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nd textural feature
analysis in F-18 FP-CIT brain PET images for
diagnosis of Parkinson’s disease
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Abstract
Background: The quantification of heterogeneity for the striatum and whole brain with F-18 FP-CIT PET images will be useful for
diagnosis. The index obtained from texture analysis on PET images is related to pathological change that the neuronal loss of the
nigrostriatal tract is heterogeneous according to the disease state. The aim of this study is to evaluate various heterogeneity indices of
F-18 FP-CIT PET images in the diagnosis of Parkinson’s disease (PD) patients and to access the diagnostic accuracy of the indices
using machine learning (ML).

Methods: This retrospective study included F-18 FP-CIT PET images of 31 PD and 31 age-matched health controls (HC). The
volume of interest was delineated according to iso-contour lines around standardized uptake value (SUV) 3.0g/ml for each region of
the striatum by PMod 3.603. One hundred eight heterogeneity indices were calculated using CGITA to find indices fromwhich the PD
and HC were classified using statistical significance. PD group was classified by constructing a 2-dimensional or 3-dimensional
phase space quantifier using these heterogeneity indices. We used 71 heterogeneity indices to classify PD from HC using ML for
dimensional reduction.

Results: The heterogeneity indices for classifying PD from HC were size-zone variability, contrast, inverse difference-moment, and
homogeneity in the order of lowP value. Three-dimensional quantifiers composed of normalized-contrast, code-similarity, and contrast
were more clearly classified than 2-dimensional ones. After 71-dimensional reduction using PCA, classification was possible by logistic
regressionwith 91.3%accuracy. The 2 groupswere classifiedwith an accuracy of 85.5%using the support vectormachine and88.4%
using the random forest. The classification accuracy using the eXtreme Gradient Boosting was 95.7%, and feature importance was
highest in order of SUV bias-corrected kurtosis, size-zone-variability, intensity-variability, and high-intensity-zone-variability.

Conclusion: It was confirmed that PD patients is more clearly classified than the conventional 2-dimensional quantifier by
introducing a 3-dimensional phase space quantifier. We observed that ML can be used to classify the 2 groups in an easy and
explanatory manner. For the discrimination of the disease, 24 heterogeneity indices were found to be statistically useful, and themajor
cut-off values of 3 heterogeneity indices were size-zone variability (1906.44), intensity variability (129.21), and high intensity zone
emphasis (800.29).

Abbreviations: CGITA = Chang-Gung image texture analysis, FP-CIT = F-18 fluoro-propyl-carbomethoxyiodophenyl-tropane,
HC = health controls, LR = logistic regression, ML = machine learning, PD = Parkinson’s disease, RF = random forest, SD =
standard deviation, SUV= standardized uptake value, SVM= support vector machine, VOI= volume of interest, XGBoost= eXtreme
Gradient Boosting.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder caused
by degenerative changes in dopamine neurons in the substantia
nigra region and the loss of dopamine neuron terminals in the
striatum.[1] Degenerative brain diseases, such as PD, are found
after the disease progresses, because the symptoms are initially
hidden by a compensatory mechanism, so early detection and
differentiation from similar diseases are important for treatment.
At present, the diagnosis of PD depends on clinical findings and
lacks quantitative indicators for early diagnosis, so there can be
failure of diagnosis and evaluation and tracking of disease
progression. Non-invasive measurement of neurochemical
changes due to degeneration of dopamine neurons using positron
emission tomography (PET) images of PD patients is now
possible.[2] The radio-pharmaceutical F-18 fluoro-propyl-carbo-
methoxyiodophenyl-tropane (FP-CIT), which has a high affinity
for dopamine transporters located in the pre-synaptic dopamine
neuron membrane, has been used in Korea for the diagnosis of
PD since 2008.
F-18 FP-CIT PET dopamine transporter images of PD show

reduced uptake of radio-pharmaceuticals in the striatum. The loss
of putamen dopamine transporters also occurs first, while the
caudate nucleus changes later, as shown in Figure 1.[3,4] In the
normal group, uptake in the striatum, from dopamine transport-
er images, decreased by 5% to 8% per 10years as age
increased.[5,6] 5.7% to 14.7% of patients with early PD were
reported as normal on dopamine transporter imaging.[7,8] Some
Figure 1. (A) Representative F-18 FP-CIT PET images in normal control and Parkin
in both caudate nuclei and putamina.
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patients have symptoms similar to PD, which are mistaken for PD
and are not amenable to treatment with anti-PD drugs.[9] With
dopamine transporter imaging alone, it is difficult to distinguish
PD from nonspecific degenerative Parkinson’s syndrome.[10]

