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Prostate cancer detection through unbiased
capture of methylated cell-free DNA

Ermira Lleshi,’*® Toby Milne-Clark,’® Henson Lee Yu," Henno W. Martin," Robert Hanson,' Radoslaw Lach,’
Sabrina H. Rossi,’ Anja Lisa Riediger,”* Magdalena Gértz,” Holger Siltmann,® Andrew Flewitt,” Andy G. Lynch,>¢
Vincent J. Gnanapragasam,’ Charlie E. Massie,’”'% and Harveer S. Dev'-%11.*

SUMMARY

Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but
with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific
biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer.
In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a
machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of
0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of pa-
tients with metastatic cancer in an external dataset. Furthermore, we show that the differentially meth-
ylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions
are significantly enriched for biologically relevant pathways associated with the regulation of cellular pro-
liferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation
for prostate cancer detection and prognostication.

INTRODUCTION

Prostate cancer is the third most commonly diagnosed cancer in men and accounts for 7% of all cancer-related deaths worldwide." Molecular
stratification for prognostication may improve outcomes for patients at the highest risk of clinical progression. Presently, we rely on using
Prostate Specific Antigen (PSA) as a biomarker to initially evaluate men for prostate cancer. However, the limitations of this approach,
including high rates of false positives and false negatives, have led to uncertainty regarding the recommendation for universal PSA testing
as a screening approach.”’

In recent years, the blood-based test — Stockholm-3 — was developed which combined PSA testing with family history as well as clinical,
genetic, and protein biomarkers and was found to decrease the rate of overdiagnosis, thereby decreasing unnecessary biopsies by 34%
compared to using PSA alone.” Multiple studies, including our own, have demonstrated the genomic heterogeneity of prostate cancers.”
Wyatt and colleagues established that genetic alterations and copy number variations found in metastatic prostate cancer tissues are concor-
dant with those detected in liquid biopsies.” However, studies that focused on early-stage prostate tumors demonstrate a lack of consensus
mutations, with the most prevalent genetic alterations found in the SPOP gene only occurring in 8-13% of cases.®” Consequently, non-ge-
netic approaches may offer a more robust strategy for cancer diagnostics.

Epigenetic changes have been described preceding genetic alterations and may share similar patterns even among genetically distinct
tumors, particularly in early-stage cancers. For example, we previously showed that HES5 promoter hypermethylation is found among 38 out
of 39 (97%) early-stage prostate cancers.'” In fact, several studies have shown the utility of epigenetic markers for cancer detection, risk pre-
diction, and treatment monitoring.'""'? These techniques include single-base resolution approaches such as bisulfite-sequencing or enzy-
matic methyl conversion-sequencing, which may be highly informative but are costly."*'* Alternatively, indirect techniques that are more
economical provide methylation information at lower resolution. Advancements in both approaches as well as sequencing technologies,
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present a unique opportunity to explore the potential of using these methods with plasma samples, circumventing the costs, risks, and chal-
lenges associated with prostate biopsies.

Bryzgunova et al. have demonstrated an ability to discriminate normal, benign prostatic hyperplasia, and prostate cancer within a small
cohort of samples by evaluating the DNA methylation levels of just three genes (GSTP1, RNF219, KIAA1539)."° Because the method targets
only a few loci, it reduces the sensitivity of this cell-free DNA (cfDNA) based detection assay, given that, on average, there are only around
1,000 genome equivalents present per milliliter of plasma. Chen et al. employed an immunoprecipitation-based strategy which enriched for
methylated fragments in the plasma demonstrating the capability of distinguishing localized from metastatic prostate cancers.'® However,
there was a lack of evidence to discriminate any of these cancers from normal cases, which is essential for the practical real-world use of these
assays within a clinical diagnostic pathway.

Since multiple cancers may have shared epigenetic features, a recent study applied this approach to the detection of multiple cancers
simultaneously vis-a-vis a pan-cancer methylation detection platform. They reported a promising performance of using cfDNA methylation
in detecting various cancer types (sensitivity of 51% and specificity of 99.5%), although the performance varied greatly across different cancer
types.'” For prostate cancer, a sensitivity of only 11.2% was achieved."’

In this study, methyl CpG-binding domain protein (MBD) was used for the enrichment of methylation-rich fragments. We employed ma-
chine learning techniques to develop a classifier capable of distinguishing cancer and non-cancer cases based on these enriched fragments.
The panel of differentially methylated regions (DMRs) selected through this strategy exhibited accurate performance in detecting metastatic
prostate cancers. Notably, these DMRs also detect early-stage disease, albeit with lower accuracy. In addition, we also investigated the bio-
logical implications of these DMRs to infer underlying mechanisms and gain insights into their functional significance. We shed light on po-
tential molecular pathways and regulatory processes which may underpin these signals and contribute to prostate cancer development and
progression. Hence, this allows for the allowed discrimination of prostate cancer from non-cancer cases using circulating tumor DNA methyl-
ation signals.

