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ABSTRACT

Motivation: The laws of thermodynamics describe a direct,
quantitative relationship between metabolite concentrations and
reaction directionality. Despite great efforts, thermodynamic data
suffer from limited coverage, scattered accessibility and non-
standard annotations. We present a framework for unifying
thermodynamic data from multiple sources and demonstrate two
new techniques for extrapolating the Gibbs energies of unmeasured
reactions and conditions.
Results: Both methods account for changes in cellular conditions
(pH, ionic strength, etc.) by using linear regression over the �G◦
of pseudoisomers and reactions. The Pseudoisomeric Reactant
Contribution method systematically infers compound formation
energies using measured K ′ and pKa data. The Pseudoisomeric
Group Contribution method extends the group contribution method
and achieves a high coverage of unmeasured reactions. We define a
continuous index that predicts the reversibility of a reaction under
a given physiological concentration range. In the characteristic
physiological range 3μM –3mM, we find that roughly half of the
reactions in Escherichia coli’s metabolism are reversible. These new
tools can increase the accuracy of thermodynamic-based models,
especially in non-standard pH and ionic strengths. The reversibility
index can help modelers decide which reactions are reversible in
physiological conditions.
Availability: Freely available on the web at:
http://equilibrator.weizmann.ac.il. Website implemented in Python,
MySQL, Apache and Django, with all major browsers supported.
The framework is open-source (code.google.com/p/milo-lab),
implemented in pure Python and tested mainly on Linux.
Contact: ron.milo@weizmann.ac.il
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The study of metabolism has recently regained its central role in
diverse areas of cell biology, physiology, medicine and systems
biology. The study of metabolic pathways and networks (Haverkorn
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Van Rijsewijk et al., 2011; Heinrich et al., 1991; Ishii et al., 2007;
Kümmel et al., 2010; Oberhardt et al., 2009; Pfeiffer and Schuster,
2005) aims to better understand the complex behaviour of living
organisms as well as their manipulation for human needs (Atsumi
et al., 2008; Bar-Even et al., 2010; Sinha et al., 2010; Steen et al.,
2010; Yim et al., 2011; Zhang et al., 2010). The thermodynamics
of biochemical reactions (Alberty, 2003) is of special interest in the
analysis and design of metabolic pathways.

The change in the Gibbs free energy (�G) characterizes the
thermodynamic balance of biochemical reactions and dictates
the direction of net flux (the difference between forward and
backward fluxes) in a reaction. It is thus useful for the study of a
single enzymatic reaction, for analyzing entire metabolic pathways
(Vojinović and von Stockar, 2009), and for the large-scale modeling
of whole-cell metabolic networks (Henry et al., 2007).

A reaction at equilibrium carries no net flux. At equilibrium
in a specific pH, the apparent reaction quotient Q′—the ratio
of product to substrate concentrations—is termed the apparent
equilibrium constant and denoted by K ′. In ideal dilute solutions,
the ‘transformed Gibbs energy of reaction’ is a function of the
apparent reaction quotient: �rG′ =−RTln

(
K ′/Q′). The ‘standard’

transformed Gibbs energy of reaction (�rG′◦) is the value of �rG′ at
standard conditions, i.e. when all compound concentrations are 1 M.
Therefore, �rG′◦ =−RTlnK ′ (Fig. 1—equation I).

�rG′ determines the direction of net flux in a reaction. A
negative �rG′ would correspond to a positive (forward) net flux
and vice versa. Cell physiology imposes constraints on metabolite
concentrations and consequently on Q′. Reactions for which
�rG′◦ <0 for any physiological Q′ can only carry a forward
flux and are thus called irreversible reactions. This classification
of reactions is especially important in constraint-based modeling
that covers whole-cell metabolic networks and depends on the
knowledge of reaction directionality for predicting flux distributions,
growth rates and other large-scale metabolic phenotypes (Beg et al.,
2007; Burgard et al., 2003; Oberhardt et al., 2009). Directionality,
annotations typically rely on phenomenological data and arbitrary
definitions of reversibility. Recent advances in the field allow
incorporating thermodynamic data directly into the model by adding
explicit constraints that connect �rG, concentrations and reaction
directionality (Fleming et al., 2009; Henry et al., 2007).