Accurately classifying PD from normal can be helpful in
treatment.
Recently, tumor heterogeneity has been quantified by

molecular imaging PET because it is an important biomarker
for aggressive outcomes and disease.[11] The “heterogeneity
index” was calculated numerically for quantification of tumor
heterogeneity. Evaluation of the clinical application of the
heterogeneity index should be validated through several trials.[12]

Although Chang-Gung image texture analysis (CGITA) software
has been mainly studied in oncology applications, it can also be
applied to nervous system applications.[11] CGITA analysis
consists of 10 feature “parents” and 108 sub-features.[13–20]

Feature parents have 10 items: co-occurrence (7 sub-features)[21]

voxel-alignment (11),[14] neighborhood intensity-difference
(5),[15] intensity-size-zone (11)[16] normalized co-occurrence
(6),[21] standardized uptake value (SUV) statistics (49), texture
spectrum (2),[17] texture feature coding (4),[18] texture feature
coding co-occurrence (8)[18] and neighboring gray level depen-
dence (5);[19] they are summarized in Table 1. In the present
study, various heterogeneity indices were applied to F-18 FP-CIT
brain PET images to classify the PD group from the normal
group.
If applied to a well-defined and sufficient dataset using the

machine learning (ML) technique, data classification will be
son’s disease (PD). (B) SUV of F-18 FP-CIT PET image with PD is almost absent



Table 1

SUV statistics, texture feature parents and associated features of the heterogeneity indices are shown.