RESULTS
Evaluation of enrichment methods for methylated cell-free DNA targets

We began by evaluating two common strategies for enriching methylated fragments in cfDNA samples: cell-free methylated DNA immuno-
precipitation-sequencing (cfMeDIP-seq)'® and cell-free methyl CpG-binding Domain protein-sequencing (cfMBD-seq).'” Both techniques
preferentially enrich for methylated DNA by using either an antibody that captures methylated DNA (cfMeDIP) or an antibody that is specific
for methyl group-binding proteins (cfMBD); however, studies show that the latter may yield more high-quality reads with fewer duplicates."’
To validate this finding, we performed both techniques and compared their ability to capture cancer specific reads. We first identified pros-
tate cancer methylation signatures by calling differentially methylated regions between tumor and normal samples from TCGA as described
in our previous work.'? Since MeDIP-seq and MBD-seq infer methylation levels from the sequencing coverage, we divided the human genome
into 100-base windows and identified 6,285 such non-overlapping 100-base bins that intersected with the combined DMRs from TCGA. These
final set of 6,285 regions served as our targets to assess the performance of cfMeDIP-seq and cfMBD-seq in capturing informative reads.

We used PC3 as a cell model for advanced prostate cancer, and simulated cfDNA shedding through the collection of tissue culture su-
pernatant (Figure S1). We then performed cfMBD-seq and cfMeDIP-seq on the extracted cfDNA to obtain a preliminary evaluation of the
number of reads that could be obtained from each method and quantified the overlap with our pre-defined tissue-derived DMRs (Figure 1A).
We observed cfMBD-seq was able to capture reads across a wider range of CpG densities compared to cfMeDIP-seq, particularly those with
very low CpG's density (Figure 1B). This was a consistent finding when comparing the coverage across CpG islands, shelves, and shores
(Figure S2A).

To further analyze the methylation information obtained from ¢fMBD-seq and cfMeDIP-seq, we utilized the 100-base bins previously
described and calculated the percentage of methylation based on the number of reads aligned to each bin, following established methods.”
The level of methylation is directly proportional to the read depth, as more methylated fragments are more likely to be bound by the antibody
(MeDIP) or methyl-binding protein (MBD). We observed a strong correlation between the coverage and the methylation level obtained from
both methods (Figure 1C; Figure S2B). We then compared their sequence coverages and the inferred methylation levels with a direct methyl-
ation level obtained from a single-base resolution enzymatic methyl conversion method (EM-seq). Both cfMBD-seq and cfMeDIP-seq demon-
strated a modest correlation with cell-free EM-seq (cfEM-seq) (r? of 0.56 and 0.52, respectively) (Figure 1D; Figure S2C). From the correlation
plots between the enrichment methods and cfEM-seq in Figure 1C, we also see a stronger correlation for DNA fragments with higher methyl-
ation levels. Based on these findings, we set a 30% methylation level threshold for both cfMBD-seq and cfMeDIP-seq, while the threshold for
cfEM-seq was set at 50%. We then counted the number of fragments that met these criteria and were also present in the 6,285 fragments
previously identified in the tissue samples. We found that cfMBD-seq captured 5,507 (88%) of these regions while cfMeDIP-seq captured
5,033 (80%) regions (Figure S2D). Consequently, we selected cfMBD-seq as the preferred method for further experiments.

Training a machine learning model to detect prostate cancer signatures

In order to simultaneously analyze the methylation levels of thousands of fragments, we employed gradient boosted and random forest ma-
chine learning algorithms to learn patterns of methylation from the plasma samples of a cohort of 35 normal (i.e., prostate cancer-free) and 62
patients with metastatic prostate cancer. All demographic and clinicopathological information of the patients are summarized in Table S1.
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Figure 1. Comparison of methylation enrichment approaches in cfDNA

(A) Workflow for selecting the cancer-specific differentially methylated regions defined by dividing the human genome into 100 bp windows and choosing those
that intersects with the DMRs discovered using TCGA methylation data. The Venn diagrams show the overlap of the defined regions with the regions enriched
using MBD-seq and MeDIP-seq.

(B) Comparison of the methylation levels (top) and coverage (bottom) obtained from MBD-seq and MeDIP-seq across varying numbers of CpGs showing that
MBD-seq consistently reports higher values and greater sensitivity than MeDIP-seq (Kruskal-Wallis test: *p < 0.05, ****p < 0.0001, ns not significant).
Correlation of the C absolute methylation levels that were calculated from cfMBD-seq and cfMeDIP-seq; and D methylation levels of cfMBD-seq (left) and
cfMeDIP-seq (right) and cfEM-seq. For both C and D, each dot is a 100-bp genomic window. Spearman’s rank correlation coefficients are shown.

These samples were collected from patients on a prostate cancer diagnostic pathway, following clinical referral to a specialist due to
elevated PSA, leading to MRI and prostate biopsy for tissue diagnosis. We randomly assigned 70% of the samples as the training set (24
normal controls and 43 cancer cases), while the remaining samples constituted the test set. Methylation levels exhibited substantial vari-
ation within the training set among the patients with prostate cancer. Previous studies have indicated a proportional relationship between
methylation levels and the fraction of tumor-specific content in cfDNA.?" Therefore, we applied a previously established method that uses
copy number aberrations (IchorCNA?) to estimate tumor fraction based on shallow whole genome bisulfite sequencing (sWGBS) for a
subset of our cohort. We were able to confirm the correlation between methylation levels and circulating tumor fraction (Figures S3A
and S3B).

