
Bedere et al. Genetics Selection Evolution           (2022) 54:26  
https://doi.org/10.1186/s12711-022-00716-8

RESEARCH ARTICLE

Using egg production longitudinal recording 
to study the genetic background of resilience 
in purebred and crossbred laying hens
Nicolas Bedere1*  , Tom V. L. Berghof2,3, Katrijn Peeters4, Marie‑Hélène Pinard‑van der Laan5, Jeroen Visscher4, 
Ingrid David6 and Han A. Mulder2 

Abstract 

Background:  There is growing interest in using genetic selection to obtain more resilient farm animals (i.e. that 
are minimally affected by disturbances or rapidly recover from them). The aims of this study were to: (i) estimate the 
genetic parameters of resilience indicator traits based on egg production data, (ii) assess whether these traits are 
genetically correlated in purebreds and crossbreds, and (iii) assess the genetic correlations of these traits with egg 
production (EP) as total number of eggs between 25 and 83 weeks. Purebred hens (33,825 from a White Leghorn (WA) 
line and 34,397 from a Rhode Island (BD) line were housed in individual cages, while crossbred hens were housed in 
collective cages of 6 to 8 paternal half-sibs (12,852 WA and 3898 BD crossbred groups, where the name of the group 
refers to the line used as the sire). Deviations of a hen’s weekly egg production from the average of the corresponding 
batch were calculated. Resilience indicator traits investigated were the natural logarithm of the variance (LNVAR), the 
skewness (SKEW), and the lag-one autocorrelation (AUTO-R) of these deviations.

Results:  In both purebred lines, EP was estimated to be lowly heritable (WA: 0.11 and BD: 0.12). Resilience indicators 
were also estimated to be lowly heritable in both lines (LNVAR: 0.10 and 0.12, SKEW: 0.04 and 0.02, AUTO-R: 0.06 and 
0.08 in WA and BD, respectively). In both crossbred groups, EP, AUTO-R, and SKEW were estimated to be less heritable 
than in purebreds (EP: h2 ≤ 0.07; and resilience indicator traits: h2 ≤ 0.03), while LNVAR had an h2 estimate that was 
similar to or higher in crossbreds ( h2 ranged from 0.13 to 0.21) than in purebreds. In both purebreds and crossbreds, 
resilience indicator traits were estimated to have favorable genetic correlations with EP and between each other. For 
all traits and in both lines, estimates of genetic correlations between purebreds and crossbreds ( rpc ) differed from 1 
and ranged from 0.16 to 0.63.

Conclusions:  These results show that selection for resilience based on EP data can be considered in breeding pro‑
grams for layers. Genetic improvement of resilience in crossbreds can be achieved by using information on purebreds, 
but would be greatly enhanced by the integration of information on crossbreds in breeding programs.
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Background
Over the past 60 years, breeding programs have resulted 
in very productive farm animals, at the expense of 
functional traits related to fitness (longevity, health, 

reproduction, etc.) [1, 2]. These trade-offs between bio-
logical functions can be explained by the “resource allo-
cation theory”: when two biological processes share 
the same resources, they are competing in  situations of 
limited resources [3]. Situations of limited resources are 
more likely to occur nowadays because of the increasing 
competition for natural resources with other animals, 
or with humans [4]. Moreover, situations of additional 
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energy expenses are more frequent because of nega-
tive social interactions due to group housing [5] and 
increasing risks of diseases, temperature fluctuations, for 
instance with outdoor access and reduced use of preven-
tive antibiotics. Therefore, there is growing interest to 
select for improved resilience in farm animals, although 
improvement of general resilience is not commonly 
implemented in breeding programs [6].

Resilience is defined as “the capacity of an animal 
to be minimally affected by disturbances or to rapidly 
return to the state pertained before exposure to a dis-
turbance” [5, 6]. One reason why resilience has not yet 
been implemented in breeding programs is due to the 
lack of selection criteria and recording tools. Opportu-
nities to construct selection criteria for resilience lie in 
the collection of repeated information per individual or 
per family [7]. Indeed, the calculation of resilience indi-
cator traits from longitudinal data is possible in various 
species [8]. Animals that are exposed to a disturbance 
are known to show a different biological response than 
expected without a disturbance (e.g. growth, feed intake, 
milk production) [5, 9, 10]. Thus, the most studied resil-
ience indicators are derived from deviations between 
the observed and expected performance (such as the 
variance of the deviations) or directly from longitudinal 
analyses (such as the slope of a reaction norm). These 
indicators are known to be associated with health-status 
and periods of perturbations [11–14]. Only a few stud-
ies have investigated the genetic parameters of resilience 
indicator traits derived from longitudinal data in farm 
animals: dairy cows [15, 16], pigs [17], and layers [18]. 
Resilience indicator traits based on longitudinal record-
ing of milk production [15, 16], feed intake [17], or body 
weight [18] have been shown to be heritable and have 
favorable genetic correlations with health-related traits.

Previous studies in laying hens have investigated resil-
ience indicators that were derived from body weight [18], 
egg weight [19], or eggshell color [20]. Because these 
traits were monitored only at specific time points, the 
number of records was very small in these studies (3 to 
8 records during the production cycle per hen). How-
ever, breeders record the number of eggs laid daily, at the 
individual level in nucleus farms or at a group cage level 
in recurrent test farms. Resilience indicators that are 
derived from daily data on egg production have not been 
investigated but may hold potential to implement selec-
tion on resilience in breeding programs for layers. The 
breeding goal of poultry breeding companies is to geneti-
cally improve multiple traits in commercial hens, often a 
3- or 4-way cross. To do that, they use a pyramidal breed-
ing program, i.e., they perform genetic selection on pure-
breds, to genetically improve performance of crossbreds. 
Records on individual performance are required in the 

nucleus to select birds with the desired characteristics. 
Consequently, pure line birds are individually housed 
to enable individual identification and recording of own 
performance (e.g. individual egg traits). Two-way cross-
bred animals are placed in recurrent field tests (RT), in 
collective cages (i.e. housed in groups) to mimic commer-
cial farm conditions. Crossbred phenotypes are recorded 
on the group level. These crossbred animals are pedi-
greed to allow the estimation of genetic parameters and 
breeding values of purebreds. The purebred–crossbred 
genetic correlation for a trait is often lower than 1 [21, 
22], which implies that crossbred information is valuable 
to estimate breeding values of purebred birds for cross-
bred performance [23, 24].