Feature parent Feature name P value

Co-occurrence Contrast 1.00029E–12
∗∗∗∗

Dissimilarity 3.75046E–10
∗∗∗∗

Voxel-alignment Short run emphasis 0.016343439
∗

Run-length variability 0.036887868
∗

High-intensity run emphasis 0.006793941
∗∗

High-intensity short-run emphasis 0.000149502
∗∗∗

High-intensity long-run emphasis 0.045119396
∗

Neighborhood intensity-difference Contrast 1.85714E–06
∗∗∗∗

Busyness 0.040487997
∗

Complexity 0.013769938
∗

Strength 0.000129852
∗∗∗

Intensity-size-zone Short-zone emphasis 2.6902E–09
∗∗∗∗

Intensity variability 0.002274678
∗∗

Size-zone variability 6.79209E–15
∗∗∗∗

Zone percentage 4.33351E–08
∗∗∗∗

High-intensity zone emphasis 0.000663492
∗∗∗

Low-intensity short-zone emphasis 0.018959745
∗

High-intensity short-zone emphasis 1.85965E–06
∗∗∗∗

Normalized co-occurrence Second angular moment 0.026808462
∗

Contrast 2.02287E–09
∗∗∗∗

Entropy 6.92433E–07
∗∗∗∗

Homogeneity 7.30236E–06
∗∗∗∗

Dissimilarity 4.30895E–09
∗∗∗∗

Inverse difference moment 1.36691E–05
∗∗∗∗

SUV statistics Minimum SUV 0.001157705
∗∗

Maximum SUV 2.7711E–07
∗∗∗∗

Mean SUV 5.32019E–08
∗∗∗∗

SUV variance 3.81441E–08
∗∗∗∗

SUV SD 3.22846E–10
∗∗∗∗

SUV skewness 4.30727E–07
∗∗∗∗

SUV bias-corrected skewness 4.29786E–07
∗∗∗∗

SUV bias-corrected kurtosis 1.29798E–05
∗∗∗∗

TLG 2.31906E–06
∗∗∗∗

Entropy 4.90619E–06
∗∗∗∗

SULpeak 3.19891E–07
∗∗∗∗

Asphericity 3 0.001787896
∗∗

Surface mean SUV 1 0.00029043
∗∗∗

Surface SUV variance 1 7.65935E–06
∗∗∗∗

Surface SUV SD 1 1.37894E–06
∗∗∗∗

Surface SUV NSR 1 6.50574E–07
∗∗∗∗

Surface SUV variance 2 1.9843E–06
∗∗∗∗

Surface SUV SD 2 0.013960269
∗

Surface SUV variance 3 1.6053E–05
∗∗∗∗

Surface SUV SD 3 0.000216963
∗∗∗

Surface SUV variance 4 6.38145E–07
∗∗∗∗

Surface SUV SD 4 1.23E–06
∗∗∗∗

SUVmean_prod_asphericity 7.95557E–05
∗∗∗∗

SUVmean_prod_surface_area 0.024683396
∗

Texture spectrum Max spectrum 2.37813E–08
∗∗∗∗

Black-white symmetry 2.7476E–08
∗∗∗∗

Texture feature coding Mean convergence 0.001550072
∗∗

Variance 0.013155872
∗

Texture feature coding co-occurrence Second angular moment 1.57702E–08
∗∗∗∗

Contrast 2.50733E–07
∗∗∗∗

Entropy 6.09593E–06
∗∗∗∗

Homogeneity 2.64231E–10
∗∗∗∗

Intensity 0.000717938
∗∗∗

Inverse difference moment 1.55045E–10
∗∗∗∗

Code entropy 6.09593E–06
∗∗∗∗

Code similarity 1.22492E–09
∗∗∗∗

Neighboring gray level dependence Small number emphasis 1.36827E–07
∗∗∗∗

Large number emphasis 0.038539334
∗

Number non-uniformity 1.53546E–06
∗∗∗∗

Comparison of heterogeneity indices by SUV statistics and textural feature analysis in F-18 FP-CIT brain PET images with PD and HC.
NSR= radial noise-to-signal, SD= standard deviation, SULpeak=peak SUV corrected for lean body mass, SUV= standardized uptake value, TLG= total lesion glycolysis.
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possible with optimal performance. Logistic regression (LR) is
fast for learning, works well even in a small dataset, and can
explain the reason for the prediction by formula. The support
vector machine (SVM)[22] has a feature that works with both
small and low and high datasets. Random forest (RF)[23] is a
technique that assembles several decision trees to create an
optimal model, and produces reliable results by reducing over-
fitting, rather than using 1 decision tree. XGBoost (eXtreme
Gradient Boosting)[24,25] is a model based on classification and
regression trees, and it performs best in the Kaggle competition.
XGBoost, using a boosting algorithm, is capable of parallel
processing, so processing speed is fast, optimization options are
provided, automatic pruning using a “greedy-algorithm” is
possible in order to reduce overfitting and it has excellent
connectivity with other AI algorithms. In this study, the accuracy
was evaluated using various ML algorithms to classify the PD
group and the normal group.
2. Methods

2.1. Database of dopamine transporter brain PET images

Sixty-five patients who were clinically possible or probable IPD
patients and normal health controls (HC) were retrospectively
enrolled in the study. F-18 FP-CIT brain PET scans were used for
analysis in 31 PD patients (mean age 67.8±5.8years old) and 31
age-matched HC (70.5±8.5years old). The number of data in 2
groups was matched based on age, and 3 PET images were
excluded. PD patients were assessed with the British Parkinson’s
Disease Association Brain Bank clinical diagnostic criteria.[26] PD
patients underwent the Seoul Neuropsychological Screening
Battery consisting of 5 domains: a digit span test (forward and
backward) for attention, a Korean version of the Boston naming
test for language, the Rey complex figure test for visuo-spatial
recognition, the Seoul verbal learning test for memory and the
Korean – color ward Stroop test for executive function.[27] The
criteria for the normal control group were: no abnormalities on
neurological examinations, no underlying medical history or
medication, and no abnormal findings on both F-18 FP-CIT PET
and brain magnetic resonance imaging. The Institutional Review
Board of our hospital reviewed and approved the study protocol
and informed consent form.
Scanning was performed without interruption of dopamine

agonist anti-Parkinson medications, such as levodopa to control
motor symptoms of PD and especially for bradykinesia (slowness
of movement) and rigidity. Drugs affecting cognitive function,
such as anticholinergic drugs, were stopped for 2days before the
F-18 FP-CIT PET scan. This study was approved by the Dong-A
Medical Center Ethics Committee and did not require prior
consent because of its retrospective nature. Scanning was
performed with a Biograph mCT flow PET/CT (Siemens),
providing an in-plane spatial resolution of up to 5.0mm full-
width at half maximum at the center of the field of view. Patients
were injected intravenously with 185MBq F-18 FP-CIT and PET/
CT acquisition was started 2hours after radioisotope tracer
injection.[28–30] A helical CT scan was performed with a
rotational time of 0.5seconds at 120 kVp and 100mA without
intravenous contrast agent. PET scan was followed by CT scan
and acquired for 10minutes in 3D mode. All images were
acquired from the skull vertex to the base of the skull. Image
reconstruction was performed with a point spread function and
time-of-flight algorithmwith a 400�400matrix, 5 iterations and
4

21 subsets. Patients were able to continue anti-Parkinson
medication.
2.2. Image analysis

