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ABSTRACT:  Designing balanced rations for 
broilers depends on precise knowledge of nitro-
gen-corrected apparent metabolizable energy 
(AMEn) and the chemical composition of the 
feedstuffs. The equations that include the meas-
urements of the chemical composition of the 
feedstuff  can be used in the prediction of AMEn. 
In the literature, there are studies that obtained 
prediction equations through multiple regression, 
meta-analysis, and neural networks. However, 
other statistical methodologies with promising 
potential can be used to obtain better predic-
tions of energy values. The objective of the pre-
sent study was to propose and evaluate the use of 
Bayesian networks (BN) to the prediction of the 
AMEn values of energy and protein feedstuffs of 
vegetable origin used in the formulation of broiler 
rations. In addition, verify that the predictions of 
energy values using this methodology are the most 
accurate and, consequently, are recommended to 
Animal Science professionals area for the prep-
aration of balanced feeds. BN are models that 
consist of graphical and probabilistic represen-
tations of conditional and joint distributions of 

the random variables. BN uses machine learning 
algorithms, being a methodology of artificial in-
telligence. The bnlearn package in R software was 
used to predict AMEn from the following covar-
iates: crude protein, crude fiber, ethereal extract, 
mineral matter, as well as food category, i.e., en-
ergy (corn, corn by-products, and others) or pro-
tein (soybean, soy by-products, and others) and 
the type of animal (chick or cockerel). The data 
come from 568 feeding experiments carried out 
in Brazil. Additional data from metabolic experi-
ments were obtained from the Federal University 
of Lavras (UFLA) – Lavras, Minas Gerais, Brazil. 
The model with the highest accuracy (mean 
squared error = 66529.8 and multiple coefficients 
of determination = 0.87) was fitted with the max-
min hill climbing algorithm (MMHC) using 80% 
and 20% of the data for training and test sets, re-
spectively. The accuracy of the models was evalu-
ated based on their values of mean squared error, 
mean absolute deviation, and mean absolute per-
centage error. The equations proposed by a new 
methodology in avian nutrition can be used by the 
broiler industry in the determination of rations.
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INTRODUCTION

Production of low-cost high protein chicken 
meat through intensively reared broiler chickens has 
high economic importance at national and inter-
national levels. The need to formulate diets that are 
increasingly adequate to the demands of broilers is 
necessary for the production system. The productive 
efficiency of birds is directly related to the adequate 
supply of dietary energy, which, in turn, depends 
on the nitrogen-corrected apparent metabolizable 
energy (AMEn) of the foods. However, one of the 
highest problems actually is the real knowledge of 
the energy composition of feedstuffs, which directly 
interferes with the energy levels of the rations and, 
consequently, on the nutrient balance of the same. 
Currently, several methods are available to assess 
the energy composition of feedstuffs and, often, 
discrepant results are observed.

The energy values feedstuffs can be obtained 
in biological tests, with the execution is time-con-
suming and of  high cost, or by the composition 
tables of  the feedstuffs (Albino, 1980). Another 
way of  obtaining the values of  AMEn is the pre-
diction equations established according to the 
chemical composition of  the feedstuffs, which 
is usually easy and quick to obtain (Rodrigues 
et  al., 2001, 2002). Zhao et  al. (2008) developed 
prediction equations using multiple regression 
to estimate the energy values using the chemical 
composition of  the feedstuffs; however, their re-
sults have been inconsistent or applicable only 
to one feedstuff  group (Alvarenga et  al., 2011). 
Nascimento et  al. (2009, 2011) and Mariano 
et al. (2012) used meta-analyses to better predict 
AMEn. Perai et  al. (2010), Ahmadi et  al. (2007, 
2008), and Mariano et al. (2013) used neural net-
works (NN), and the latter used a larger number 
of  foods and in vivo trials.