We extended the application of our copy number aberration (CNA) analysis on a targeted sequencing approach by showing that we are
able to obtain the similar results whether the method was applied to sSWGBS or MBD data (r = 0.98) (Figure S3C). This facilitated the use of
cfMBD-seq data to infer the tumor fraction for the remaining samples. We observed a range of detectable copy number aberrations in control
cases of up to 15% (Figure S3D), which may be higher than the reported noise levels from other studies.”*** But this is concordant with the
copy number variation map of the human genome, which reveals that CNVs take up 5-10% of the human genome and may not necessarily
have functional or health implications.”” In addition, the CNVs are mostly concentrated on non-coding regions which are preferentially
selected in MBD.?” Hence, we selected metastatic cases with tumor fractions exceeding 15%, as indicated in the workflow in Figure 2. The
process of identifying DMRs was repeated 30 times, resulting in a total of 32,679 DMRs that were consistently identified in all 30 iterations.
Among these DMRs, 24,654 (75.4%) exhibited hypermethylation in tumors compared to normal samples, while 8,280 (25.3%) were
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ICHOR Tumour Fraction
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***** o on the 30% test set
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Figure 2. Schematics of building a gradient boosted machine learning model

Patient samples (n = 97; 35 benign controls and 62 metastatic cases) were randomly assigned to training (n = 67; 24 benign and 43 cases) and test (n = 30; 11
benign and 19 cases) sets. Differentially Methylated Regions (DMRs) were identified using a subset consisting of all 24 benign cases and a random selection
of 15 metastatic cases that had high tumor fraction, as determined by ichorCNA analysis. This subset selection process was repeated 30 times, with each
iteration randomly selecting a set of 15 cases that met the tumor fraction threshold (indicated by the horizontal dotted line on the inset ichor tumor fraction
graph). The 900 DMRs exhibiting the largest absolute difference in methylation, and consistently identified in all 30 iterations, were used to train the gradient
boosted model using all 67 samples in the training set. The performance of the model was then evaluated on the independent test set.

hypomethylated. From the pool of 32,679 DMRs, we selected the top 900 with the highest absolute difference in methylation levels for further
analysis, based on their optimal AUC for distinguishing metastatic from control cases (Figures S4A and S4B). These 900 DMRs were used as
input to train a machine learning model across the full 70% training set, irrespective of tumor fraction.
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Figure 3. Performance of the machine learning model in the detection of metastatic prostate cancer

(A) ROC showing the performance of the machine learning model in detecting metastatic prostate cancer samples in the test set (n = 30).

(B) Sensitivity (top) and specificity (bottom) of the model at different prediction score cut-off values. The selected cut-off value (0.86) is indicated by the dotted
lines, corresponding to a specificity of 100% and a sensitivity of 95%.

(C) Comparison of the performance of the machine learning model (with a prediction probability cut-off of 0.86; horizontal dotted line) and ichorCNA (with a
threshold set at 0.15; vertical dotted line) in classifying benign and metastatic cases.

(D) Summary of the number of correctly and incorrectly classified samples using the machine learning model.

Performance of the machine learning model in differentiating normal vs. tumor samples

The average methylation data, heatmap analysis, and principal component analysis (PCA) clustering of the methylation values for the top 900
DMRs alone did not effectively distinguish between cases and controls (Figures SSA-S5C). However, both the gradient boosted model and
Random Forest model demonstrated the ability to differentiate the test set, achieving AUC scores of 0.96 and 0.95 respectively (Figure 3A;
Figures S6A and S6B). By setting the machine learning probability cut-off at 0.86, the model achieved a sensitivity of 95% and specificity of
100% (Figure 3B). This indicates that the classifier using methylation values outperforms analysis solely based on copy-number (Figure 3C) with
AUCs of 0.96 vs. 0.70 (Figure S6A). The gradient boosted model correctly identified 17 out of 19 cases (Figure 3D) while genetic analysis iden-
tified only 12 out of 19 cases (Figure S6C).

Performance of the machine learning model in detecting early cases of prostate cancer

We have demonstrated an ability to discriminate metastatic and cancer-free patients from a prostate cancer diagnostic pathway. We pro-
ceeded to evaluate the performance of our cfMBD-seq approach in detecting early cases of prostate cancer. We hypothesized that molecular
features harbored in metastatic prostate cancer cases would also be present (albeit at lower amounts) in non-metastatic disease. Therefore,
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Figure 4. Performance of the machine learning model in the detection of localized prostate cancer

(A) Comparison of the ROC curves generated from the machine learning model in detecting metastatic, localized, and all cancers together.

(B) Boxplot displaying the distribution of prediction scores for controls (n = 11), localized (n = 40), and metastatic cases (n = 19).

(C) Performance of the machine learning model (left) and the boxplots showing the distribution of scores (right) in detecting prostate cancer cases in an external
cfMeDIP-seq dataset from Chen et al., 2022'¢ consisting of localized (n = 27) and metastatic (n = 89) prostate cancer samples.