The volume of interest (VOI) was delineated according to iso-
contour lines around SUV 3.0g/ml for each region of the striatum
by PMod 3.603.[31] The heterogeneity index is calculated by
loading VOI extracted using PMOD in CGITA.[32] CGITA 1.4
contains 108 heterogeneity indices that represent spatial non-
uniformity. The values of textural feature indices were analyzed
within VOI of 62 patients, with and without PD. The quantifica-
tion of heterogeneity by molecular images has great clinical
potential for diagnosis using medical images by analyzing local or
global changes in the spatial arrangement of pixel intensities by
texture analysis.[11] CGITA is a free open source software package
for quantifying tumor heterogeneity in molecular images.
Heterogeneity indices in F-18 FP-CIT brain PET images were
calculated using CGITA.[32] One hundred eight heterogeneity
indices from textural feature analysis were calculated using a co-
occurrence matrix, voxel-alignment matrix, neighborhood inten-
sity difference matrix, intensity-size-zone matrix, normalized co-
occurrence matrix, texture spectrum, texture feature coding,
texture feature coding co-occurrence matrix and neighborhood
gray-level dependence, as shown in Table 1. One hundred eight
heterogeneity indices are derived from the ten feature parent
matrices. The values of global and textural feature indices (local
and regional algorithms) were analyzedwithin VOI of 62 patients,
with andwithoutPD.Theglobal indiceswere SUVmax,SUVmean,
SUVSD, SUV skewness, SUV kurtosis, total lesion glycolysis,
tumor volume, entropy, SUVpeak, as shown in Table 1.
2.3. Statistical and ML analysis

To classify the 2 groups, the correlations between each variable
were examined and t tests were performed to calculate P values.
One hundred eight heterogeneity indices were calculated and
compared to indices, clearly distinguishing normal controls from
PD patients. Two-dimensional scatter plots and histograms, based
on heterogeneity indices, were used to classify the 2 groups. Two-
dimensional scatter plots consist of a combination of 2
heterogeneity indices; they find the optimal indices for classifica-
tion. To more clearly classify the 2 groups, we created a quantifier
of 3-dimensional phase space.[33] Three-dimensional axes were
constructed by finding 3-indices with small P values in the
statistical comparison. Statistical comparative analysis could
classify up to 3 heterogeneity indices. Apart from the 3
heterogeneity indices, with other indices itwas difficult to influence
the decision for a final diagnosis. MLwas introduced to determine
all heterogeneity indices. Seventy-one heterogeneity indices were
used to distinguish PD patients from normal controls using ML,
dimensional reductionanddecision trees.After the 71-dimensional
reduction by the PCA algorithm, the LR algorithm[34] was used to
determine the accuracy. In addition to the LR algorithm, the
SVM,[22] RF,[23] and XGBoost algorithm[24,25] were used.
XGBoost algorithm calculates feature importance and arranges
each according to importance of the heterogeneity indices.
3. Results

In the image of F-18 FP-CIT with PD, a decreased dopamine
transporter uptake was observed in the basal ganglia, as shown in



Figure 2. Scatter plots and histograms for normal and PD in heterogeneity indices derived from global SUV statistics in F-18 FP-CIT brain PET images. The values
of indices by P values discriminated between patients with PD and non-PD.
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Figure 1. The heterogeneous decrease in striatal dopamine
transporters, indirectly indicates an excessive uptake of F-18 FP-
CIT in the background. Compared to the normal group, the PD
patient group generally had reduced F-18 FP-CIT uptake in both
putamina and nuclear nuclei, as shown in Figure 1. The
heterogeneity indices of co-occurrence, voxel-alignment, neigh-
borhood intensity-difference, intensity-size-zone, normalized co-
occurrence, SUV statistics, texture spectrum, texture feature
coding, texture feature coding co-occurrence, and neighboring
gray level dependence of feature parent matrix form are
summarized in Table 1. Out of 10 feature-parent items, 71
sub-features satisfy P< .05 condition through t test, co-occur-
rence (2/7), voxel-alignment (5/11), neighborhood intensity-
difference (4/5), intensity-size-zone (7/11), normalized occur-
rence (6/6), SUV statistics (24/49), texture spectrum (2/2), texture
feature coding (2/4), texture feature coding co-occurrence (8/8),
neighboring gray level dependence (3/5). Heterogeneity feature
indices with large P values: size-zone variability (intensity-size-
zone), contrast (co-occurrence), and inverse difference
moment (texture feature coding co-occurrence) are summarized
in Table 1.
5

One hundred eight indices related to heterogeneity were
analyzed to distinguish between “with and without” PD, by
global and textural feature analysis. The distinction of metastasis
in the striatal region of the patients, with and without PD, was
possible by using the 24 global indices (SUVmax, SUVmean,
SUVSD, SUV variance, SUV kurtosis, SUVpeak, etc) from SUV
statistics feature analysis. As shown in Table 1, there were a total
of 49 heterogeneity indices for SUV statistics. There were 24
heterogeneity indices with P< .05 that distinguished normal from
PD. The heterogeneity indices of SUV SD, Maximum SUV, mean
SUV, and SUV skewness were good enough to distinguish
between the 2 groups (normal and PD), as shown in Figure 2.
Two groups were separated in 2-dimensional scatter plot clearly
by the values of heterogeneity of SUV SD and maximum SUV or
mean SUV. The histograms and scatter plots of the indices of SUV
SD andmaximum SUVwere good shapes for separation. SUV SD
and maximum SUV indices of PD patients can be used to
distinguish them from the normal group.
The heterogeneity indices of co-occurrence and normalized co-

occurrence of parent matrix form are summarized in Table 1.
Second angular moment, contrast, entropy, homogeneity,

http://www.md-journal.com


A B

Figure 3. Scatter plots and histograms for normal and PD in heterogeneity indices derived from 2- and 3-dimensional of (A) normalized co-occurrence and (B) co-
occurrence feature parents in F-18 FP-CIT brain PET images. The histogram was displayed the 2-dimensional scatter plot shows the possibility of distinction
between normal and PD.