Our objectives were: (i) to study the genetic param-
eters of resilience indicator traits that are derived from 
longitudinal egg production data, (ii) to assess whether 
these traits are genetically correlated in purebreds and 
crossbreds (purebred–crossbred correlation), and (iii) 
to assess the genetic correlations of these traits with egg 
production. To our knowledge, this is the first time that 
egg production longitudinal recording is used to study 
resilience in laying hens. The purebred–crossbred cor-
relation determines whether selection for improved 
resilience in purebreds will result in improved resilience 
in crossbreds. It also determines the added value of col-
lecting crossbred information: the lower the purebred–
crossbred correlation, the higher the value of crossbred 
information when crossbred performance is the breeding 
goal [23, 24]. Estimates of genetic correlations with other 
traits will provide knowledge about the overlap between 
the genetic background of the traits and practical insights 
about the integration of resilience traits in breeding 
programs.

Methods
Study populations
In this study, two purebred lines from Hendrix Genet-
ics were studied: a White Leghorn line, called WA, and 
a Rhode Island line, called BD. The WA purebreds were 
individually housed on a nucleus farm in The Nether-
lands (33,825 layers) and distributed among 13 batches 
from 2012 to 2017. The BD purebreds were individually 
housed on a nucleus farm in France (34,397 layers) and 
distributed among 14 batches from 2012 to 2017 (further 
details about the study design are in Additional file  1: 
Tables S1 and S2). Recurrent field tests were carried out 
in Canada (CA) and The Netherlands (NL) by crossing 
purebred sires from the WA or the BD line with dams 
from five and seven other lines, respectively. The cross-
breds were housed in cages, in groups of 6 to 8 pater-
nal half-sibs. All crossbreds were beak-trimmed but the 
purebreds were not. The final dataset included records on 
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12,852 groups of WA crossbreds (6154 records on cages 
of 6 hens and 6698 records on cages of 7 hens) distributed 
among four CA farms and six NL farms and 17 batches, 
and records on 3898 groups of BD crossbreds (2428 
records on cages of 7 hens and 1470 records on cages of 8 
hens) distributed among one CA farm and four NL farms 
and nine batches. For crossbred RT, 71 and 29% of the 
sires used in the WA and BD lines, respectively, had off-
spring in both countries (CA and NL). The purebred and 
crossbred populations consisted mostly of half-sib fami-
lies with, on average, 50 offspring per sire in purebreds 
and 70 offspring per sire in crossbreds. The pedigree for 
each recorded individual was traced back between 4 and 
16 generations (paternal only for crossbreds).

Egg production recording
Eggs were collected several times a week (with the inter-
val between two collections ranging from 1 to 4  days). 
Therefore, the raw data consisted of dates and number 
of eggs collected. Egg production was recorded individu-
ally for purebreds and as a pooled average for a cage for 
crossbreds, i.e., the total number of eggs produced during 
a particular period was divided by the average number of 
hens alive in the cage during that period. Observations 
for individual purebred hens with two eggs per day were 
not discarded from the analyses, since the first egg could 
have been laid after collection time on the day before 
and the second egg could have been laid before collec-
tion time on the day of recording. Observations of three 
or more eggs per day were discarded from the analyses, 
because this is not biologically possible, even with differ-
ent collection times in successive days. Daily egg produc-
tion was estimated for every day between two recording 
dates by dividing the total number of eggs by the number 
of days in the period. These daily averages were summed 
over 7  days to obtain the weekly egg production (total 
number of eggs laid per week per hen). The trait egg pro-
duction (EP) was defined as the total number of eggs laid 
per hen between 25 and 83 weeks of age.

Resilience indicator traits based on egg production
The longitudinal egg production data enabled the computa-
tion of the types of resilience indicators based on deviations 
from the average performance of a contemporary group that 
had been used for other species in other studies [6, 16, 18]. 
The average weekly number of eggs of the batch was calcu-
lated as the total number of eggs divided by the number of 
hens alive in the batch and used to calculate deviations of 
individual weekly EP records from the batch average. Resil-
ience indicator traits evaluated were the natural logarithm 
of the variance (LNVAR) of an individual’s or group’s devia-
tions, the skewness of the distribution of the deviations 

(SKEW), and the lag-one autocorrelation (AUTO-R) of 
the deviations. These three traits are complementary [6]: a 
higher LNVAR is an indication of poor resilience of an ani-
mal to a perturbation, while resilient animals show a smaller 
range of deviations from the expected performance and 
therefore a smaller LNVAR; a more negative SKEW means 
that the animal shows more negative than positive devia-
tions or that the animal experiences severe drops from the 
expected performance, which is an indication of poor resil-
ience; and the closer AUTO-R is to 1, the more two subse-
quent deviations are alike, which is interpreted as a slower 
recovery from the perturbation and thus an indication of 
poor resilience. Observations for the resilience traits were 
discarded if they were outside the mean plus or minus four 
times the standard deviation within populations (combina-
tion of lines and purebreds/crossbreds separately). However, 
only the observation for the particular resilience indicator 
trait was discarded, i.e., observations for all other resilience 
indicators and egg production were kept. This resulted in the 
removal of about 4 and 8% of the raw data for each resilience 
indicator trait in the WA and BD lines, respectively.

Data handling and graphs were performed in base R 
[25]. Resilience indicator traits were calculated in R, i.e. 
LNVAR with the log and var functions, AUTO-R with 
the acf  function, and SKEW with the skewness function 
of the e1071 package [26].