NN and Bayesian networks (BN) are suitable 
tools for prediction due to their superior ability to 
capture and express complex dependencies on covar-
iates and response variables (Bishop, 2006; Gianola 
et al., 2011). BN has been used in medicine, genetics, 
robotics, economics, demography forensics, educa-
tion, human behavior, industrial applications, spe-
cies conservation, and mining (Pourret et al., 2008). 
Mariano et al. (2013) focused on predicting AMEn 
using a NN. Felipe et al. (2015) indicated the pos-
sibility of using BN in Animal Science; however, 
the previous use of BN for Animal Science papers 
is not restricted to breeding and genomic selection 
(Gianola et al., 2011; Morota et al., 2013). These 

approaches have not yet been applied to examine 
broiler nutrition.

To find more accurate results, BN are used to pre-
dict the AMEn according to the chemical compos-
ition of feedstuffs, BN are graphical models, which 
consist of the graphical representation (graph) and 
probabilistic (conditional and joint probability 
distributions) of the variables (Scutari and Denis, 
2015; Koller and Friedman, 2009; Lauritzen and 
Spiegelhalter, 1988; Spirtes et al., 2000). In the ap-
plied areas, mainly Agriculture, there are still very 
few publications, however, Bayesian networks are 
an unprecedented line of research in poultry nutri-
tion and that can be studied by researchers who are 
interested in predicting the values of metabolizable 
energy (Alvarenga et al., 2020).

Among the benefits of  using BN are: 1) redu-
cing the costs of  in vivo trials to determine AMEn 
values, 2) Enhancing the accuracy of  predictions 
of  AMEn, 3)  Reducing the variability in tabu-
lated values for AMEn, 4) Expanding the use of 
Bayesian networks to areas where machine learn-
ing and related methods are starting to be em-
ployed, and 5) Capturing conditional dependency 
among random variables in, a broader sense than 
traditional methods can achieve. In this paper, the 
proposal using and evaluate BN, a new method-
ology in broiler nutrition, to obtain prediction 
equations for AMEn from a meta-analysis of  en-
ergy and protein feedstuffs used for determining 
broiler rations.

MATERIALS AND METHODS

Data

To obtain the equations via BN, data from the 
meta-analysis were used, referring to the experiments 
conducted in Brazil in the period from 1967 to 2007, 
resulting in 568 experiments (Nascimento et al., 2009; 
Nascimento et al., 2011), among them which refer to 
the values of AMEn and chemical composition of 
energy (n = 370) and protein (n = 198) feedstuffs, of 
vegetable origin, commonly used in the formulation 
of broiler diets. The data used to validate the pro-
posed equations were obtained by Alvarenga et  al. 
(2011). These data come from two in vivo trials to 
determine the energy value of protein and energy 
feedstuffs, with growing chicks (traditional method 
of total excreta collection), respectively in February/
March and July 2008. The trials were carried out in 
Lavras, state of Minas Gerais, Brazil (21° 14′ 45″S, 
44° 59′ 59″W, 919 m a.s.l.) at the Federal University of 
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Lavras (Alvarenga et al., 2011). For both data used to 
obtain and validate the equations via BN, the values 
of the response variable – AMEn, were estimated 
by the covariables; crude protein (CP), ether extract 
(EE), ash, crude fiber (CF), classification of the feed-
stuffs category (1  – energy concentrate, 2  – protein 
concentrate), specification of the ingredient in the 
category (1 – energy concentrate): (1 – corn, 2 – corn 
by-products, 3 – others), the ingredient specification 
in the category (2 – protein concentrate): (1 – soybean, 
2 – soybean by-products, 3 – others) and the type of 
animal used in the bioassay (1 – chicks, 2 – cockerels).

Prediction Models

The structure of a directed acyclic graph (DAG) 
that represents the BN, the nodes are connected, 
and all the arrows are directed without cycling (the 
arrow cannot return to the same node). The DAG 
is a directional, connected, and acyclic graph. We 
can observe that the neighbors of a node are the 
adjacent nodes, which are either parents or sons 
(Nagarajan et al., 2013).

Most algorithms used to find graph structure 
depend on topology because causal relations are as-
sociated with precedence for conditioning. Some of 
the algorithms use a Markov blanket to the target 
node. The nodes that separate the target node 
from the remaining structure are parent, child, and 
nodes that share a child with the target node. For 
prediction, only those variables would be relevant 
to modeling (Koski and Noble, 2009; Scutari and 
Denis, 2015).