Figure 4. Scatter plots and histograms for normal and PD in heterogeneity indices derived from 2- and 3-dimensional intensity-size-zone parents in F-18 FP-CIT
brain PET images. Histograms and 2-dimensional scatter plots show the possibility of distinguishing between normal and PD.

Yoon et al. Medicine (2021) 100:35 Medicine
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Figure 5. Scatter plots and histograms for normal and PD in heterogeneity indices derived from 2- and 3-dimensional texture feature coding co-occurrence
parents in F-18 FP-CIT brain PET images.

Yoon et al. Medicine (2021) 100:35 www.md-journal.com
dissimilarity, inverse difference moment and correlation were
derived by co-occurrence parent matrix. The values of heteroge-
neity of contrast and dissimilarity found were significantly
different from those found by using a 2 sample t test; see Table 1.
Figure 3 shows a histogram and 2-dimensional scatter distribu-
tion of heterogeneity indices. The histogram of contrast and
dissimilarity shows the possibility of distinction. The distribution
of combination by 2 heterogeneity indices was clearly distin-
guished between the 2 groups, as shown in Figure 3. As shown in
Table 1, the numbers of the heterogeneity indices of co-
occurrence and normalized co-occurrence feature parents that
can be classified as normal and PD, under P< .05, are 2 and 6,
respectively. The heterogeneity indices of co-occurrence feature
parents, contrast and dissimilarity, had very low P values of 1.00
� 10–12 and 3.75 � 10–10, and clarified the classification of
normal and PD groups in scatter plots. The classification is clearer
than for other heterogeneity indices.
Intensity-size-zone feature parents have a total of 11

heterogeneity indices, and 7 indices satisfy P< .05 when
comparing normal and PD. The separation of the 2 groups
can be determined using scatter plots and histograms, as shown in
Figures 4 and 5. The indices of intensity short-zone emphasis and
size-zone variability was good enough to distinguish between
7

normal and PD, as shown in Figure 4. The values calculated by
intensity variability and low-intensity short-zone emphasis were
not clearly distinguished between the 2 groups (Fig. 5). As shown
in Table 1, there were 8 heterogeneity indices for the texture
feature coding co-occurrence feature parent. PD and normal were
classified under conditions of P< .05 by statistical comparison
using 8 heterogeneity indices. Heterogeneity indices of entropy,
homogeneity, intensity, inverse difference moment, code entropy,
code similarity were very good at distinguishing 2 groups (normal
and PD).
We have found that scatter plots and histograms more clearly

separate normal and PD. Scatter plots and histograms were
selected in Figure 6 by selecting 12 heterogeneity indices, in
consideration of low P value and scatter plots for clearer
classification. The heterogeneity indices selected were code
similarity (parent matrix: texture feature coding co-occurrence),
contrast (co-occurrence), size-zone variability (intensity-size-
zone), contrast (normalized co-occurrence), inverse difference
moment (texture feature coding co-occurrence), zone-percentage
(intensity-size-zone), homogeneity (texture feature coding co-
occurrence), dissimilarity (co-occurrence), second angular mo-
ment (texture feature coding co-occurrence), SUV SD (SUV
statistics), max spectrum (texture spectrum), and dissimilarity

http://www.md-journal.com


Figure 6. Scatter plots and histograms were selected by selecting 12 heterogeneity indices in order of easy classification of normal and PD. The selection was
randomly chosen by visually observing the scatter plot around the low P value. Most heterogeneity indices show a good classification between normal and PD
(black and red). A non-uniform quantitative phase space was introduced in the separation between the 2 groups. The separation between the 2 groups is clear.
Three-dimensional quantifier phase-space of heterogeneity was introduced to further clarify the classification between the 2 groups.