we utilised the same set of DMRs, and thresholds as defined previously. We analyzed plasma samples from 40 patients with localized prostate
cancer and achieved an AUC of 0.74, for discriminating such cases from cancer-free controls (Figure 4A). Furthermore, we observed an
increasing probability score using the gradient boosted machine learning model when comparing normal, localized, and metastatic cases
(Figure 4B), suggesting the potential to adjust the threshold values for early cancer cases. When we segregated the cohort of 40 non-met-
astatic cancer cases into clinically defined good and poor prognosis, based on the UK National Institute of Care and Excellence (NICE): Cam-
bridge Prognostic Group (CPG) scores (1" being very good prognosis and “5” being poor prognosis),”®
sensitivity (Figures S7A and S7B). It is possible that further improvement in performance could be achieved by training the model specifically
on localized cases, although the available number of cases was insufficient for this analysis. In order to validate our model, we locked in all the
parameters used in the machine learning model and tested it on a previously published dataset that used cell-free MeDIP-seq in differenti-
ating localized (n = 30) from metastatic prostate cancers (n = 103). Despite the difference in the method used to enrich for methylated frag-
ments (MeDIP vs. MBD), and after removing samples with limited coverage on the 900 chosen DMRs, we are able to generate similar sensitivity
of detecting about 51% (14 out of 27) of the localized and 89% (79 out of 89) of the metastatic PrCa samples (Figure 4C). We were unable to test
the specificity of the method due to the lack of benign samples in the external cohort and combining datasets from multiple sources may
introduce unwanted biases and inter-experimental variabilities that may affect the validation exercise.

we observed similar performance in

Functional annotations of the methylation alterations used to discriminate cancer from non-cancer cases

While these 900 DMRs (Table S2) were obtained from an uninformed methylation capture method, the regions were nevertheless successful in

distinguishing cancer from non-cancer cases. As such, we sought to evaluate the biological significance of these epigenetic differences.
We observed that these DMRs are distributed fairly evenly across the genome, with no apparent gross organization of hyper or hypo-meth-

ylated associations (Figure 5A). We observed at chromosome 8, the p-arm being mostly hypomethylated while the g-arm is mostly
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Figure 5. Functional annotation of the epigenetic neighborhood revealed by the machine learning model for cfDNA methylation analysis

(A) Circos plot illustrating the distribution of hypermethylated (red, outer) and hypomethylated (blue, inner) DMRs across the genome with respect to the tumor
samples. Each line within the innermost circle represents the associated gene of the DMRs.

(B) Top transcription factors that regulate the genes associated with the 900 DMRs used as input for the machine learning model. Data generated using the
g:Profiler web tool using the associations of transcription factors and their downstream genes from the TRANSFAC database,”” and showing their respective
adjusted enrichment p-values.

(C) Section of the KEGG pathway “Pathways in Cancer” highlighting the transcription factors (identified in panel B, in blue) and their downstream targets
(identified separately from the TRANSFAC public database, shown in yellow) demonstrating enrichment for cancer-relevant signaling pathways. Genes that
are associated by TRANSFAC outside the KEGG pathway indicated are marked in green.

(D) Volcano plot displaying the fold-change and significance of gene expression differences between normal and tumor tissue samples (from TCGA dataset). The
genes identified in the previous panel are labeled (log2FC and p-value cutoffs are indicated in blue lines).

(E) Correlation analysis between the gene expression data of the upregulated genes in our plasma-based ‘enriched gene set’ and the expression of the Prolaris
gene set from TCGA tumor tissues, which are known to be associated with the risk of cancer progression.

(F) Kaplan-Meier survival plot showing the difference in overall survival between individuals with genetic or epigenetic alterations in the genes associated with the
DMRs, and those without any alterations.

hypermethylated. Chromosome 8p deletions” and 8q gains” are common to prostate cancer, hence we examined whether methylation
levels were related to a loss or gain in copy number (which could translate into hypomethylated and hypermethylated regions, respectively
in MBD-seq) rather than methylation level changes per se. We did not observe a clear relationship between the distribution of CpG methyl-
ations and ploidy (Figure S8).

We next performed functional enrichment analysis of the genetic neighborhood surrounding our 900 DMRs using g:Profiler,”” which re-
vealed the enrichment of transcription factor binding sites within this dataset (Figure 5B). Considering the relevance of these transcription
factors to prostate cancer, we further investigated their involvement in gene regulatory pathways. Our findings indicated that these transcrip-
tion factors and their associated genes are predominantly associated with two major pathways: cell proliferation and TGF-beta signaling (Fig-
ure 5C). This observation is consistent with existing literature, as sustained cell proliferation is a well-known hallmark of cancer,” and dysre-
gulation of the TGF-beta signaling pathway has been implicated in the prostate cancer progression.®’ Further analysis highlights that many of
these genes represent G1/S cell cycle checkpoint signature genes (Figure S9A).

Since the DMRs we identified and evaluated were obtained from plasma samples, we sought to investigate the concordance of these re-
gions with large independent tissue-based data from TCGA. We found that the transcription factor binding sites enriched in these TCGA-
derived DMRs from compared to that of the entire 450k array panel (for which TCGA methylation data was obtained from) are similar to those
enriched in the 900 DMRs we identified in the plasma (Figure S9B). Then, using the RNA expression of the TCGA dataset, we show that many
of the genes associated with the transcription factors enriched for in the plasma (referred to as “enriched gene set”) were also differentially
expressed in the tissue. (Figure 5D; Figure S9C, and Table S3). This plasma-based “enriched gene set” are also compared with the expression
of the Prolaris’ genes in the tumor tissues in the TCGA database, which consists of 31 genes associated with cellular proliferation, and which
may be relevant to clinical ‘aggressiveness’ of prostate cancer.”” We reasoned that proliferation-linked genes found in cancers, correlate with
tumor burden and would be more likely to correlate with the abundance of tumour-associated methylation alterations. Indeed, we found a
correlation between the expression of our “enriched gene set” and the “Prolaris genes” (Figure 5E; Figure S9D) despite no direct overlap
between the specific genes in both sets.