The NIST database for Thermodynamics of Enzyme-Catalyzed
Reactions (NIST-TECR) is the most comprehensive collection
of empirical thermodynamic data (Goldberg et al., 2004, 2007).
About 400 reactions have measured equilibrium constants and were
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successfully mapped to KEGG identifiers (Kanehisa et al., 2008).
Still, this represents only about 6% of the ∼5500 biochemically
relevant reactions in the KEGG database. Moreover, since
equilibrium constants in the NIST-TECR database are measured in
a variety of pH and ionic strength levels, it is difficult to extrapolate
the equilibrium constant for the conditions prevailing in an organism
or system of interest. When �rG′◦ are not covered by the NIST-
TECR database, several collections of standard Gibbs free energy
of formation (�f G′◦) can be consulted and used as in Figure 1—
equation II. The largest collection, given by Alberty (2003), contains
�f G′◦ values for ∼200 compounds.

Unfortunately, many reactions were not measured in the
desired conditions (pH, ionic strength, etc.) or have never been
experimentally measured at all. If the formation energy of even
one of the reactants is unknown, �rG′◦ of a reaction cannot be
derived. In order to bridge the gap between the known formation
energies and the unknown ones, a method based on the group
contribution assumption for biochemical compounds in aqueous
solutions was described by Mavrovouniotis (1990, 1991) and later
greatly improved in terms of coverage and accuracy by Jankowski
et al. (2008). The method is based on the simplifying assumption
that each functional group has a characteristic contribution to the

overall formation energy of a compound and that these group
contributions are independent of each other. Therefore, �f G′◦ is
estimated by summing all contributions from the different groups
composing a compound. The contribution of each such group
(�grG◦) is estimated through linear regression, which uses the
known �f G′◦ and �rG′◦ and the compounds’ partition into groups
(Mavrovouniotis, 1990).

The group contribution method is limited in its accuracy.
The group independence assumption can be overly simplistic,
especially for large compounds or in conjugated systems. In
addition, the definitions of the groups rely heavily on heuristics and
chemical intuition. Recent improvements of the method included a
better choice of groups and the introduction of group interaction
corrections (Jankowski et al., 2008). Recently, a promising new
approach based on whole-reaction similarities (Rother et al., 2010)
has been shown to be more accurate, but currently does not provide
as wide a coverage as group contribution methods.

Previous group contribution studies did not consider the effect
of pH on the compounds’ protonation levels (Alberty, 1998;
Jankowski et al., 2008; Mavrovouniotis, 1990, 1991) and assumed
all measurements were taken at standard aqueous conditions (e.g.
pH 7 and ionic strength of 0.25 M). Each compound is actually an

Fig. 1. An overview of the relationships between the layers of thermodynamic data. Reaction equilibrium constants can be converted to �rG′◦ which is
calculated as the stoichiometric sum of reactant formation energies (blue shading, equations I and II). Each reactant exists as several pseudoisomers distributed
according to the Boltzmann distribution, and its �f G′◦ can be found using the Legendre transform (yellow shading, equations III and IV). Using the group
contribution assumption, each pseudoisomer can be constructed from its group components (green shading, equations V and VI)
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ensemble of ‘pseudoisomers’ differing in their protonation levels
(e.g. ATP4−, HATP3− and H2ATP2−) and its �f G′◦ can be found
using the Legendre transform (Fig. 1—yellow shading, equations III
and IV). As pointed out by Alberty (2003), ignoring the change in
the abundance of the different pseudoisomers at changing pH levels
can result in errors. This is especially true for the biochemically
ubiquitous phosphate groups, which have pKa values in the range
of 6–8 (Lide, 2009; Robitaille et al., 1991), and hence their
pseudoisomer distribution changes considerably even close to pH 7.

The concentrations of the individual pseudoisomers are
determined by the Boltzmann distribution (Alberty, 2003). �f G′◦(i)
of a compound i is, therefore, a function of �f G′◦( j) of the
compound’s pseudoisomers ( j) (Fig. 1—equation III). Notably,
�f G′◦( j) of the pseudoisomers and their distribution is modulated
by the pH (Fig. 1—equation IV). For example, at a high pH, the
unprotonated form of an acidic compound will have lower �f G′◦
and thus be more abundant (Alberty, 2003). In order to use �f G′◦
to calculate �rG′◦, the different pseudoisomer forms assumed by
each compound should be considered.