Yoon et al. Medicine (2021) 100:35 Medicine
(normalized co-occurrence). The 12 heterogeneity indices select-
ed showed a good separation between normal and PD (black and
red). To more clearly classify the 2 groups, a 3-dimensional
quantifier phase-space of heterogeneity was introduced. A 3-
dimensional quantifier phase-space of heterogeneity using size-
zone variability (intensity-size-zone), code similarity (texture
feature coding co-occurrence), and contrast (co-occurrence) was
introduced to clarify the classification between the 2 groups.
As shown in Figure 7, 3 heterogeneity indices were selected to

quantify the heterogeneous phase space. Three axes consist of 3
different heterogeneity indices. Each heterogeneity index was
selected from a low P value, the shape of the scatter diagram, and
the different parent features. 95% confidence ellipsoids for the
classification of normal and PD are shown with a 3-dimensional
phase space quantifier. For most 3-dimensional quantifiers, the
separation of PD and non-PD is clearer, as shown in Figure 7. The
3-dimensional quantifier in Figure 7 is shown by (A) for
normalized contrast, code similarity and contrast, (B) for SUV
SD, code similarity and contrast, (C) for dissimilarity, code
similarity and contrast, and (D) dissimilarity, contrast, and SUV
8

SD. Figure 7A, B showed the best performance when using the
classification 3D quantifier. Three-dimensional heterologous
quantifiers were shown to enable the diagnosis of PD patients.
Different heterogeneous quantifiers, using various heterogeneity
indices, could alter the diagnostic performance, as shown in
Figure 7.
By calculating 108 heterogeneity indices, we found, from the

statistically-significant indices that clearly distinguished PD
patients from normal controls, an order of size-zone variability,
co-occurrence contrast and inverse difference moment, as shown
in Table 1. When the 2 groups were divided into 2-dimensional
and 3-dimensional phase space quantifiers, they could be
classified by statistical algorithms. As shown in Table 2, when
the 108 dimensions were reduced by using the PCA and classified
using the LR algorithm, classification was possible with 91.3%
accuracy (Fig. 8). Two groups were classified with an accuracy of
85.5% using the SVM algorithm and 88.4% using the RF
algorithm. When the PD patients were classified using the
decision tree algorithm, co-occurrence contrast was classified as
the top layer. As shown in Table 3, the classification accuracy



Figure 7. We selected 3 heterogeneity indices for 3-dimensional quantifier phase-space of heterogeneity. 95% confidence ellipsoid for normal and PD was
displayed in 3-dimensional phase-space quantifier. Classification was clearer when using 3-dimensional quantifiers. We could help diagnosis for patients with PD
applied using this 3-dimensional heterogeneity quantifier.
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using the XGBoost algorithm was 95.7%, and the feature
importance was SUV bias-corrected kurtosis (22), size-zone
variability (20), intensity variability (11), and high intensity zone
variability (10).
The classification of HC and IPD using the 4 major

parameters related to SUV (SUVmax, SUVmean, SUV variance,
SUV SD) shows that they have a high AUC in Figure 9A. The
AUC for the 4 heterogeneity parameters, in order of feature
importance using the Xgboost method, are shown in Figure 9B.
Table 2

The precision, recall, F1-score and accuracy of classification by SVM

Method Classification Precision

SVM HC 0.83
PD 0.88

LR HC 0.91
PD 0.91

RF HC 0.86
PD 0.91

XGBoost HC 0.97
PD 0.94

HC=health controls, PD=Parkinson’s disease.

9

The area of AUC is higher of 2 heterogeneity parameters than
the AUC found in the classification using SUV related
parameters. In Table 4, when classifying HC and IPD using
the maximum and minimum SUV values, the AUC showed an
accuracy of 0.95 or higher. At this time, the cut-off value was
13.42 for the maximum SUV and 4.46 for the minimum SUV.
On the other hand, the AUC of the heterogeneity parameter
SUV bias corrected for kurtosis or size-zone variability was 0.99
or higher, and almost completely indistinguishable for the 2
, LR, RF, and XGBoost algorithms.

Recall F1-score Accuracy

0.88 0.86 0.86
0.83 0.85
0.91 0.91 0.91
0.91 0.91
0.91 0.89 0.88
0.86 0.88
0.94 0.96 0.96
0.97 0.96

http://www.md-journal.com


Figure 8. Original distribution and predicted distribution by SVM, LR, RF, and XGBoost algorithms. The feature importance is displayed by XGBoost.
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groups. The cut-off values at this time were 3.47 and 1906.44,
respectively.