Estimation of variance components for the same trait 
between purebreds and crossbreds
Within sire lines, variance components were estimated 
using bivariate analyses, considering records of the 
purebreds and records of the crossbreds from the same 
sires’ line as two different traits, to allow estimation of 
the purebred–crossbred correlation. The model used for 
purebred phenotypes was the following animal model:

where y is the observed phenotype (EP, LNVAR, SKEW, 
AUTO-R) of the l th purebred hen; HatchLoc is the fixed 
effect for the i th combination of hatch week, barn, cor-
ridor, and row of the cage; SurvClass is the fixed effect of 
the j th class of lifespan duration, with classes compris-
ing intervals of four weeks, from the shortest lifespan 
observed to the longest (24 to 112 weeks of age), which 
allowed for the potential effect of survival on phenotypes 
to be accounted for without assuming a linear relation-
ship between survival and the phenotype (as a covariate 
would do); a is the random additive genetic effect of the 
l th purebred layer; and e is the random residual effect.

The model used for crossbred phenotypes was the fol-
lowing sire model:

yijl = µ+HatchLoci + SurvClassj + al + eijl ,
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where y is the mean observed phenotype (EP, LNVAR, 
SKEW, or AUTO-R) from a cage of crossbred halfsib 
hens from the l th sire; HatchLoc and SurvClass are the 
same fixed effects as in the animal model; MaternalLine 
is the fixed effect of the k th maternal line of the crossbred 
offspring; s is the random sire genetic effect of the l th 
purebred sire on phenotype of the crossbred offspring; 
and e is the random residual effect.

The animal effects for the purebred phenotypes and 
the sire effects for the crossbred phenotypes were 
assumed to be bivariate normally distributed as:

where ap is the vector of breeding values for purebred 
performance and sc is the vector of sire genetic effects 
for crossbred performance ( p indicates purebreds and 
c indicates crossbreds; A is the additive genetic relation-
ship matrix; σ 2

ap
 is the additive genetic variance for 

purebred performance (animal model); σ 2
sc

 is the sire 
genetic variance for crossbred performance (sire 
model); σ 2

ac
 is the additive genetic variance for cross-

bred performance; and σapsc is the genetic covariance 
between purebred and crossbred performance (note: 
σapsc = rpc × σap × σsc =

1

2
× rpc × σap × σac , where rpc 

is the purebred–crossbred genetic correlation). Hetero-
geneity of residual variance was modeled with a single 
residual variance for individuals for purebred phenotypes 
and a separate residual variance for each cage size for 
crossbred phenotypes (cages of 6 or 7 hens in the WA 
line and cages of 7 or 8 hens in the BD line). We chose 
this approach because we observed that the residual vari-
ance varied with cage size. The residual effects were 
assumed to be distributed as:

where I is the identity matrix, σ 2
ep

 is the residual variance 
for purebreds, σ 2

ec
 is the residual variance for crossbreds 

in cages of 6, 7, or 8 grouped hens. A residual covariance 
between purebred and crossbred performance was not 

yijkl = µ+HatchLoci + SurvClassj +MaternalLinek + sl + eijkl ,
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modeled because hens were present in only one of the 
three environments.

Estimation of variance components for different traits 
within purebreds and crossbreds
Bivariate analyses were used to study the genetic rela-
tionship between traits, using the same models pre-
sented above (animal model for purebred phenotypes 
and sire model for crossbred phenotypes). Within each 
purebred population and for each pair of traits, the 
genetic effects were assumed to be distributed as:

where the subscripts trait.1 and trait.2 indicate the two 
traits analyzed, A is the additive genetic relationship 
matrix, σ 2

atrait
 is the additive genetic variance, σatrait.1,trait.2 is 

the genetic covariance between the two traits.
Within each crossbred population and for each pair 

of traits, the genetic effects were assumed to be distrib-
uted as:

The residual effects were assumed to be distributed 
as:

where I is the identity matrix, σ 2
e  is the residual vari-

ance for each trait and σetrait.1,trait.2 is the residual covari-

ance between the two traits, because in this case the two 
traits were measured on the same individuals. Each cage 
size was analyzed separately (2 sizes each for WA and BD 
crossbreds), because of the different residual variances. 
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Variance component estimation was performed with the 
statistical software ASReml 4.2 [27].

Heritability estimation
For purebred phenotypes, heritability estimates were 
calculated from the estimates of variance components 
obtained with the preceding models as:

For crossbred phenotypes, the calculation of the herita-
bility needs to account for (i) the fact that the phenotypes 
are the average per cage of the pooled performance from 
all the layers in the cage and (ii) for the half-sib relation-
ships between the grouped layers. The formula to scale 
heritability estimated with pooled data to an individual-
based heritability was established in previous studies 
[28–30], as shown in Additional file 2, and was as follows 
(applied separately to estimates of variance components 
for each cage size):

where n is the initial number of hens grouped in the 
cage (ranging from 6 to 8), 4σ 2

sc
 is the additive genetic 

variance for crossbreds; and σ 2
ec

 is the residual variance 
for crossbreds in cages of 6, 7, or 8 grouped hens. How-
ever, because, mathematically, the group phenotype for 
LNVAR is not the mean of individual records of LNVAR 
(see the details of the transformations in Additional 
file 2), its heritability was estimated as:

Significance testing
Likelihood-ratio (LR) tests were performed to test if the 
estimates of heritability were statistically significantly dif-
ferent from 0 or if the genetic correlations were different 
from 0 or 1. The LR was calculated as:

where ℓfull is the likelihood of the univariate model for 
estimation of heritabilities and of the bivariate model 
for estimation of genetic correlations between traits, and 
ℓconstrained is the likelihood of the corresponding con-
strained model. To test whether heritability estimates 
were statistically different from 0, the constrained models 

h2p =

σ 2
ap

σ 2
ap

+ σ 2
ep

.

h2c·n =
4σ 2

sc

σ 2
P∗
c

with σ 2
P∗
c
= σ 2

sc
+ nσ 2

ec·n
,

h2c·n =
4σ 2

sc

σ 2
sc
+ σ 2

ec·n

.