2 APPROACH
In this study, we present methods to accurately estimate �rG′◦
using two major approaches (Fig. 1). The first approach,
named Pseudoisomeric Reactant Contribution (PRC), recovers
pseudoisomer formation energies by applying linear regression to
the entire set of reactions available in the literature (as recorded
in NIST-TECR). Most measurements in the NIST-TECR database
are of ‘apparent’ equilibrium constants, which is the equilibrium
apparent reaction quotient of the total compound concentrations—
i.e. the sum of all protonation states. Since the pH affects the
distribution of species non-linearly, the value of �rG′◦ cannot be
expressed as a linear sum of the reactants’ formation energies.
PRC applies the inverse Legendre transform to linearize the
system. The inverse Legendre transform replaces each ensemble
of pseudoisomers with a single representative and changes the
observed value of K ′ accordingly (Alberty, 2002) using the known
dissociation constants of the reactants. It is thus possible to find
the least-squares solution for the �f G◦ of the pseudoisomers using
linear regression (see Supplementary Material for details). Using
PRC, we can retrieve �f G′◦ values that were previously unknown
(Alberty, 2003) and enable the calculation of �rG′◦ for more
reactions.

Compounds that were not measured previously and thus do not
appear in the NIST-TECR database require a different approach. We
have developed an augmented group contribution method that we
call Pseudoisomeric Group Contribution (PGC). Unlike previous
approaches, we decompose pseudoisomers, not compounds, into
functional groups (Fig. 1—green shading). We then estimate �f G◦
of the pseudoisomers by summing over the contributions of their
groups (equation V) and calculate the �f G′◦ of compounds
(equations III and IV). This method provides higher accuracy and
can correctly adjust the �f G′◦ to the different aqueous conditions
described by pH and ionic strength (with pH usually being the most
significant). The combination of the two approaches enables a better
estimation of �f G′◦ for a large variety of compounds in a wide range
of aqueous conditions.

3 METHODS

3.1 A PRC method systematically derives �fG◦
The task of estimating the formation energies of compounds given measured
reaction equilibrium constants is not straightforward. The difficulty stems
from the non-linearity of �rG′◦ as a function of �f G◦ and pH (Fig. 1—
equations II–IV). However, if �rG′◦ has been measured in a specific pH and
all but one of the reactants’ �f G′◦ values is known, it is straightforward to
infer the missing �f G′◦.

The extensive list of compound formation energies provided in (Alberty,
2003) is the product of a meticulous reconstruction such as described above
and based on the data provided by many measurements of K ′. As each
new �f G◦ added to this database relies on the previously gathered values,
measurement errors for a particular compound are carried on to future
calculations.

Alternatively, compound acid dissociation constants (pKas) can be used
to convert the set of equations into a linear system that can be solved
computationally. The idea, known as the ‘Inverse Legendre Transform’ (see
Supplementary Material), is based on the fact that the difference between
the �rG′◦ and �rG◦ of any reaction is a function of the pKas alone and
does not depend on the absolute formation energies of the reactants. The
resulting linear system can then be solved using multiple linear regression.
This application of the inverse Legendre transform to linearize a reaction
system was introduced by Alberty (1991) and Alberty and Goldberg (1992),
but to our knowledge was implemented only for a small set of reaction
measurements. Here, we perform a global analysis using all the available
data in NIST-TECR to achieve the best possible least-squares estimation.
We refer to this method as the Pseudoisomeric Reactant Contribution (PRC)
method.

Using PRC, we were able to obtain values for 407 formation energies
using only the 367 reactions in the NIST-TECR dataset and the pKa

values of the participating compounds (described later in ‘Acid dissociation
constants’). A detailed analysis of these values in terms of prediction
power and accuracy is given in Section 4. Due to linear dependencies
between some of the reactions, there are 112 dimensions in the null
space of the stoichiometric matrix. For instance, if two compounds always
appear together (such as NADox and NADred), the difference between
the �f G′◦ of the pair can be inferred, but the absolute formation energy
remains unknown. Similarly, element conservation rules contribute one
dimension to the null space for every element which appears in the
database, namely C, N, O, S and P. Commonly, as is the case in the
current study, the ambiguity in the values of the formation energies is
solved by defining some compounds as having �f G′◦ =0. Alberty’s table
of ∼200 formation energies (Alberty, 2003) contains 18 such reference
points.