4. Discussion

Textural feature analysis showed that 71 heterogeneity indices
could classify 2 groups, PD and NC, below P< .05. Textural
feature analysis is quite useful because 71 out of 108
heterogeneity indices can distinguish between normal and PD.
The distribution of the radio-pharmaceutical in F-18 FP-CIT
brain PET image reflects the heterogeneity of the dopamine
transporter. There must be at least 10 pixels to ensure the
10
accuracy of the calculation of the heterogeneity indices. The
calculated values of the heterogeneity indices may not fully reflect
their characteristics, because the distribution of the striatum
region is not wide enough.
Of the total of 49 heterogeneity indices for SUV statistics, 24

indices were available for classification. SUV statistics could be
classified with relatively high classification performance, even in
the case of the SUV statistics global indices. This is an evaluation
of the SUV characteristics of F-18 FP-CIT PET images, which
means that they can be classified with relatively high accuracy. It
has been shown that classification using heterogeneity indices
reflecting texture features can be separated using more indices



Table 3

The feature importance are listed by using an XGBoost calculation.

No. Feature name Importance

1 SUV statistics, SUV bias-corrected kurtosis 22
2 Intensity-size-zone, size-zone variability 20
3 Intensity-size-zone, intensity variability 11
4 Intensity-size-zone, high-intensity zone emphasis 10
5 Co-occurrence-dissimilarity 9
6 Co-occurrence-contrast 4
7 Co-occurrence-second angular moment 3
8 SUV statistics, maximum SUV 3
9 Voxel-alignment, low-intensity short-run emphasis 2
10 SUV statistics, surface mean SUV 1 2
11 SUV statistics, asphericity 2
12 Voxel-alignment, low-intensity run emphasis 2
13 SUV statistics, surface SUV variance 2 1
14 Co-occurrence-correlation 1
15 SUV statistics, surface SUV NSR 4 1
16 SUV statistics, surface total SUV 3 1
17 Intensity-size-zone, zone percentage 1
18 SUV statistics, surface SUV NSR 2 1
19 Texture spectrum, max spectrum 1
20 SUV statistics, surface SUV NSR 3 1

NSR= radial noise-to-signal, SUV= standardized uptake value.
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rather than just SUV indices. Therefore, it is suggested that
diagnosis considering heterogeneity indices can improve the
accuracy of classification between the normal group and the
PD group.
Heterogeneity indices of co-occurrence and normalized co-

occurrence feature parents could be classified with better
performance than other indices. All 6 heterogeneity indices of
normalized co-occurrence feature parents were statistically able
to classify the 2 groups. Contrast and dissimilarity, derived from
Figure 9. ROC curve (A) of SUV-related parameters (SUVmax, SUVmean, SUV va
heterogeneity parameters (SUV bias-corrected kurtosis, size-zone variability, inten
Table 3.
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co-occurrence feature parents, were particularly well classified.
Using these heterogeneity indices, constructing a 2- or 3-
dimensional phase space quantifier will enable efficient and
accurate diagnosis. Figure 3 shows a histogram and a scatter plot
of the heterogeneity indices, showing high accuracy diagnostic
possibilities. The pattern of the figure and the P value allow one to
choose the heterogeneity indices to use in 2 or 3 dimensions. The
accuracy of the classification can vary, depending on the
heterogeneity indices chosen and the shape of the classification.
The limitation of this method is that one needs to configure the
quantifier in every case and check the results, so as to determine
which one performs the best. Of the 108 heterogeneity indices, 73
were found to be effective for classification. The disadvantage of
classifying using a 3-dimensional phase-space quantifier is that
only 3 indices should be used among the 73 valid indices. Despite
some limitations, 3-dimensional phase space quantifiers have
been observed to exhibit fairly good classification performance.
Figures 4 and 5 show that heterogeneity indices of intensity-

size-zone and texture feature coding co-occurrence feature
parents can be classified with good performance. As shown in
Figure 5 and Table 1, all 8 of the heterogeneity indices of texture
feature coding co-occurrence feature parents were statistically
classified into 2 groups. Inverse different moment and homoge-
neity of texture feature coding co-occurrence feature parents
showed excellent classification performance, even with a single
parameter. These 2 indices show good performance in classifica-
tion, even when the 2 are combined to form a 2-dimensional
quantifier. The intensity variability and zone percentage
variability derived from the intensity-size-zone feature parent
were not very good when classified as a single parameter.
Intensity variability and zone percentage variability of intensity-
size-zone feature parents show better classification performance
when using 2-dimensional quantifiers. This means that a more
accurate classification can be achieved by combining the various
indices appropriately. The visually distinguishable maximum is a
riance, SUV SD) for classification of HC and IPD and ROC curve (B) of 4 major
sity variability, high intensity zone emphasis) according to feature importance in

http://www.md-journal.com


Table 4

AUC, sensitivity, specificity, cut-off value, and P value based on SUV-related items and 4 major heterogeneity parameters in Table 3 for
classification of HC and IPD.