A BN is a graphic representation of a joint prob-
ability distribution (or joint density, Margaritis, 
2003). It can be described by the structure of a 
DAG. Factorization of the BN, as described by 
equation 1, is a chain of products of conditional 
probabilities, as one node, given its parents, is con-
ditionally independent of its non-descendants 
(Pearl, 1988; Koski and Noble, 2009; Scutari and 
Denis, 2015). This is a convenient representation 
of the joint probability distribution, allowing for 
an inference on the desired research questions. The 
joint probability distribution is defined as:

P (X1, X2, ...Xp) =
∏n

i=1
P (Xi| Pai) , (1)

where p is the number of variables, i is the counter 
of samples and n is the number of observations. 
For the case of discrete and continuous nodes in 
which Pai are the parents of Xi.

The variables used to learn the DAG were CP, 
EE, ash, CF, food category (1 – energy concentrate, 
with ingredients: 1.1 – corn, 1.2 – corn by-products, 
1.3 – others, 2 – protein concentrate, with ingredi-
ents 2.1 – soybean meal, 2 – soybean by-products, 
3 – others) and type of animal used in the bioassay 
with two levels: 1 – chicks, 2 – cocks).

The initial step for a BN is to have an algorithm 
to learn the basic graph structure (Scutari, 2010). The 
next step is to learn the implicit local distributions for 
this given structure (Scutari et al., 2014). Nagarajan 
et al. (2013) discussed three algorithms for learning 
network structure. The first, constraint-based al-
gorithms, are based on conditional independence 
tests to infer the arrow direction between nodes. The 
second, score-based algorithms, select among all 
possible structures the BN with the highest quality, 
scored by probability-based measures such as Akaike 
information criterion (AIC) or Bayesian (Schwarz) 
information criterion (BIC). The third type, hybrid 
algorithms, combine ideas of both.

The bnlearn package (Scutari, 2010; R Core 
Team, 2020) for R implements the following con-
straint-based algorithms: Grow-Shrink (GS) incre-
mental association Markov blanket (IAMB) fast 
incremental association (Fast-IAMB) interleaved 
incremental association (Inter-IAMB); max-min 
parents and children (MMPC); semi-interleaved 
Hiton-PC (SI-HITON-PC). Each can be used for con-
ditional independence tests (Nagarajan et al., 2013).

The score-based algorithms also implemented 
are hill climbing (HC) (Margaritis, 2003) and Tabu 
search (TABU). The scoring function can be AIC, 
BIC, or others. Hybrid algorithms include max-
min hill climbing (MMHC) (Tsamardinos et  al., 
2006) and general 2-phase restricted maximiza-
tion (RSMAX2). MMHC uses constraint-based 
MMPC to search graph skeletons, estimating 
parent–child Markov coverage for each pair of 
variables in BN. To determine directionality, a 
score-based HC algorithm is used. A more general 
implementation of  MMHC is performed by the 
RSMAX2 algorithm. It can use any combination 
of  constraint-based and score-based algorithms 
(Scutari and Denis, 2015).

AMEn predictions were performed using a hy-
brid BN with continuous and discrete variables in 
the same fashion as a multiple linear regression 
model (Koski and Noble, 2009). To envision the 
process, consider a set X of  random variables, par-
titioned into two subsets: XD for discrete variables 
and XC for continuous variables. The joint prob-
ability distribution for P(X) can be factorized as:
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P(X) =P(XD, XC)

=
∏

i ∈ D
P(Xi|PaD)

∏
i ∈ C

P(Xj|PaD, PaC),

in which PaD and PaC are joint probabilities for each 
of the subsets, respectively.

The term 
∏

i ∈ C P(Xj||PaD, PaC) brings both 
discrete and continuous parent variables that can 
be locally represented by linear regressions with 
parameters from discrete parents. This is equivalent 
to writing:

(Xj|PaD, PaC) ∼ (Nµj,σ2
Xj|PaD), in which

µj =β0,Xj|PaD + βi,Xj|PaD Xj|Pac .

Thus, for the prediction of AMEn, µj refers 
to the intercept for each level of the discrete vari-
able's combination (categories for food and animal 
types). β0,X j|PaD

 and βi,X j|PaD
 are the intercept and 

coefficients of the multivariate linear regression, 
respectively. Xi|PaC represents the variables CP, ash, 
EE, and CF.