Finally, we evaluated the impact of our plasma-based gene set on the survival of patients with prostate cancer in the TCGA cohort. The
presence of genetic and/or epigenetic alterations in our unique gene set, was associated with a poorer prognosis (Figure 5F). To eliminate the
confounding effects of well-established cancer drivers TP53 and MYC, we repeated the analysis by excluding these two genes, and retained
this strong relationship between the altered gene set and survival (Figure S9E).

DISCUSSION

We conducted an evaluation of two common methylation enrichment strategies and found that MBD-seq is a reliable method for capturing
informative reads that are relevant to prostate cancer. Despite the preference of these techniques for CpG regions with higher methylation
density, we were still able to generate a valuable set of DMRs that can be used for prostate cancer detection across disease stages, within a
clinically relevant diagnostic setting.

Our study builds upon prior work which identified metastatic prostate cancer tissue mutations from plasma samples containing suffi-
cient cfDNA.” In a similar work aimed at detecting mutations in ctDNA on other types of cancers, Wan and colleagues first defined a pa-
tient-specific panel of mutations from tissue biopsies and then employed a computational enrichment method. Their method was able to
detect up to 107° - 107¢ mutant molecule fraction for samples with >10° informative reads, which is defined as the product of the coverage
and the number of mutations in the panel.*® Our work employs a similar strategy of increasing informative reads by simultaneously
analyzing multiple DMRs, but we obviate the need for a patient-specific background because of the high degree of shared methylation
patterns across patients.'” Herein, we have demonstrated superior performance than other methylation-based alternatives for prostate
cancer identification (Table S4).

The multi-modal analysis of fDNA offers a wealth potential information that can be captured for clinical utility.*** In our study, we demon-
strated the capacity to estimate tumor fraction from copy number aberration analysis in cfDNA obtained through our capture-based
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approach. Using tumor fraction information, we identified tumor samples with sufficient content to train a machine learning model that can
identify unique DNA methylation patterns in cfDNA, distinguishing metastatic prostate cancer cases from cancer-free subjects. This approach
proved effective in distinguishing metastatic cases with varying tumor fraction burdens and revealing a higher sensitivity detection afforded
by methylation alteration analysis. Significantly, we also observed the extrapolation of our method to the detection of localized cancer cases.
By relying on the same features defined in advanced cancer, we were able to detect a substantial proportion of localized cases.

The functional analysis we conducted revealed the cancer relevance of the epigenetic neighborhoods identified in our study. These neigh-
borhoods were found to be associated with pathways closely linked to prostate cancer progression and survival, including cell proliferation
and TGF-beta signaling. The identification of TGF-beta signaling pathway is intriguing, given its crucial role in various oncogenic events
including increased proliferation, decreased apoptosis, epithelial-to-mesenchymal transition, and evasion of immune surveillance.?® Target-
ing this pathway may hold promise as a therapeutic strategy for castration-resistant prostate cancer.”

In addition, several of the transcription factors identified in our analysis have been strongly linked to prostate cancer. For example, GKLF
(also known as KLF4), is a known regulator of prostate stem cell homeostasis, and its overexpression has been correlated with prostate tumor-
igenesis.”’ Similarly, the transcription factor Kaiso has been implicated in the progression of prostate cancer,*® while MAZ has been shown to
promote prostate cancer metastasis to the bone.?” Despite the fact that the highlighted DMRs were obtained from cfDNA using a non-locus-
specific enrichment method, we were able to validate and confirm these findings through comparison with tissue methylation and transcrip-
tomic data. This represents compelling evidence for the biological significance of these specific regions that we have highlighted and sup-
ports their application in prostate cancer diagnostics.

Our findings indicate that there are common features shared by metastatic cancers that are also present in the earliest stage of the disease.
Understanding the origins of these epigenetic changes and determining the relative contribution of tumor epithelia versus microenviron-
mental features will be crucial for advancing our knowledge in this area. It is noteworthy, that our machine learning model showed similar
performance in distinguishing between patients with good (CPG1) and poor (CPG5) prognosis (Figure S7B). This suggests that the captured
DMRs may be more reflective of tumor burden, which are comparable among localized cancers and significantly greater in metastatic disease
(Figure S10). Itis also important to note the heterogeneity of each prognostic subgroup, and the nearly 70% cancer-specific survival of CPG5s,
reflecting the variability of outcome.”® Furthermore, these DMRs were originally identified in high tumor burden-metastatic cancers. There-
fore, the generated probability score may reflect an epigenetic bottleneck specific to the metastatic process, suggesting that the score will
only increase as the potential to metastasise increases.