LR = −2
(
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,

were identical to the univariate full models, except that 
they were fitted without the random genetic effect. To 
test whether the genetic correlations were statistically 
significantly different from 0 or 1, the constrained models 
were identical to the bivariate full models, except that the 
genetic covariance was set to 0 or 1 (using the rr1 struc-
ture for the genetic effects in ASReml 4.2 [27]). Assuming 
that LR ∼ χ2

(n) , where n is the reduction of the number 
of degrees of freedom between the compared models, 
the p-value can be retrieved from the chi-squared dis-
tribution. Note that when the comparison of models 
corresponds to a test of a parameter on the boundary 
of parameter space (test of heritability equal to 0 or cor-
relation equal to 1), the distribution of this test statistic 
under the null hypothesis is a 50:50 mixture of χ2

0  and 
χ2
1  distributions (i.e. the threshold value for ∝= 0.05 is 

χ2
= 2.706 ) [31].

Results
Observed egg production and resilience indicator traits
The two purebred lines were high-producing layers. The 
observed mean EP (between 25 and 83 weeks of age) was 
371 and 347 eggs in the WA and BD purebreds, respec-
tively (Table  1). Compared to the purebreds, the cross-
breds had a similar EP, a lower LNVAR (i.e. smaller the 
fluctuations), a higher SKEW (i.e. a less symmetric dis-
tribution of the deviations), and a comparable AUTO-R 
(a higher AUTO-R corresponds to two subsequent devia-
tions being more alike). The standard deviations were 
large for all traits (phenotypic coefficient of variation of 
about 10% for most traits), although they were smaller in 
crossbreds than in purebreds. It is important to keep in 
mind that crossbreds were housed in groups while pure-
breds were housed individually and averages typically 
have a lower variance than individual records.

Table 1  Phenotypic means and standard deviations (SD) of the 
four analyzed traits in purebreds and crossbreds from the WA and 
BD lines

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations, AUTO-R lag-one autocorrelation of these deviations

Traits Type WA line BD line

Mean SD Mean SD

EP Purebred 371 51 347 69

Crossbred 368 24 341 36

LNVAR Purebred − 0.81 0.94 − 0.33 1.09

Crossbred − 2.32 0.73 − 1.84 0.64

SKEW Purebred − 1.51 1.03 − 1.20 1.15

Crossbred − 0.58 0.65 − 0.40 0.63

AUTO-R Purebred 0.21 0.24 0.36 0.29

Crossbred 0.19 0.27 0.34 0.23
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Genetic parameters of egg production and resilience 
indicator traits
For purebreds, EP were estimated to be moderately 
heritable (WA: 0.11 in Table  2; BD: 0.12 in Table  3), 
while resilience indicators traits were estimated to be 
low to moderately heritable, depending on the trait. 
Heritability estimates were equal to 0.10 and 0.12 for 
LNVAR, 0.04 and 0.02 for SKEW, and 0.06 and 0.08 for 
AUTO-R in the WA and BD lines, respectively.

For crossbred phenotypes, EP and resilience indica-
tor traits were estimated to be less heritable than in 
purebreds, except for LNVAR. Although estimates of 
additive genetic variances were of the same magnitude 
for purebred and crossbred phenotypes, the adjusted 
phenotypic variances ( σ 2

P∗
c
 ) were larger in crossbreds 

than the phenotypic variances in purebreds ( σ 2
Pp

 ), 
except for LNVAR. Heritability estimates ranged from 
0.04 to 0.07 for EP, from 0.13 to 0.21 for LNVAR and 
from 0.01 to 0.03 for AUTO-R (see Tables  2 and 3). 
Heritability estimates for SKEW were 0.006 and 0.005 
in cages of six and seven WA crossbreds, respectively 

(Table 2), and were not statistically significantly differ-
ent from 0 in BD crossbreds (Table 3). In summary, the 
resilience indicator traits showed low heritability esti-
mates in purebreds and even lower estimates in 
crossbreds.

Genetic correlations between the resilience traits
Phenotypic correlations are in Additional file  3: Tables 
S3–S5.

In purebreds, estimates of genetic correlations were 
moderately negative between LNVAR and SKEW, low 
between LNVAR and AUTO-R (negative or positive 
depending on the line), and moderately negative between 
SKEW and AUTO-R in both lines (Table 4).

In crossbreds, the estimate of the genetic correla-
tion between LNVAR and SKEW was − 0.67 in cages 
of eight BD crossbreds and was not statistically signifi-
cantly different from 0 for the other crossbreds (Table 5). 

Table 2  Estimates of genetic parameters with their standard 
error in parentheses for pure- and crossbred layers of the WA line

The variances reported are the variances estimated by the bivariate analyses 
with the same trait in purebreds and crossbreds analyzed jointly

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations, AUTO-R lag-one autocorrelation of these deviations

σ 2
ap

 : additive genetic variances for purebreds; σ 2
ac

 : additive genetic variances 
for crossbreds; σ 2

ep
 : residual variances for purebreds; σ 2

ec·n
 : residual variances 

for r crossbreds, where n is the number of hens in the cage; σ 2

Pp
 : total variance 

for purebreds; σ 2

P∗c·n
 : total variance for crossbreds; h2P : heritability estimates for 

purebreds; h2c·n : heritability estimates for crossbreds; rpc : genetic correlation 
between purebred and crossbreds

EP LNVAR SKEW AUTO-R

Genetic variance

 σ 2
ap

107 (10) 0.065 (0.006) 0.037 (0.006) 0.003 (< 0.001)

 σ 2
ac

91 (9) 0.046 (0.008) 0.037 (0.006) 0.003 (< 0.001)

Residual variance

 σ 2
ep

873 (10) 0.609 (0.006) 0.920 (0.008) 0.047 (< 0.001)

 σ 2
ec·6

214 (4) 0.343 (0.007) 0.399 (0.008) 0.060 (0.001)

 σ 2
ec·7

242 (5) 0.336 (0.006) 0.382 (0.007) 0.065 (0.001)

Total variance

 σ 2

Pp
980 (9) 0.675 (0.006) 0.957 (0.008) 0.050 (< 0.001)