Region AUC Sensitivity Specificity Cut-off value P

Maximum SUV 0.954 93.33 93.55 13.42 <.0001
Mean SUV 0.956 93.33 90.32 4.46 <.0001
SUV variance 0.996 96.67 96.77 5.31 <.0001
SUV SD 0.996 96.67 96.77 2.3 <.0001
SUV bias corrected kurtosis 0.99 96.67 93.55 3.47 <.0001
Size-zone variability 1 100 100 1906.44 <.0001
Intensity variability 0.859 66.67 96.77 129.21 <.0001
High intensity zone emphasis 0.689 50 87.1 800.29 .0066

SD= standard deviation, SUV= standardized uptake value.
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3-dimensional phase space quantifier created by combining 3
indices. Three-dimensional quantifiers can be used to provide the
best performance for classification, but the optimum-selection of
3 heterogeneity indices is still a problem to be solved.
The heterogeneity indices with good classification were selected

and are shown in Figure 6. The selection conditionwas to select the
lowP valuefirst, and then randomly select those that stably separate
the normal and PD groups in the scatter plot. It is well-separated in
most quantifiers, when it is classified using a 2-dimensional scatter
plot. Among the heterogeneity parameter pairs that make up the 2-
dimensional quantifier, classification was clearly possible with:
(code similarity, SUV SD), (inverse different moment, homogenei-
ty), and (code similarity, contrast). The construction of 3-
dimensional quantifiers allowed a clearer classification. Figure 6
shows that the 3-dimensional quantifier, consisting of heterogeneity
indices of size-zone variability, code similarity, and contrast,
classified the normal and PD groups most clearly.
In Figure 7, a combination of heterogeneity indices was

constructed to observe the effect on classification. The combina-
tions of 3-dimensional heterogeneity indices were: (normalized
contrast, code similarity, contrast), (SUV SD, code similarity,
contrast), (dissimilarity, code similarity, contrast), and (dissimi-
larity, contrast, SUV SD). The classification of the 3-dimensional
quantifier in Figure 7 was clear, although there were some
differences in the distributions of the data. To evaluate new data,
diagnosis can bemade by verifying the location on a 3-dimensional
quantifier. However, as the number of data is not yet sufficient,
there is a possibility that the boundary can be changed when new
data are introduced. If more data are used, it is expected that the
boundary will be fixed stably and the classification will be clear.
Using a recent ML technique, the PD family was classified in a

way that all 108 indices were considered. This approach is
intended to maximize the advantage of considering 108
heterogeneity indices. Using dimension reduction eliminates
unnecessary indices automatically, so that the most important
indices have a great influence on the classification. As shown in
Figure 7, classification was performed using SVM, LR, RF and
XGBoost algorithms. The most accurate algorithm is 95.7%
accurate, using the XGBoost algorithm, as shown in Table 2. The
XGBoost algorithm shows which heterogeneity indices play a key
role in classification by displaying feature importance, as shown
in Table 3. It is very useful to classify a small number of data
because the ML algorithm is efficient and the reason for
classification can be explained.
As a result of performing the t test, an index indicating the

difference between the 2 groups of HC and IPD, it was shown
12
that, when using the heterogeneity parameters with high P value,
classification of HC and IPD was possible as with SUV-related
parameters. The PET images of the brains of patients who
reached a stable state after administration of F-18 FP-CIT
radiopharmaceuticals were relatively clearly distinguished by
comparison of images by the intensity of SUV. When employing
classification using heterogeneity parameters with a high P value
through t test, the AUC in ROC could be increased. The
limitation is that the number of data is 61, so there is a possibility
of over-fitting because the relatively small number being used.
When acquiring more data, errors due to over fitting can be
reduced. Quantitative analysis is possible by using the cut-off
presented in Table 4. If the classification result changes when
using cut-off in quantitative diagnosis, the AUC can be analyzed
by placing weights in the sequence of higher order.
5. Conclusion

Heterogeneity indices of the striatum region of F-18 FP-CIT brain
PET images were calculated, and normal and PD groups were
successfully separated by statistical comparison and scatter plot
comparison. One hundred eight heterogeneity indices were
calculated, of which 71 were found to be very useful for
classification. The classification was attempted by constructing a
scatter plot in 2-dimensional and 3-dimensional phase spaces,
and the 2 groups were separated very successfully.When selecting
the best indices for classification, based on low P values, and
generating 3-dimensional quantifiers, PD patients were success-
fully separated from normal groups. ML was introduced to
classify all 108 heterogeneity indices, and the separation was very
successful with the XGBoost algorithm. Themethod of extracting
heterogeneity indices and using ML is very useful because it can
provide a reason for classification through feature importance.
The classification by artificial intelligence analysis has the
characteristic that the accuracy of learning increases in propor-
tion to the number of data, while the possibility of overfitting
exists due to the small number of data used in this study.
Quantitative classification of HC and IPD is possible by using the
heterogeneity parameter, and it can be used for quantitative
analysis of new images by presenting the cut-off value.
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