Limitations of the study

The performance of the model on localized cancers was limited; however, the identification of metastasis linked DMRs may hold prognostic
relevance for localized cases. Future validation on larger cohorts with well-defined outcomes is also required to test this outcome since the
samples in our cohort lack the needed clinical follow-up data to make the necessary correlations. Further validation and follow-up studies are
also required to determine appropriate applications of the tool. In addition, a targeted capture method on the informative DMRs may yield
greater coverage depths that allow for more sensitive detection of localized cancers and improve the differentiation of low- and high-risk
cancers.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Biological samples

Human plasma samples

Cambridge University Hospitals

DIAMOND biomarker study

Critical commercial assays

Qiasymphony DSP Circulating DNA mini kit
QlAamp Circulating Nucleic Acid Kit
EM-seq Conversion module

ACCEL-NGS Methyl-Seq DNA Library Kit
SeqCap Epi Enrichment Kit

KAPA HyperPrep Kit

QlAquick PCR Purification Kit

MagMeDIP kit

MethylMiner Kit

Qiagen

Qiagen

New England Biolabs
Swift

Roche NimbleGen
Roche

Qiagen

Diagenode

Thermo Fisher

Cat no. 937556
Catno. 55114

Cat no. E7125L

Cat no. 30024

Cat no. 07145519001
KK8502

Cat no. 28104

Cat no. C02010021
Cat no. ME10025

Deposited data

Processed data

MeDIP data of localised vs metastatic prostate cancer
from the CPC cohorts

MeDIP data of localised vs metastatic prostate cancer
from the VPC cohort

MeDIP data of localised vs metastatic prostate cancer
from the Barrier cohort

This paper

Chen etal.'®

Chen et al.’®

Chen etal.'

https://github.com/MassielLab/cfMBD-seq-for-

Prostate-cancer-detection/tree/main/data
EGA dataset: http://ega-archive.org/datasets/
EGADO00001007972

EGA dataset: http://ega-archive.org/datasets/
EGADO0001008711

EGA dataset: http://ega-archive.org/datasets/
EGADO00001008712

Infinium Human Methylation TCGA https://portal.gdc.cancer.gov/projects/
450 K array - prostate cancer TCGA-PRAD

Experimental models: Cell lines

PC3 ATCC CRL - 1435; RRID: CVCL_0035

Software and algorithms

FastQC v0.11.4

MultiQC v1.11
TrimGalore v0.4.4

Rv4.2.2
BWA-mem
Bismark v0.22.1
Samtools

MEDIPS v1.44.0

ichorCNA
QSEA

Python v3.7

Tensorflow

Babraham Bioinformatics

Ewels, Philip et al.’©

Babraham Bioinformatics

The R Foundation
Li, H. et al.”’
Krueger, F. et al.*?
Li, H. etal.*?

Lienhard, M. et al.**

Adalsteinsson, V.A. et al.?

Lienhard, Matthias et al.?°

Python software foundation
Abadi, Martin et al.*®

https://www.biocinformatics.babraham.ac.uk/

projects/fastqc/
https://multigc.info/

https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/
https://www.r-project.org/
https://github.com/Ih3/bwa
https://github.com/FelixKrueger/Bismark
https://github.com/samtools

https://bioconductor.org/packages/release/
bioc/html/MEDIPS.html

https://github.com/broadinstitute/ichorCNA

https://www.bioconductor.org/packages/

release/bioc/html/gsea.html
https://www.python.org/

https://github.com/tensorflow/tensorflow
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

AnnotatR v1.12.1 Cavalcante, R et al.*® https://www.bioconductor.org/packages/
release/bioc/html/annotatr.html

TxDb.Hsapiens.UCSC.hg38.knownGene v3.4.6 Bioconductor Core Team and https://www.bioconductor.org/packages/

Bioconductor Package Maintainer release/data/annotation/html/TxDb.Hsapiens.

UCSC.hg38.knownGene.html

Circlize Gu, Z. etal.”’ https://github.com/jokergoo/circlize

gprofiler Kolberg, L. et al.*® https://biit.cs.ut.ee/gprofiler/gost

KEGG Kanehisa, M. et al.*? https://www.genome.jp/kegg/

Transfac Matys, V. et al.” https://genexplain.com/transfac/

cBioportal Cerami, Ethan et al.”’ https://www.cbioportal.org/

RESOURCE AVAILABILITY

Lead contact

Further information and requests fir resources and reagents should be directed to and will be fulfilled by the lead contact, Dr Harveer Dev
(hsd26@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
e The raw sequencing data are available upon request from the lead contact. The processed data tables containing the beta values of all
the samples at the 900 selected DMRs are available in https://github.com/MassieLab/cfMBD-seqg-for-Prostate-cancer-detection/tree/
main/data. The TCGA data and the validation dataset used are obtained from the TCGA and EGA websites respectively. The link to the
dataset and the accession codes are listed in the key resources table.
e All codes used are deposited in https://github.com/MassielLab/cfMBD-seqg-for-Prostate-cancer-detection.
e All additional information required to reanalyse the data in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
Study participants
This study was conducted in accordance with all applicable ethical regulations. Access to samples and permission to use was covered by the
DIAMOND biomarker study (Ethics 03/18, Cl: VJG). All of the experiments conducted were compliant with relevant laws or guidelines of the
University of Cambridge and were approved by the National Research Ethics Service (NRES) Committee East of England, UK. All participants
were male, aged 47-91 years old, and predominantly British. The age, T-stage, and PSA at diagnosis are summarised in Table S1, including
p-values from performing one-way ANOVA with a Tukey's post hoc test. The samples were split 70/30 into training and test sets respectively
such that the age and PSA levels of the two groups are comparable with each other.

All peripheral blood samples were obtained from patients who underwent the prostate cancer diagnostic pathway and were recommen-
ded for biopsies. They were then classified as either normal/benign, non-metastatic good prognosis (CPG1), non-metastatic poor prognosis
(CPG5), or metastatic at presentation, using the NICE CPG stratification system.