 σ 2

P∗c·6
1307 (25) 0.356 (0.007) 2.400 (0.045) 0.361 (0.007)

 σ 2

P∗c·7
1711 (31) 0.346 (0.006) 2.681 (0.048) 0.456 (0.008)

Genetic parameters

 h2P 0.11 (0.01) 0.10 (0.01) 0.04 (0.01) 0.06 (0.01)

 h2c·6 0.07 (0.01) 0.13 (0.02) 0.006 (0.002) 0.02 (< 0.01)

 h2c·7 0.05 (0.01) 0.01 (< 0.01)

 rpc 0.31 (0.10) 0.16 (0.13) 0.20 (0.23) 0.63 (0.14)

Table 3  Estimates of genetic parameters estimates with their 
standard error in parentheses for pure- and crossbred layers of 
the BD line

The variances reported are the variances estimated by the bivariate analyses 
with the same trait in purebreds and crossbreds analyzed jointly

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations, AUTO-R lag-one autocorrelation of these deviations

σ 2
ap

 : additive genetic variances for purebreds; σ 2
ac

 : additive genetic variances 
for crossbreds; σ 2

ep
 : residual variances for purebreds; σ 2

ec·n
 : residual variances 

for r crossbreds, where n is the number of hens in the cage; σ 2

Pp
 : total variance 

for purebreds; σ 2

P∗c·n
 : total variance for crossbreds; h2P : heritability estimates for 

purebreds; h2c·n : heritability estimates for crossbreds; rpc : genetic correlation 
between purebred and crossbreds
a Indicates h2 not significantly different from 0 (see “Estimation of variance 
components for the same trait between purebreds and crossbreds” section 
about the LRT)

EP LNVAR SKEW AUTO-R

Genetic variance

 σ 2
ap

325 (29) 0.137 (0.012) 0.027 (0.006) 0.006 (0.001)

 σ 2
ac

96 (19) 0.055 (0.015) 0.016 (0.013) 0.009 (0.002)

Residual variance

 σ 2
ep

2400 (27) 1.022 (0.011) 1.236 (0.011) 0.074 (0.001)

 σ 2
ec·6

293 (9) 0.242 (0.008) 0.369 (0.011) 0.046 (0.002)

 σ 2
ec·7

269 (11) 0.357 (0.014) 0.382 (0.015) 0.049 (0.002)

Total variance

 σ 2

Pp
2725 (24) 1.159 (0.010) 1.264 (0.010) 0.08 (0.001)

 σ 2

P∗c·6
2078 (64) 0.256 (0.008) 2.586 (0.079) 0.327 (0.010)

 σ 2

P∗c·7
2173 (88) 0.371 (0.014) 3.063 (0.119) 0.396 (0.016)

Genetic parameters

 h2P 0.12 (0.01) 0.12 (0.01) 0.02 (< 0.01) 0.08 (0.01)

 h2c·6 0.05 (0.01) 0.21 (0.06) 0.006a (0.005) 0.03 (0.01)

 h2c·7 0.04 (0.01) 0.15 (0.04) 0.005a (0.004) 0.02 (0.01)

 rpc 0.52 (0.14) 0.47 (0.16) 0.37 (0.40) 0.56 (0.17)
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Estimates of the genetic correlation between LNVAR 
and AUTO-R ranged from 0.21 to 0.83 and was not sta-
tistically significantly different from 0 in cages of six WA 
crossbreds (Table  6). None of the genetic correlations 
between SKEW and AUTO-R were statistically signifi-
cantly different from 0.

In summary, our results indicate synergetic genetic 
correlations between the resilience indicator traits 
at least in the purebreds. This suggests that including 
one trait as a selection criterion will lead to genetic 
improvements of the other traits.

Genetic correlations between egg production 
and resilience indicator traits
In both purebred lines, the genetic correlations were 
highly negative between EP and LNVAR, from lowly neg-
ative to moderately positive between EP and SKEW, and 
moderately positive between EP and AUTO-R (Table 4).

In the crossbreds, genetic correlation estimates were 
highly negative between EP and LNVAR, ranged from 
− 0.38 to 0.40 between EP and SKEW (Tables  5 and 6). 
Although in the same direction as their respective esti-
mates in the purebreds, the magnitude of the estimate 
of the genetic correlation between EP and SKEW was 
higher in the crossbreds. Estimates of the genetic correla-
tions of EP with AUTO-R ranged from − 0.39 to 0.21.

In summary, estimates of genetic correlations of EP 
with LNVAR were in all cases negative and therefore 
favorable. In contrast, estimates of genetic correlations 
of EP with SKEW and AUTO-R were sometimes positive 
and sometimes negative, but never very strong.

Purebred–crossbred genetic correlations
Estimates of genetic correlations for the same trait 
between purebreds and crossbreds ( rpc ) ranged from 0.16 
to 0.63 across traits (Tables 2 and 3). Generally speaking, 
the corresponding estimates of rpc were higher in the BD 
than in the WA line. All estimates of rpc in this study were 
statistically significantly different from 1, except for the 
estimate for SKEW, which had large standard errors. This 
indicates that the traits in purebreds and crossbreds (EP 
and the resilience indicator traits) are genetically different 
traits but do share part of the same genetic background.

Discussion
Our goal was to study general resilience of layer chick-
ens, which is expected to be related to the capacity of an 
animal to cope with different types of challenges: dis-
ease, climate change, negative social interactions, etc. 
[5, 6, 10]. Thus, we explored the genetic background 
of LNVAR, AUTO-R, and SKEW of the deviations of 
weekly egg production of an individual hen from batch 
average to assess their potential as selection criteria for 
resilience in layers. Our results indicate that these resil-
ience indicator traits are lowly heritable and are geneti-
cally different in purebred and crossbred laying hens. 
Moreover, LNVAR showed favorable genetic correlations 
with egg production.

