries
in both men and women (108–111). LF, a multifaceted
milk protein, is considered as a potent anti-inflammatory
and immunomodulating substrate for protecting mucosa
against infections and inflammation (29). Accumulating
studies report that LF can be considered as a potential
therapy for the prevention and treatment of IBD based
on the beneficial effects of LF in inhibiting invasion or
adhesion of bacteria or modulating/boosting mucosal immune
system (Figure 2) (9, 22, 30).

Oral administration offers the most convenient way for
supplementing LF, which is considered as a new clinical nutrition
strategy for the treatment of IBD (112, 113). As expected, LF
ingested through diet, water, or perorally is degraded rapidly by
enzymatic hydrolysis in the gastrointestinal tract, which causes
undesirable loss of its functional properties (20). Therefore,
high amounts, frequent dosing, or an appropriate delivery
system may improve its bioavailability (112). Nevertheless,
previous study showed that much more undigested LF enters
the intestine when it is administered by gavage (20). Two
studies that administered LF by gavage to DSS-treated mice
found significantly less damage in the colon of the LF
groups (34, 114). As matter of fact, antimicrobial peptides
such as lactoferricin and lactoferrampin are generated during
gastric and intestinal digestion stages (115–119). LF or its
derived fragments in high amounts binding to LF receptors
in intestinal mucosa and gut-associated lymphatic tissue-
related cells would modulate cytokine/chemokine production
and immune cells function. Additionally, LF administered to
DSS-treated mice via intracolonic injection during the DSS
treatment period markedly reduced damage in the colon than
the controls (120).
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Bacteriostatic Properties of Lactoferrin in
Inflammatory Bowel Disease
Intestinal microbiota plays a key role in the development
and maintenance of IBD (121). Therefore, manipulation of
the gut microbiota may represent a target for IBD therapy
(122). LF has broad spectrum antibacterial properties against
a wide range of pathogenic bacteria including gram-positive
bacteria and gram-negative bacteria (116, 123). A previous
study was conducted to investigate the ability of bLF to
modulate the interactions between the adherent-invasive E. coli
strain LF82 (ileal Crohn’s strain) and Caco-2 cells. Scanning
electron microscopy, transmission electron microscopy, and
light microscopy revealed that bLF prevents invasion of E.
coli strain LF82 by binding with the bacteria type 1 pili (29).
Recent study reported that bLF-treated DSS-challenged mice
turn the Muribaculaceae/Lachnospiraceae intestinal type into
Akkermansiaceae/Bacteroidaceae intestinal type in colitis
mice. This result indicates a direction toward treating colitis
by changing the structure and composition of intestinal
microbiota. Additionally, metabolomics results demonstrated
that bLF changed purine metabolism when compared with
DSS-challenged mice (30). However, the underlying mechanisms
responsible for the antibacterial properties of LF have not
been completely elucidated (124). Accumulating evidence
demonstrated that antibacterial activity of LF not only
depends on the iron binding capacity but also on serine
protease and the permeability of the bacterial cell membrane
destruction (17–19, 125–128).

Epithelial Barrier Protection of Lactoferrin
in Inflammatory Bowel Disease
The intestinal epithelial barrier integrity is vital to protect the
intestinal cells from microbes, and intestinal barrier dysfunction
underpins IBD and other diseases (31, 129–131). In vitro
studies reported that bLF exerts a protective function toward
intestinal barrier disorder (32, 33). Hu et al. took TNF-α-
challenged HT-29/B6 cells to elucidate the protective properties
of bLF on intestinal epithelial barrier and found that bLF
restored TJ morphometry and almost completely blocked the
cleavage of caspase-3 induced by TNF-α. Additionally, the
results of this study demonstrated that bLF treatment resumed
the drop in TER and Claudin-8 down-regulation when HT-
29/B6 or T84 cells were challenged with Yersinia enterocolitica
infection (32). In another study conducted by Zhao et al.
it was found that bLF significantly enhanced the expression
of Claudin-1, Occludin, and ZO-1 at both the mRNA and
protein levels (33). Additionally, in vivo studies demonstrated
that bLF administration ameliorated the severity of DSS or
azoxymethane (AOM)-induced colitis as reflected by reduced
body weight loss, decreased colon shortening, and reduced
myeloperoxidase (MPO) activity (30, 92). Moreover, protein
abundance of Claudin-1, Occludin, ZO-1, and regenerating islet-
derived protein IIIγ (RegIIIγ) in the colon were enhanced
by bLF treatment when compared with the DSS group (30).
It was also noted that oral administration of a bovine
lactoferricin–lactoferrampin (LFCA)-encoding Lactococcus lactis

strain prevented DSS-induced colitis through enhancing the
protein abundance of ZO-1, E-cadherin, and Claudin-2 (132).