METHOD DETAILS
Sample collection and preparation
Plasma was extracted from the whole blood samples according to the biobank’s internal protocol and were aliquoted in 2—4 mL fractions and
were immediately stored at -80°C for long-term storage. The cell-free DNA was isolated from plasma using Qiasymphony DSP Circulating
DNA mini kit (Qiagen) at the Cambridge Cancer Molecular Diagnostics Laboratory (CMDL) and quantified via Qubit 4.0 (Thermo Fisher Sci-
entific) before use.

The external validation dataset was obtained from the CPC (n=30 localised samples), VPC (n=67 metastatic samples), and Barrier cohorts
(n=14 metastatic samples) in the Chen et al. (2022)"° paper.
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Cell-free DNA extraction from cell culture media

Human prostate cancer cell line PC3 was obtained from the American Type Culture Collection (ATCC). Cells were cultured for 72h at 37°C in
5% CO, and were harvested at >90% confluency before cfDNA isolation. Cell culture media was first aspirated from the adherent PC3 cells,
and then followed by double centrifugation, first at 1900 xg and subsequently at 16,000 xg for 10 min and 30 min, respectively. Following
centrifugation, cfDNA was isolated using QlAamp Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s instructions. The
isolated cfDNA was quantified using a Qubit 4.0 (Thermo Fisher Scientific) fluorometer.

Enzymatic conversion, library preparation, and target capture (cfEM-seq)

Libraries were prepared from 50 ng of isolated cfDNA from the supernatant of a growing PC3 cell culture by enzymatically converting unme-
thylated cytosines into uracil using the EM-seq Conversion module (New England BioLabs) and appending a truncated universal adapter onto
the resulting methyl-converted single-stranded DNA products using the ACCEL-NGS Methyl-Seq DNA Library Kit (Swift Biosciences). Unique
indices were incorporated to the adapter by subjecting them to 16 cycles of PCR using KAPA Hifi HotStart Uracil+ReadyMix (Roche) with
primers from the Methyl-Seq - Dual Indexing Kit (Swift Biosciences), and then purifying the final DNA libraries with a 1.0X magnetic bead clean
up step. The converted DNA libraries were then quantified using Qubit 4.0 Fluorometer (Thermo Fisher Scientific) and eight samples were
pooled together at equimolar amounts for targeted probe hybridization capture. The probes were synthesised by NimbleGen based on
the cancer-specific target regions that were described in the results section. They were then used to enrich for the chosen fragments in
the converted libraries using the SeqCap Epi Enrichment Kit (NimbleGen) protocol. The product of which is then subjected for paired end
sequencing at 150 bp on a NovaSeq 6000 system.

cfMEDIP-seq and cfMBD-seq

In order to enrich for methylated DNA in the plasma or cell-free supernatant samples, we either performed the cell-free Methylated DNA
Immunoprecipitation (cfMeDIP) or cell-free methyl CpG binding domain protein (cfMBD) coupled with high throughput sequencing.

This cfMeDIP-seq protocol was adapted from a previously reported method by Shen et al.”” First, 100 ng of cfDNA was end-repaired
and A-tailed using KAPA HyperPrep Kit (Roche) according to the manufacturer’s protocol. Then, these fragments were ligated with 480 nM
of NEBNext unmethylated hairpin adaptors (NEBNext Multiplex Oligos for lllumina, New England Biolabs) at 20°C for 20 min and were
purified with AMPure XP beads (Beckman Coulter). After bead purification, the looped adaptors were opened through the addition of
USER enzyme (New England Biolabs), which selectively cleaves the uracil nucleotide found in the middle of the hairpin loop. The product
was then purified with QlAquick PCR Purification Kit (Qiagen) and was spiked with 0.3 ng of methylated and unmethylated A. thaliana DNA
in the appropriate buffers from the MagMeDIP kit (Diagenode) to act as controls for the recovery of methylated DNA and background
unmethylated DNA being enriched, respectively. The library mixture was then incubated at 95°C for 10 min to generate single-stranded
cfDNA libraries and then quickly transferred on ice for 10 min. The samples were then divided into two PCR tubes containing 7.9 uL and 87
ulL aliquots for the 10% input control (IC) and immunoprecipitation (IP), respectively. The 5mC antibody provided in the MagMeDIP kit was
diluted 15-fold prior to addition to the immunoprecipitation reactions and incubated for 17 h at 4°C with rotation. The samples were then
purified using Diagenode iPure Kit v2 kit as instructed by the kit without performing any fragment size selection afterwards. The eluted
libraries were amplified for 9 cycles for IC and 12 cycles for IP libraries using Kapa HiFi Hotstart Mastermix (Roche) and 0.3 uM of
NEBNext multiplex oligos (New England Biolabs). The success of the enrichment by the antibody was determined by gPCR amplification
of the spiked-in unmethylated and methylated A. thaliana DNA (Diagenode). After the enrichment step, the eluted libraries were amplified
using reagents from Kapa HyperPrep Kit (Roche), purified with magnetic bead clean up, and were sequenced at 150 bp on a NovaSeq 6000
system.