3.2 A PGC method covers more reactions
and conditions

In order to improve the estimations provided by the group contribution
method (Mavrovouniotis, 1990) for highly pH-dependent compounds, we
introduce a method that incorporates Alberty’s transformed formation
energies (Alberty, 2003) into the same framework used by Jankowski
et al. (2008). Previous group contribution implementations used apparent
equilibrium constants (K ′) and formation energies (�f G′◦) at pH ∼7,
where each compound is actually an ensemble of protonation species—or
pseudoisomers (Fig. 1—equation III). For instance, the total concentration
of ATP is divided between the pseudoisomers H2ATP2−, HATP3− and
ATP4− according to the Boltzmann distribution. The formation energy
of the ensemble is called the standard transformed Gibbs energy as
defined by the International Union of Biochemistry and Molecular Biology
(IUBMB) (Alberty et al., 2011). A shift in pH will change the relative
abundance of the different pseudoisomers and affect �f G′◦ and K ′ non-
linearly. Therefore, in order to normalize the effect of pH across different
measurements, we use only formation energies of single pseudoisomers as
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input for the linear regression step in our group contribution framework.
For example, instead of the ‘transformed’ formation energy of ATP
(–2292.5 kJ/mol), we use the formation energy of HATP4−, which
is –2768.1 kJ/mol (Alberty, 2003). This change requires knowing the
standard formation energy of each pseudoisomer separately and the exact
distribution of protons and charges in its molecular structure. In the case
of reactions, we use the inverse Legendre transform—similarly to the PRC
method.

In addition, groups that previously had only one form corresponding
to the protonation level most abundant at pH 7 can now have multiple
forms representing the different protonations at a wide range of pHs.
The full list of groups is given in Supplementary Table S4. For example,
the terminal phosphate group −PO2−

3 which had only one instantiation in
previous implementations (Jankowski et al., 2008) (�grG′◦ =−254 kcal/mol
=−1063 kJ/mol), has two versions in PGC, namely −PO2−

3 and −HPO−
3 ,

each with its own contribution (�grG◦ =−1024.2 and −1073.9 kJ/mol,
respectively). The terminal phosphate of ATP’s major pseudoisomer at pH
7 is semi-protonated and corresponds to the −HPO−

3 group. However, when
this group appears in the major pseudoisomer of other compounds such as
d-glucose-6-phosphate, it is fully deprotonated (−PO2−

3 ). Thus, PGC adjusts
the contribution of the two pseudoisomeric groups accordingly. Similarly
to previous implementations (Jankowski et al., 2008), the algorithm for
determining the group contributions is a least-squares linear regression,
except that for the same number of compounds, there are more available
values of �f G◦ and more groups due to the use of pseudoisomers.

We use the NIST-TECR database (Supplementary Table S1), together with
a list of formation energies (Alberty, 2003; Dolfing and Janssen, 1994; Thauer
et al., 1977) (Supplementary Table S2) and dissociation constants (Lide,
2009) (Supplementary Table S3). As part of this study, we have manually
annotated each of the species in the list and determined the protonation level
of each of their groups. The task was not trivial for compounds with more
than one protonation site, since the order of the pKa values of the groups
determines which will deprotonate first as the pH rises, and these data are not
well organized in the literature. For example, the different protonation states
of nucleic acids are a particular challenge (Christensen et al., 1970a, b). The
details and results of this analysis and the contribution of the pseudoisomeric
groups are given in Supplementary Table S4.

Using the PRC method to infer compound formation energies from NIST-
TECR, it is possible to obtain predictions for a few hundreds of reactions
in the KEGG database (roughly 5%)—not much more than the number of
reactions in NIST-TECR itself. However, the PGC method achieves a much
higher coverage of ∼80% of KEGG reactions, as shown in Table 1. This
coverage is similar to previous implementations (Jankowski et al., 2008).
Note that although there are >8000 reactions listed in KEGG, we limit our
analysis to the subset of reactions whose reactants all have explicit chemical
formulas (unlike wildcard formulas or generalized names such as ‘donor’
and ‘acceptor’). Furthermore, we discard reactions that are not chemically
or redox balanced.

3.3 Acid dissociation constants
Calculator Plugins were used for structure property prediction
and calculation, provided by Marvin 5.5.1, 2011 from ChemAxon
(http://www.chemaxon.com). The molecular description of each compound
in the KEGG database was converted to a SMILES string, and given as
input to the ChemAxon command-line binary which calculated the pKa

values and the charge distribution of the major pseudoisomer at pH 7. All
results are listed in the Supplementary Dataset.