The original data were described by Mariano 
et al. (2013). For this study, the data were randomly 
partitioned into a training set (80% of the sample 
size) and a testing set (using the remaining data). 
The training set was used to search for a best-fitted 
DAG. Equations derived from the joint posterior 
were compared to a metabolic data assay from 
Alvarenga et  al. (2011). The parameters used for 
the validation of the model were simple correlation 
coefficient (r), multiple coefficients of determin-
ation (R2), mean squared error (MSE), mean abso-
lute deviation (MAD), mean absolute percentage 
error (MAPE), bias (bias) (Mariano et  al., 2014) 
and prediction mean squared error (PMSE) (Felipe 
et al., 2015).

RESULTS

Different hybrid structures learning algo-
rithms were evaluated, obtained from randomi-
zations in the training data sets (80%, 75%, and 
70%) and test (20%, 25%, and 30%). The best result 
obtained was through the MMHC learning algo-
rithm (Figure  1) with the randomization of 80% 
of the learning data compared to the sets of 70% 
and 75%. The fit statistics were: r = 0.94, R2 = 0.87, 
MSE  =  66529.8, MAD  =  191.2, MAPE  =  7.52, 
bias  =  −43.09 and PMSE  =  257.93. The selected 
algorithm MMHC provided better statistics, ex-
cept for RSMAX21 learning (MAPE = 7.45), with 

a difference of approximately 1%, and RSMAX24 
(bias = −48.10), presenting a difference of approxi-
mately 10% (Figure 1).

Table 1 summarizes the training (80% of  the 
data) and testing sets. The DAG with the best-fit-
ting yield by the MMHC learning algorithm is 
depicted in Figure  2, according to the result of 
the BN model presented in Figure 1. It has eight 
nodes and 11 arrows in a Markov blanket with 
seven nodes. The best learning algorithm was 
MMHC, i.e., using a constraint-based MMPC 
algorithm with conditional independence testing 
using mutual information. The scored-based 
method was hill climbing, using the BIC cri-
terion. The number of  tests used to learn the best 
DAG was 165.

The joint distribution represented in Figure 2 
can be written as P(AMEn, CP, EE, ash, CF, 
Category, Ingredient, Animal) = P(EE) · P(CF) ·  
P(Category) · P(Animal) · P(CP | Category) ·  
P(Ingredient | Category) · P(ash | CP:CF) · P(AMEn |  
CP : EE : ash : CF : Category : Ingredient : Animal). 
This means that EE, CF, Category, and Animal are 
not dependent on the other variables; however, CP 
is dependent on Category, and ash is dependent by 
CP and CF. The response variable AMEn is condi-
tionally dependent on all studied variables. Thus, 
there are 12 regression equations to AMEn, each 
coming from a different combination of  levels for 
the discrete variables. Each separate prediction 
equation uses only levels of  quantitative variables 
(CP, CF, ash, and EE). The proposed prediction 
equations and their coefficients are presented in 
Table 2.

The observed values (Alvarenga et  al., 2011) 
and predicted (the result of the equations proposed 
by the BN) are plotted in the graph of Figure  4, 
and the statistics used in the assessment of the ad-
justment are shown in Table  3. The data used in 
this validation process coming from in vivo trials. 
Regarding the adjustments, the best evaluations 
of the statistics were MSE  =  9051.84 for corn 
by-products, MAD  =  81.66, MAPE  =  2.16 and 
bias  =  −64.51 for other protein foods. The com-
parison between the predictions obtained in this re-
search with the results of neural networks is shown 
in Table 4.

DISCUSSION

This study aimed to propose and evaluate the 
use of  BN and to find equations to the predic-
tion of  the AMEn values of  energy and protein 
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feedstuffs of  vegetable origin used in the formula-
tion of  broiler rations. It is known, animal foods 
have quite different chemical compositions from 
vegetables, they have no fiber, soluble carbohy-
drates are extremely low, they have a high-fat 
content, and others. This variation in chemical 
and energy composition is even greater when it 
comes to animal by-products, due to the different 

processing methods and the lack of  standardiza-
tion of  national products.