For the MBD-seq, 200 ng of cfDNA was used for the cell line experiments, while 5 ng was used for plasma cfDNA samples. Instructions for
<1 ug of input cfDNA from the MethylMiner Kit (Thermofisher Scientific) protocol were followed in both cases. Briefly, 10 uL of pre-washed
beads in 1X buffer were coupled with 3.5 ug of biotinylated MBD2 protein and incubated at room temperature for 1 h on an SLA-ROM-5
rotating mixture according to the vendor’s supplied protocol. The washed bead-biotin/MBD2 complex was then added to each sample.
Then, 200 ul of the 1X Bind/Wash buffer was added, and the solution was incubated on an SLA-ROM-5 rotator (Scitech Labapp) for 1h at
room temperature. After mixing the cfDNA-MBD2/biotin-bead complex, the mixture was placed on a magnetic rack to separate the beads
from the supernatant. The beads were then washed 3 times with 200 uL of 1X Bind/Wash buffer followed by 3 min incubations at room tem-
perature on a rotator. The bound methylated DNA molecules were eluted from the beads with 2000 mM twice, each with 200 uL. The com-
bined 400 ul of methylated DNA eluate was then purified by ethanol precipitation. Then, the sequencing library was prepared from the pu-
rified DNA using KAPA HyperPrep Kit and sequenced in NovaSeq 6000 as described above.

Sequencing data processing

After sequencing, the raw reads were examined for their quality using FastQC version 0.11.4 and MultiQC v1.11%° Raw reads were trimmed
using Trim Galore version 0.4.4 using default settings for pair-end mode. The trimmed reads were then aligned to hg38 using BWA-mem”’
using pair-end mode defaults. For the methyl-converted template, the trimmed reads were aligned to hg38 using the Bismark tools version
0.22.1. The final bam files were generated from SAM alignment files using SAMtools™ version 1.9.
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Sample quality control for cfMeDIP-seq and cfMBD-seq

For cfMeDIP-seq and cfMBD-seq, the sequencing results were subjected to quality control check by saturation analysis using the R Bio-
conductor package MEDIPS version 1.44.0.** All samples generated a reasonable number of unique reads (>17 million). Upon visual assess-
ment of the saturation curves and background coverage analysis, all the samples indicated full saturation in terms of sequencing depth;
hence, all the samples were included in the downstream analysis.

Assessing tumour fraction using ichorCNA

We ran the ichorCNA workflow on either shallow whole genome bisulfite sequencing data or on MBD-seq data, which involved first running
readCounter from hmmcopy with window size set to TMB and then generating a custom background using healthy samples as the normal
panel. We then ran ichorCNA using the recommended settings to generate estimated tumour fractions.””

Selection of the differentially methylated regions

The genome is first binned into 100-bp non-overlapping windows. Then, each 100-bp region is classified as a differentially methylated region
between metastatic prostate cancers (with higher than 15% tumour fraction based on ichorCNA) and control samples using the R package
QSEA.?® The details of choosing the samples are described in Figure 2. The resulting 100-bp DMRs were then merged with neighbouring
regions if they were within 300 bp of each other to create larger DMRs and simplify analysis. Then, the DMRs were then used as input for
the Gradient Boosted Decision Tree and Random Forest machine learning models, which were ran in python 3.7 using TensorFlow.”” We
thereafter used the Gradient Boosted Decision Tree model with the following hyperparamter values: num_trees=100, growing_strategy="-
BEST_FIRST_GLOBAL", shrinkage = 0.1, Maximum depth = 6, min_examples = 5. We also evaluated the relationship between methylation
level at the DMRs and copy number changes at each region. Using the sWGS ichorCNA copy number estimates generated while assessing the
tumour fraction, we assigned a copy number to the DMR based on the TMb window it overlapped with.

Functional analysis of DMRs

The functional annotations of the DMRs were performed using the R package annotatR (v1.12.1),"® TxDb.Hsapiens.UCSC.hg38.knownGene
(v3.4.6). Circos plot in Figure 5 was generated using the R Bioconductor package Circlize.”” Enhancers were annotated using the GeneHancer
database. Gene enrichment analysis was performed using gprofiler2 (cut-off Benjamini-Hochberg adjusted p-value = 0.05)*’ by taking the
gene annotations of the DMRs using annotatR as input and setting the background to default for MBD-derived DMRs and 450k array genes
for TCGA-derived DMRs. Gene signalling and regulatory network pathways are derived from KEGG*” and TRANSFAC™ databases. Kaplan-
Meier curves were generated from cBioportal.”’

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis performed in R and are indicated in the figure legends. For comparisons of methylation levels, the data are shown as
boxplots, and Kruskal-Wallis test was performed to determine whether the difference between groups were significant. In addition, asterisks
are added to show statistical significance as: *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001, ns not significant. For comparisons of methyl-
ation levels at a CpG-level between cfMedIP-seq and cfMBD-seq, Spearman’s rank correlation coefficients were reported.

The sample size (n) represents the number of patient samples used in the cohort. Specifically, for the training cohort: benign (n=24), met-
astatic (n=44); for the test cohort: benign (n=11), localised (n=40), metastatic (n=19); for the validation cohort: localised (n=27), metastatic
(n=89). The clinical demographics were compared by performing one-way ANOVA with a Tukey's post hoc test. For gene annotations, we
reported p-values for the transcription factors generated from gProfiler.*® For the linear correlation between log fold changes between tran-
scription factors, spearman correlation coefficients and p-values were reported. For the Kaplan-Meier curve, the log-rank test p-value from
cBioPortal®' is reported.
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