3.4 The NIST-TECR database benchmark
In order to evaluate the level of error for each method, we compare the
measured �rG′◦ and the estimated one (adjusted to the same conditions
as the measurement). If the chosen estimation method does not cover this

Table 1. Comparing the different methods for estimating Gibbs free energies

Feature Alberty PRC Jankowski PGC
(2006) (current) (2008) (current)

Coverage of reactions 6% 10% 77% 77%
(out of 5464 in KEGG)

Coverage of reactions 18% 30% 95% 93%
(out of 729 in E.coli)a

Error (RMS, kJ/mol) 6.8b 2.4 9.9c 8.5
Pseudoisomers considered Yes Yes No Yes
Open source Yes Yes No Yes
a The relevant reactions in iAF1260.
b Alberty (2003) covers 2073 measurements in NIST-TECR, all other methods cover
∼2950.
c In Jankowski et al. (2008), the reported result is 1.90 kcal/mol (8.0 kJ/mol). In the
current article, more reactions from NIST-TECR were used for calculating RMSE since
we did not filter observations according to their pH. In addition, we did not include any
formation energy data in this evaluation since they are not purely empirical—many are
derived from the same data which is already in NIST-TECR, and some values were
derived using a group contribution approach and thus cannot be used to evaluate its
precision.

reaction, its observed equilibrium constants are not included in this analysis.
In order to minimize the temperature related biases, only measurements at
temperatures in the range of 298–314 K (i.e. 25–40◦C) were used. The root
mean squared error (RMSE) of each method is calculated by giving each
distinct reaction an equal weight (regardless of how many times it has been
measured).

The result for a leave-one-out cross-validation test for the PGC method
was 11.2 kJ/mol (RMSE). All formation energy and reactions examples were
included in this test. If an example could not be omitted because it was
linearly independent of the other examples in the training set, its error was not
included in the test. If several examples (reactions or compounds) had exactly
the same group decomposition they were all treated as a single example. We
used our framework to perform a cross-validation test for the standard (i.e.
non-pseudoisomeric) group contribution method, which resulted in an RMSE
of 16.0 kJ/mol (see Supplementary Material). It was not possible to directly
compare our cross-validation results to the other methods mentioned as their
implementations are not publicly available.

3.5 The reversibility index
We introduce a quantitative measure for reversibility that takes the mean
concentration of metabolites and the number of substrates and products
into consideration. Further details regarding the application of the index
to genome-scale models and motivation for its use are given in Section 4.

We assume that all reactant concentrations lie within a range located
symmetrically (in log-scale) around some characteristic physiological
concentration C—here we use 100 μM (Bennett et al., 2009). The variable
describing this range is denoted γ : all substrates are assigned a concentration
of (1/

√
γ )C and all products have a concentration of

√
γ C. Therefore, the

log-scale width of the range is log(
√

γ C)−log((1/
√

γ )C)= log(γ ). Thus,
a value of γ =100 corresponds to the range 10μM–1 mM and γ =1000
corresponds to about 3μM–3 mM.

For a reaction with NS substrates and NP products, the apparent
reaction quotient Q′(γ ) = (γ 1/2C)NP ·(γ −1/2C)−NS = γ NP/2γ NS/2CNP−NS

≡ γ N/2Q′′, where we define N = NP +NS as the total number of reactants
and Q′′ = CNP−NS as the default reaction quotient. We define the reversibility

index as γ̂ =(
K ′/Q′′)2/N

, which is the required concentration range for
reversing the reaction, i.e. Q(γ̂ )=K ′. The further γ̂ is from 1 the more
irreversible the reaction. The reversibility index of the fructose-bisphosphate
aldolase reaction, for example, is 1.04, making it clearly reversible since a
change of only 4% in concentrations is required to reverse its direction.
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Fig. 2. A comparison between the apparent equilibrium constant K ′ and the
reversibility index γ̂ . Each shaded square represents a different regime where
a reaction is considered reversible or irreversible according to K ′ and γ̂ , and
the number indicates the percent of reactions in the metabolism of E.coli
(in the iAF1260 model) which occupy that regime. White areas represent
regimes where both classifications agree, and pink areas are regimes where
they disagree. Colored lines show the relationship between K ′ and γ̂ for
specific reactions stoichiometries and the percent of reactions in the model
with that stoichiometry is given in parentheses. The inset on the bottom
right shows the fraction of reversible reactions (Y -axis) as a function of the
allowed concentration range—determined by the upper bound on the value of
γ̂ (X -axis). This is equivalent to the cumulative distribution function (CDF)
of the reversibility index for all reactions in the model. Note that for the CDF,
the direction of each reaction is defined such that γ̂ will be larger than 1