Table 4  Estimates of genetic correlations between traits in 
purebreds with their standard error in parentheses for the WA 
line (below the diagonal) and the BD line (above the diagonal)

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations, AUTO-R lag-one autocorrelation of these deviations

WA\BD EP LNVAR SKEW AUTO-R

EP − 0.83 (0.04) 0.49 (0.15) 0.38 (0.11)

LNVAR − 0.72 (0.04) − 0.67 (0.11) 0.14 (0.10)

SKEW − 0.05 (0.09) − 0.46 (0.07) − 0.55 (0.15)

AUTO-R 0.25 (0.09) − 0.01 (0.08) − 0.21 (0.09)

Table 5  Estimates of genetic correlations between traits in the 
WA crossbreds with their standard error in parentheses, for cages 
of six (below the diagonal) and seven hens (above the diagonal)

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations, AUTO-R lag-one autocorrelation of these deviations
a Indicates that the estimate of the genetic correlation was not significantly 
different from 0 (see “Methods” section on LRT)

6\7 hens EP LNVAR SKEW AUTO-R

EP − 0.82 (0.06) 0.19a (0.24) − 0.22a (0.13)

LNVAR − 0.74 (0.09) − 0.16a (0.23) 0.56 (0.10)

SKEW − 0.38 (0.18) − 0.18a (0.28) 0.46a (0.30)

AUTO-R 0.21 (0.18) 0.21a (0.25) 0.34a (0.39)

Table 6  Estimates of genetic correlations between traits in 
the BD crossbreds with their standard error in parentheses for 
cages of seven (below the diagonal) and eight hens (above the 
diagonal)

EP total number of eggs laid per layer between 25 and 83 weeks of age, LNVAR 
natural logarithm of the variance of the deviations between the observed 
phenotype and the average of the batch, SKEW skewness of the distribution of 
these deviations; AUTO-R lag-one autocorrelation of these deviations
a Indicates that the estimate of the genetic correlation was not significantly 
different from 0 (see “Methods” section on LRT)
b Indicates that the estimate of the genetic correlation was not significantly 
different from 1 (see “Methods” section on LRT)

7\8 hens EP LNVAR SKEW AUTO-R

EP − 0.80b (0.13) 0.40 (0.27) − 0.39a (0.44)

LNVAR − 0.54 (0.20) − 0.67 (0.27) 0.83b (0.33)

SKEW − 0.34a (0.51) − 0.70ab (0.44) − 0.42a (0.67)

AUTO-R 0.14a (0.26) 0.49 (0.18) − 0.40a (0.45)
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Egg production
Our estimates of heritability for EP in purebreds were 
low and consistent with those from previous studies that 
were performed on EP data for similar time frames and 
environments (ranging from 0.01 to 0.20 across the laying 
period [32, 33]). In general, reported estimates of herit-
ability for egg production traits are higher for purebreds 
than for crossbreds [34, 35], which appears unexpected 
because part of the dominance variance being captured 
in the additive genetic variance, hence heritability is usu-
ally higher in crossbreds than in purebreds [36]. How-
ever, estimates of residual variances vary greatly between 
studies and are mostly higher in crossbreds than in pure-
breds, which may be due to environmental conditions 
of crossbreds varying more than those of purebreds and 
makes comparisons complicated. Because purebred EP is 
recorded in individual cages and crossbred EP is recorded 
in group cages, social interactions may increase pheno-
typic variation for crossbred EP. Differences in heritabil-
ity estimates between individual and group records have 
also been reported in the literature [28, 29, 37]. These dif-
ferences can be explained by differences in the estimation 
of variance components, either because of incomplete 
information on the relationships between individuals 
due to the use of group information instead of individ-
ual information (in purebreds the complete pedigree is 
known while in purebred only the sire branch is known), 
or modelling choices (e.g. taking social interactions into 
account or not). Yet, when using individual data to simu-
late group records, estimates of the variance components 
based on individual and group records are the same [30].

Using LNVAR and AUTO‑R to improve resilience 
to disturbances
LNVAR is expected to be an indicator of both the sever-
ity and of the duration of a perturbation that the animal 
is experiencing, i.e. animals with a small variance are less 
affected by a perturbation than those with a large vari-
ance [6]. In our study, LNVAR was the most promising 
resilience selection criterion, because it had the highest 
heritability and also had a favorable genetic correlation 
with EP.

Our estimates of heritability for LNVAR of purebred 
EP (estimates of 0.11 in WA and 0.12 in BD) were simi-
lar to the estimate of heritability for LNVAR of body 
weight (repeated records) of layers related to the WA 
line (estimate of 0.10) [18]. Few studies have reported 
genetic parameters for LNVAR for multiple observa-
tions on one individual. LNVAR is by definition the 
natural logarithm of the variance of the residuals from 
an animal model of a trait [6]. In layers, heritabilities of 
0.01 have been reported for residual variation of eggshell 
color at the individual egg level and of 0.15 at the level 

of 15 to 20 eggs measured per hen [20], and of 0.10 for 
residual variation of egg weight (also repeated records) 
[19]. In broilers, low heritabilities (lower than 0.05) have 
been reported for residual variation of body weight (one 
record per individual) [38–40]. Other studies in dairy cat-
tle, pigs, and aquatic species, with either one record per 
individual or repeated records have also reported mostly 
low heritabilities for residual variance (ranging from 0.01 
to 0.14; [16, 41–45]).

In our study, the genetic correlation of LNVAR with 
EP was favorable and negative (ranging from − 0.83 to 
− 0.54). In other species, LNVAR has also been shown to 
have favorable genetic correlations with other traits. In 
pigs, lower day-to-day variance in feed intake (root mean 
square error of prediction of feed intake) was genetically 
correlated with lower mortality and fewer health treat-
ments [17]. In dairy cattle, LNVAR of milk yield devia-
tions was found to be favorably genetically correlated 
with health (udder and hoof), longevity (productive lon-
gevity, calf and maternal survival at birth), fertility (calv-
ing interval, first to last service interval), metabolic status 
(ketosis resistance), and production traits (milk yield, 
persistency, body condition score, and feed intake) [15, 
16].