Anti-inflammatory Properties of Lactoferrin
in Inflammatory Bowel Disease
In addition to its epithelial barrier protection properties, LF
also has anti-inflammatory properties (29, 32, 90, 92, 133). LF
affects type 1 interferon expression or immune cell function
(13, 134). Growing evidence reported that LF inhibits TNF-
α, IL-8, IL-6, and NF-κB signaling pathway activation both
in cultured and Crohn-derived intestinal cells (29, 33, 34). In
experimental colitis, LF administration leads to a significant
reduction in TNF-α, IL-1β, and IL-6, and an increase of IL-4
and IL-10 (35). Furthermore, LF administration ameliorates DSS-
induced intestinal inflammation in mice by suppressing NF-κB
signaling pathway activation (135). In particular, results from
previous study showed that apo-bLF was more efficient than
the holo form in decreasing MPO, IL-1β, and TNF-α synthesis
in trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats
and dextran sulfate (DSS)-induced colitis in mice (34, 38, 136).
Moreover, bLF has been considered as a negative regulator for
IL-6 production in in vitro and in vivo studies as well as in
clinical trials (133, 137–142). Interestingly, bLF was also found to
interfere with STAT3 activation pathways both in IL-6-dependent
and IL-6-independent modes (138, 143–145).

Immune Cell Modulation of Lactoferrin in
Inflammatory Bowel Disease
Studies have revealed that uncontrolled activation of intestine
immune cells and pathogenic immune cells circuits contribute to
the onset and development of IBD (48, 146). LF supplementation
enhances the expression of CD80, CD83, and CD86, and the
production of proinflammatory cytokines of monocyte-derived
dendritic cells, which indicate this type of cell maturation (124).
Furthermore, LF effectively causes DCs to be tolerogenic by
suppressing CD4+ T cells proliferation and enhancing Treg
cell differentiation from CD4+ T cells in the colon, when
compared with the DSS group (37, 38). Recently, LF has been
reported to promote the macrophage shift from inflammatory
to tolerogenic phenotype, which is key for tissue homeostasis
(133). Consistently, VEN-120, a recombinant human LF, reverses
severe inflammation in both the DSS-induced colitis model and
the TNF1ARE/+ model of ileitis by increasing Treg cells in
LP. In vitro study confirmed that CD4+ T cells treated with
LF upregulates Treg genes and Treg populations (114). Overall,
the studies cited above indicate that LF and LF-derived peptide
fraction can be considered as an effective clinical nutrition
strategy for the treatment or prevention of IBD.

CONCLUSIONS

The intestine mucosal immune system is a complex network
composed of lymph nodes, LP, and epithelial cells, which
provides a barrier to separate the intestinal luminal contents
from the internal environment, and plays an essential role in
a perfect immune response mechanism and a strict immune
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regulation mechanism. LF, an iron-binding protein expressed
in most biological fluids, has been considered as a potent
antimicrobial, anti-inflammatory, and immunomodulatory
substrate for modulating/boosting intestine mucosal immune
system and protecting the intestine against IBD and other
diseases. Owing to the various microbial and host targets
of LF, understanding the mechanisms of action of LF in the
intestine mucosal immune and IBD is a challenge. Therefore,
the underlying mechanisms are still under investigation
and further studies are needed. Currently, LF interaction
with PAMPs, glycosaminoglycans, or iron as well as nucleus
seem to be the most reasonable mechanisms contributing

to change in the structure and composition of the intestinal
microbiota, maintenance of intestinal epithelial barrier integrity,
balance between proinflammatory and anti-inflammatory
cytokines production, and immune cell function modulation,
which are critical for intestine mucosal immune system
and IBD. Therefore, understanding the molecular basis and
intestine mucosal immune mechanism is a key step to develop

therapeutic interventions, and provides a new target for the
treatment of IBD associated with intestine mucosal immune
system dysfunction.
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