It should be noted that for reactions with one substrate and one product,
Q′′ =1 and N =2, and therefore γ̂ =K ′. However, since 88% of reactions
are not 1 :1, γ̂ is usually very different from the value of K ′, like in the
case of fructose-bisphosphate aldolase where γ̂ =1.04 while K ′ ∼10−4.
Evaluating both K ′ and γ̂ for all the reactions in the E.coli iAF1260 model
(Feist et al., 2007) reveals that K ′ plays only a partial role in determining
the reversibility index (Fig. 2). In the inset, we show the fraction of
reversible reactions as a function of allowed physiological concentration
range reflected by γ̂ .

In some cases, it is useful to assign a prescribed concentration for a
reactant, rather than allowing it to lie within the range defined by γ . For
instance, the concentration of water is fixed and in some organisms, the
concentration of Pi is kept almost constant. In such cases, the required
concentration can be used to calculate Q′′ instead of the default C and the
fixed reactant is not included in the value of N .

3.6 Source code
The code for the implementation of the PRC and PGC methods is free and
open source and can be found at:
http://milo-lab.googlecode.com/svn/branches/bioinfo-2012/
Our software is written completely in Python, depending only on free
software such as Open Babel (openbabel.org) and SciPy (scipy.org).

Fig. 3. The response of PPDK to pH, as recorded in the NIST-TECR
database. The ionic strength for all estimation methods was set to the default
0.1 M. By taking only the most abundant psuedoisomers at pH 7 and not
updating to pKa values, the charge through this reaction is +1, i.e. one
proton is added to the products. Therefore, the predicted response to pH
will have a positive slope of RTln(10) (blue line). The intercept of the line
was determined so that the value at pH 7 would match the predictions of
Jankowski et al., 2008. PGC and PRC use pKa values derived by ChemAxon
(see Section 3) to calculate the response, which results in a better fit to the
measured data (orange and green lines). Note that the lines for PGC and PRC
are not exactly straight due to the combined effect of several pKa values.
The measured data (dark green) which is listed in NIST-TECR, was taken
from (Reeves and Menzies, 1968)

4 RESULTS

4.1 Adjustments for pH using pKa values can increase
accuracy

Many organic compounds are weak acids and bases and, as
such, assume multiple protonation levels in typical physiological
conditions. Formation energies and, as a result, reaction energies are
a function of the distribution of reactant psuedoisomers (Fig. 1—
equations II and IV). Since the distribution of protonation levels
is a function of the prevailing pH and ionic strength, �f G′◦ and
�rG′◦ vary with pH and ionic strength as well. For example,
the key reaction in gluconeogenesis and C4 plant photosynthesis,
pyruvate + ATP + Pi � PEP + AMP + PPi , is catalyzed by
PPDK (pyruvate-phosphate dikinase, EC number 2.7.9.1) and was
measured at various pH levels ranging from 6.5 to 8.4 (Fig. 3).
Many of the reactants have a pKa in this pH range, and so �rG′◦ of
the PPDK reaction changes significantly with pH. Intracellular pH
values are typically between 6 and 7.5 for most organisms (Vojinović
and von Stockar, 2009), but the range can be much wider, e.g. in
yeast (5.5–7.5 (Imai and Ohno, 1995; Ryan and Ryan, 1972)) or
bacteria (4.8–9.0 (Breeuwer et al., 1996)). As shown in Figure 3, the
PGC and PRC methods can accurately predict the pH dependence
of the reaction. Methods that do not account for pseudoisomers can
result in a difference of >20 kJ/mol for the PPDK reaction. If each
compound is assigned only a fixed protonation level, based on the
most abundant pseudoisomer at pH 7, the reaction looks as follows:
PYR− + ATP3− + P2−