To our knowledge, our study is the first to report 
genetic correlations of LNVAR with EP in layers. These 
correlations imply that selecting for a reduced LNVAR 
would increase EP, which is desirable. EP has been a 
selection criterion for many generations and, therefore, 
has probably contributed to indirect genetic improve-
ment of LNVAR. Given the low heritability of EP, add-
ing LNVAR in the breeding goal is an opportunity to 
improve not only resilience but also production, in 
spite of the low heritability of LNVAR. The next step 
towards the inclusion of LNVAR in a breeding program 
is to derive economic values or to set the targeted genetic 
gain. A simplified simulation study has already shown 
that selecting for resilience indicators has a beneficial 
economic impact, and even more if health traits are not 
included in the breeding program, because of reduced 
labor and treatments [6].

In summary, although selecting layers on EP already 
improves LNVAR, including LNVAR in breeding pro-
grams may further enhance the improvement of resil-
ience. The absence of trade-offs makes it relatively easy 
to increase resilience without a loss in selection response 
in EP. In addition, literature on other species shows that 
LNVAR is favorably associated with general immunity 
and health [6, 45].

The resilience measure AUTO-R is expected to be 
informative regarding the duration of a perturbation and 
thus to be an indicator of an animal’s recovery capacity: 
close to 0 (subsequent deviations of EP are uncorrelated) 
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for animals with high recovery rates, close to + 1 (sub-
sequent deviations of EP are correlated) for animals with 
a slow recovery rate; and close to − 1 (subsequent devia-
tions of EP are opposite) for animals showing a com-
pensatory response to the perturbation [6]. In our study, 
AUTO-R had a low heritability estimate in both pure-
breds and in crossbreds. These heritability estimates are 
similar to the heritability for AUTO-R of body weight 
deviations in layers (value of 0.09) [18]. Similarly, in dairy 
cattle, the heritability for AUTO-R of milk yield devia-
tions was estimated at 0.09 [16]. In our study, AUTO-R 
was estimated to be unfavorably genetically correlated 
with EP in purebreds, but this relationship was less clear 
in crossbreds. Other studies on layers have not shown a 
clear genetic relationship of AUTO-R with health: a non-
significant genetic correlation between AUTO-R of body 
weight deviations and titers of natural antibody (NAbs) 
isotypes in serum was reported [18]. However, in dairy 
cattle, AUTO-R of milk yield deviations was found to be 
favorably genetically correlated with health, longevity, 
fertility, metabolic, and production traits, but at a lower 
level than LNVAR [16].

Before using AUTO-R as a selection criterion, its defi-
nition as a trait needs to be further discussed to reach a 
consensus, and its biological impact on production traits 
and its relationship with health needs to be understood. 
Knowing both the LNVAR and AUTO-R of an animal can 
lead to complicated interpretations: phenotypically, ani-
mals with a low LNVAR could display an AUTO-R close 
to 1 because they are hardly affected by perturbations, 
and their subsequent deviations from EP are more alike. 
In the present study, we found that LNVAR and AUTO-
R were favorably genetically correlated in all populations 
but their genetic correlations were less than 1. However, 
if layers have genetically a high AUTO-R when faced with 
a severe perturbation, they will show a slow recovery. 
Recovery from a perturbation may be an interesting trait 
in the case of severe perturbations (such as a virus out-
break or a heatwave), thus it may be more appropriate to 
calculate AUTO-R during periods with large deviations 
instead of over the whole period.

In summary, selecting purebred layers on EP is 
expected to increase AUTO-R, which could decrease 
recovery rates from perturbation. Including AUTO-R in 
breeding programs may further enhance the improve-
ment of resilience because it would put more emphasis 
on recovery rate. The trade-off between AUTO-R and 
EP also highlights the need to quantify economic values 
when considering the inclusion of AUTO-R in breeding 
programs.

SKEW is expected to be an indicator of both the direc-
tion (positive or negative) and severity of a perturbation 
that an animal is experiencing, i.e. animals with a negative 

SKEW experience more negative deviations than others, 
which is interpreted as poor resilience [6]. However, her-
itability estimates for SKEW were very low in the pure-
breds and crossbreds from both lines, similar to previous 
studies in layers [18] and in cattle [16], which reported 
that SKEW of body weight deviations and of milk yield 
deviations are not heritable. SKEW is known to be highly 
sensitive to outliers and thus to contain more noise [6]. 
We conclude that SKEW does not seem to be a useful 
resilience indicator trait when breeding for resilient lay-
ing hens. Overall, estimates of the genetic correlation of 
SKEW with LNVAR and AUTO-R were favorable, which 
means that genetic selection on LNVAR or AUTO-R is 
not expected to result in degraded SKEW.

Resilience indicators in purebreds and crossbreds are 
genetically different
In our study, all rpc estimates were statistically sig-
nificantly lower than 1, ranging from 0.16 to 0.63. This 
suggests that EP and resilience indicators traits are genet-
ically different between purebreds and crossbreds. Our 
estimates of rpc were rather low compared to those in 
the literature, which range from 0.45 to 0.87 in pigs [21] 
and poultry [46]. Three main factors can contribute to rpc 
being lower than 1: (i) genotype-by-genotype interactions 
(G × G), (ii) genotype-by-environment (G × E) interac-
tions, and (iii) differences in measurement or definition 
[20, 21].

First, crossbreds only share half of the genetic charac-
teristics of each purebred parental line. Allele frequencies 
likely differ between purebreds and crossbreds and such 
differences may have direct effects on the trait (causal 
variants) or indirect effects (also known as G × G: domi-
nance or epistasis), depending on the loci involved.