i + H+ � PEP2− + AMP− + PP2−
i which
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Fig. 4. Comparing the estimated reaction energies using PGC or PRC (Y -axis) to the observed data in NIST-TECR (X -axis). Each X -value corresponds
to an observation of K ′ which is converted into �G′◦, the reaction Gibbs energy in standard conditions (1 M concentrations) and in the specific pH and
ionic strength of each measurement. The Y -value is calculated using PGC or PRC and adjusted to the appropriate pH and ionic strength. The dashed line
marks where estimations are equal to observations. The average estimation error per reaction (RMSE) is 8.5 kJ/mol for PGC and 2.4 kJ/mol for PRC. The
estimation error can be explained as follows: measurement noise/bias in the value of K ′, error in the values of pH and ionic strength, pseudoisomers which
are unaccounted for, deviations from the theory of thermodynamics in aqueous solutions and violation of the assumption that the contribution of groups to
�G′◦ are completely independent (only for PGC)

implies that the reaction energy increases with the pH, since the
effect of one proton is RTln(10) ·pH (Fig. 3). However, the PGC and
PRC methods, which take the dissociation constants of the reactants
into account, show that the response has a negative slope, which
corresponds well to measured data (Fig. 3).

4.2 Comparing �rG◦ estimations using the
NIST-TECR database

In order to test the accuracy of the two methods described here, we
use the NIST-TECR database as a benchmark. Given a measurement
of K ′ for a given reaction, we compare the predicted reaction energy
(using any of the methods described in Section 3), to the observed
reaction energy (Fig. 1—equation I). The analysis of the PRC and
PGC methods is given in Figure 4 and results in root mean squared
error (RMSE) of 2.4 and 8.5 kJ/mol, respectively—equivalent to
errors of about a factor of 3 and 30 in the estimation of K ′. Note
that all of the different methods, those developed in the past as
well as those presented here, have used some or all of the data
that appear in NIST-TECR for training the group contributions
or formation energies. As a result of these dependencies and the
fact that the training procedures were not made public for the
previously published methods, there is no way of performing an
independent cross-validation for them. We found that when using
the PRC method, there is a good fit between the regression data and
the observed data in NIST-TECR (RMSE of 2.4 kJ/mol) while the
methods based on group contributions do not fit the NIST-TECR data
as well (RMSE of 8.5 kJ/mol for the PGC method and 9.9 kJ/mol for
Jankowski et al. (2008)). The reason for this difference in accuracy
could be attributed to the fact that group contribution is based on the
simplifying assumption of independence between the contributions
of groups to the overall �f G◦. In addition, there are more free

variables in PRC than in PGC (407 compounds versus 99 groups).
A summary of the analysis for the four different estimation methods
based on the data provided by NIST-TECR is given in Table 1.
The goodness of fit is given by the RMSE for each of the methods.
These values should be compared with the baseline method which
is to use the average �rG◦ of each reaction in NIST-TECR across
all its measurements. This baseline achieves the maximum accuracy
but is limited in coverage to the scope of NIST-TECR. The baseline
RMSE is 1.3 kJ/mol and is the average standard deviation of �rG◦
per reaction.

4.3 Determining the reversibility of reactions
As an example of the usefulness of having a framework that makes
all thermodynamic data available in one location and in an open
format, we discuss the issue of reaction directionality that plays a
pivotal and often problematic role in many metabolic models (Feist
et al., 2007; Oberhardt et al., 2009) and has a crucial effect on their
results. A reaction is called irreversible if its net flux flows in the
same direction under all allowed physiological conditions. Some
reactions are indisputably irreversible, for example the reaction
of ribulose-bisphosphate oxygenation (promiscuously catalyzed by
the enzyme RuBisCO) which has a �rG′◦ of –530 kJ/mol and
therefore K ′ =1093. It is thus tempting to use a rule-of-thumb for
determining whether a reaction is irreversible (Tanaka et al., 2003),
by applying a threshold on its apparent equilibrium constant—
e.g. K ′ >1000 (or K ′ <0.001 for irreversible reactions that always
flow in the backward direction). This points to the fact that
reactant concentrations are bound by physiological considerations
and therefore a high-enough K ′ would require too much of an
imbalance in concentrations between substrates and products for
reversing a reaction.
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Aside from K ′ itself, the reaction stoichiometry plays a
crucial role in determining reversibility as well. For example,
the fructose-bisphosphate aldolase reaction—fructose 1,6-P �
dihydroxyacetone-P + glyceraldehyde 3-P—has a �rG′◦ of
23 kJ/mol and a K ′ of 9.23×10−5 (Alberty, 2003). This might
be considered irreversible (i.e. always flowing in the backward
direction), but when the three reactants are at a concentration
of 100 μM, a typical intracellular concentration for metabolites
(Bennett et al., 2009), the �rG′ is about 0.2 kJ/mol, very close
to zero. The reason for the huge difference is due to the fact that this
reaction has a different number of products and substrates, and in
low-enough concentrations, the effect of the reaction quotient (Q′)
on �rG′ is significant. Therefore, any reversibility index should
properly account for this stoichiometric effect. Furthermore, if a
reaction involves many substrates and products, the dynamic range
of �rG′◦ given the physiological metabolite concentrations can be
much wider. That is, a reaction with one substrate and one product
with �rG′◦ =30 kJ/mol is much more irreversible than a reaction
with three substrates, three products and the same �rG′◦.

Previous studies (Feist et al., 2007) obtained binary reversibility
annotations by checking if �rG′ can attain positive and negative
values at different physiological concentrations. Herein, we present
a quantitative reversibility index, γ̂ , which accounts for the effects
of stoichiometry and physiological concentrations and defines a
convenient metric for comparing the reversibility of reactions. The

reversibility index is defined using the formula γ̂ ≡(
K ′/Q′′)2/N

where N is the total number of reactants (substrates plus products)
and Q′′ is the reaction quotient at characteristic physiological
concentrations. For the purpose of calculating Q′′, all metabolites
are taken to have a concentration of 100 μM (see Section 3 for
details). The value of γ̂ signifies the fold change that all product
and substrate concentrations must undergo in order to reverse a
reaction. When considering a range of γ̂ <103, which corresponds
to allowing concentrations to span three orders of magnitude around
100 μM (∼3 μM—3mM), about 55% of the reactions are found to be
reversible (see the Supplementary Material for a detailed statistical
analysis).

5 DISCUSSION
The advances in metabolic modeling (Heinrich et al., 1991; Pfeiffer
and Schuster, 2005; Oberhardt et al., 2009; Bar-Even et al., 2010),
have created a need for accurate genome-wide values for reaction
thermodynamic parameters. As metabolic network models for more
organisms and cells emerge, it is increasingly important to have
correct predictions for acidic and basic environments and for
different ionic strengths. This requirement is most prominent when
modeling organisms with multi-compartmented cells, and having
to adjust the �Gs to the conditions in each compartment. Most
data that do exist are hard to access (e.g. in out-of-print books)
and cover only a limited part of the scope of required compounds
and reactions. Moreover, the attempts to use group contribution to
expand this coverage are based on a closed implementation and are
not extendable for outside users to add new group definitions or
training examples.

In this article, we explored two approaches to estimating free
energies. We show that the formation energies obtained using PRC
achieve a good fit to the observed data (RMSE 2.4 kJ/mol), but do
not provide genome-wide coverage of metabolic reactions (∼30%

of E. coli model). As an alternative, PGC does provide free energy
estimates for the majority (∼77%) of known biochemical reactions,
but with larger errors (RMSE 8.5 kJ/mol). Therefore, a combination
of the two methods might be beneficial, where PRC values are
used whenever possible, and PGC is used to fill the gaps. There is,
however, a potential problem with this approach as combinations of
reactions can become inconsistent (e.g. stoichiometrically balanced
cycles can have a non-zero �G). The challenge of combining �rG◦
estimations from different sources and estimation approaches in a
unified and consistent manner requires an update to the methods
described above (manuscript under preparation).

We hope that, with time, new measurements of reaction
equilibrium constants will be published and used to improve the
accuracy and coverage of both these methods (PGC and PRC). We
thus join the plea of (Jankowski et al., 2008), who published a table
of compounds that contain groups with yet unknown contributions.

6 CONCLUSION
We believe that the tools and data that enable thermodynamic
analysis of biochemical systems should be easily and freely
accessible. In addition to supplying �rG′◦ predictions as a
table for use in metabolic models, we created a website
(http://equilibrator.weizmann.ac.il) with a simple user interface that
enables anyone to find reactions by chemical formula or enzyme
name (Flamholz et al., 2011). The user can adapt the concentration
of reactants and the conditions of the reaction.

The thermodynamics of biochemical reactions has a key role to
play in our understanding and manipulation of metabolic pathways.
An integrated and open framework that combines accuracy and
coverage will facilitate the wide use of this fundamental constraint
by physics on the biochemistry of life.
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