Second, G × E interactions can contribute to the same 
trait having a different genetic architecture in different 
environments. Purebreds and crossbreds were raised 
in very different environments in our study in terms of 
climate, management, feed, barns, disease pressure, etc. 
The farms where purebreds were kept have a higher level 
of biosecurity than regular farms because the breed-
ing companies cannot take any risk with the population 
under selection. RT-farms generally belong to farmers 
who collaborate with breeding companies and, although 
their health and care practices are usually among the 
best ones, the layers will experience more challenges on 
an RT-farm than on a nucleus farm. Commercial farm 
environments can still be very different from RT-farm 
environments (cage-free systems, winter garden access, 
outdoor access, etc.). This diversity of environments and 
their susceptibility to changes (heat waves, disease out-
break, etc.) may influence the resilience performance of 
hens due to differences in types, severity, and duration 
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of the perturbations. In addition, purebreds were housed 
individually, while crossbreds were in group cages, in 
which case the presence of cage mates creates positive 
(e.g. grooming) as well as negative (e.g. pecking) social 
interactions that can affect the individuals’ wellbeing and 
performance. As a consequence of G × E interactions, re-
ranking of sires may occur. In both lines, estimates of rpc 
were lower for LNVAR than for EP or AUTO-R, which 
may be due to G × E interactions having a greater role in 
traits based on variances than in traits based on means. 
In trout, G × E interactions were reported to be larger for 
the variance of body weight than for body weight itself 
[47].

Third, differences in the definition or measurement 
of the traits may contribute to rpc being lower than 1. 
Although the definition of the variable may be the same, 
values may differ due to differences in the recording 
machines and protocols used, (e.g. housing conditions 
such as individual vs. group), the commitment of the col-
laborators, units, errors, etc., that affect the quality of the 
raw data. These differences can contribute to reducing 
the rpc . Although the recording of the performance was 
the same between purebreds and crossbreds, dealing with 
records from individually-housed hens or group-housed 
hens may lead to different traits (e.g. implication of social 
interactions) and thus result in reduced rpc (theoretical 
derivation [20]).

All these elements can contribute to the value of 
recording the traits in crossbreds in a commercial envi-
ronment. Breeding programs would benefit from consid-
ering both pure- and crossbred data to improve response 
to selection for crossbred performance in commercial 
environments [23, 48, 49], because it can increase the 
accuracy of the estimated breeding values (EBV) of pure-
bred animals for crossbred performance.

Longitudinal recording to genetically improve general 
resilience in farm animals
Our study shows that longitudinal recording offers 
opportunities to develop resilience indicators that are 
heritable. Here, resilience indicator traits are based on 
deviations of production performance from the undis-
turbed phenotype (here defined as the contemporary 
group average). An alternative is to estimate the undis-
turbed phenotype of an individual based on various 
modeling approaches [14, 16, 50]. Both approaches may 
underestimate the undisturbed phenotype, leading to 
underestimation of deviations and, thus, overestima-
tion of resilience. On the one hand, if a perturbation 
affects the majority of the individuals in the contem-
porary group, the contemporary group average will be 
lower than the true undisturbed phenotype. On the 
other hand, if a perturbation affects the phenotype of 

an individual permanently (i.e. poor recovery), the indi-
vidual’s trajectory based on observations will be lower 
than the undisturbed phenotype. Another approach is to 
estimate breeding values that allow to calculate an undis-
turbed trajectory (e.g. breeding values for curve param-
eters) [6]. Nevertheless, when modeled, a correction for 
the contemporary group effect is needed to account for 
the difference in disturbance level between contempo-
rary groups. More research is needed to provide insight 
into the genetic correlations between resilience indica-
tor traits estimated with all three approaches and which 
approach would best predict resilience [51].

General resilience is likely a combination of resilience 
of various biological functions, including food intake, 
digestion, growth, maintenance, reproduction, ther-
moregulation, immunity, behavior, etc. [5, 6, 10]. In our 
study, LNVAR and AUTO-R of deviations of weekly 
EP may capture the resilience of (re)production, i.e. the 
capacity of EP to be minimally affected by disturbances 
or to rapidly return to the undisturbed performance. This 
could lead to resilience of EP but not necessarily to gen-
eral resilience. Thus, future studies should jointly study 
LNVAR of EP, LNVAR of bodyweight, and LNVAR of 
feed intake (e.g. cross-correlations of deviations). Longi-
tudinal data on different traits (egg weight, body weight, 
and feed intake) could also be used to identify periods 
with a clear perturbation at the herd level [51], which 
would enable the study of the capacity to recover from 
a perturbation (i.e. AUTO-R or slope of reaction norm). 
Resilience indicators based on different traits could also 
be combined in a selection index for general resilience.

Tools are available now for phenotype recording in lay-
ers, such as electronic nests, feeders, weighing scales, 
cameras, microphones, RFID chips (radio-frequency 
identification), other embedded sensors, NIRS or MIRS 
(near- or mid-infrared spectroscopy), etc., which allow 
the concomitant high-throughput phenotyping of dif-
ferent traits. Based on our results and those reported 
in other livestock species that show the potential of 
resilience indicator traits for genetic improvement of 
resilience, especially LNVAR, further investigations in 
chickens are needed (i) to find the best (combination of ) 
production traits to calculate resilience indicators, and 
(ii) to record available perturbation-related indicators 
and relate them with the resilience indicator traits.

Conclusions
This study shows that LNVAR and AUTO-R of weekly 
EP are lowly heritable in purebreds as well as in cross-
breds, while SKEW had very low heritability estimates. 
We found that these three resilience indicator traits 
have favorable genetic correlations with each other and 
with EP. Compared to purebreds, EP and the resilience 
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indicator traits show lower heritability estimates in 
crossbreds, although estimates of genetic additive vari-
ance were roughly at the same level in crossbreds and 
purebreds. Studies on LNVAR can go forward towards 
its inclusion in breeding programs, i.e. by estimating 
economic values, and evaluating the economic and envi-
ronmental impacts. AUTO-R may add complementary 
information, but both its definition and its joint inclusion 
with LNVAR in breeding programs need to be further 
studied. Estimates of genetic correlations between pure-
breds and crossbreds of production and resilience indi-
cator traits were low in both lines, which suggests that 
resilience indicator traits in crossbreds are genetically 
different from resilience indicator traits in purebreds, 
which may be partly due to individual recording in the 
purebreds and group recording in the crossbreds. This 
implies that strategies that include information on cross-
breds in breeding programs would be beneficial to the 
genetic improvement of resilience in crossbreds.
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