From this objective used machine learning 
algorithms to learn the graphic structure of  the 
network as well as the probabilistic relationships 
between the variables, it was possible to prove 
the functionalities of  this new promising meth-
odology in broiler nutrition. The algorithm that 

Figure 1. Evaluation of the performance and accuracy of the models for nitrogen-corrected apparent metabolizable energy (AMEn) estimated 
using Bayesian networks. r: correlation coefficient; R2: multiple coefficient of determination; MMHC: max-min hill climbing; RSMAX2: 2-phase 
restricted maximization; Learning respectively, constraint-based and score-based: 1 – semi-interleaved Hiton Parents and Children (SI.HITON.PC) 
and hill climbing (HC); 2 – interleaved incremental association (INTER.IAMB) and HC; 3 – fast incremental association (FAST.IAMB) and HC; 
4 – incremental association Markov blanket (IAMB) and HC; 5 – Grow-Shrink (GS) and HC.
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showed the best performance was MMHC as the 
literature mentions in Felipe et al. (2015). It was 
observed that the equations differed in the values 
of  the parameters due to countless DAG options 
(Koski and Noble, 2009). However, according 
to the lowest values of  errors found in the val-
idation using the test data (20%) in the Bayesian 
network model obtained the equations available 
in Table  3. In addition to the validation from 
the test data, the validation in the data of  meta-
bolic tests, only for chicks' equations, confirmed 
the efficiency of  the obtained equations being 
indicated for the elaboration of  balanced diets 
for broilers. The results continue to be proven 
through the predicted and realized values for 
AMEn, as shown below.

For comparison, in Nascimento et  al. (2009), 
Mariano et al. (2012), and Mariano et al. (2013), 
the best architecture achieved R2 = 0.83, 0.74, and 
0.86, respectively. In this research, the BN model 
managed to explain 87% of the AMEn variation. 
Predicted and realized values for AMEn are de-
picted in Figure  3. Errors in prediction, such as 
those we found, are attributed to the chemical 

composition of food in the ration considered (for 
some discussion on this, please refer to Moreira 
et al. (2002) and Brunelli et al. (2006). A metabolic 
trial was performed in chicks only. Thus, equations 
for cocks were not validated. Predictions and real-
izations based on data from (Alvarenga et al., 2011) 
are plotted in Figure 4. AMEn values are close to 
the identity line, indicating good accuracy of the 
proposed equations.

Equations proposed by the BN and those 
from the NN (Mariano et al., 2013) were validated 
with these in vivo trials with chicks (Alvarenga 
et al., 2011). The results can be found in Table 4. 
Predicted energy values that are closer to the real-
ized description are described in boldface. From 
this table, we conclude that the BN predicted closer 
in 20 out of  36 cases and that the NN was closer 
in the other 16 cases. The equations for obtain-
ing the energy values of  corn, corn by-products, 
and other protein by means of  BN had a better 
performance compared to the estimates obtained 
by NN (Mariano et  al., 2013). These equations 
(Table  2) are for the corn (AMEn  =  3658.16  − 
2.41 CP − 11.25 EE + 83.41 ash + 16.76 CF), 
corn by-products (AMEn  =  4209.57  − 34.56 CP 
+ 32.84 EE − 25.15 ash − 142.57 CF) and others 
protein (AMEn = 2327.69 + 24.23 CP + 77.72 EE 
− 167.06 ash − 22.28 CF), the BN was remark-
ably better, but for soybeans, the opposite result 
was found.

It is known that the common statistical ap-
proach to obtain the AMEn values is that of 
ordinary least squares of  multiple regression al-
though there are few types of  research of machine 
learning found for this purpose, these being NN. 
However, the authors advocate the use of  com-
putational methodologies, such as BN to predict 
AMEn and demonstrate that the use of  BN for 

Figure 2. Directed acyclic graph (DAG) for study variables.

Table 1. Summaries for variables in the training (80%) and testing (20%) sets. Original data from Nascimento 
et al. (2009, 2011)

Statistics AMEn (kcal/kg) CP (%) EE (%) Ash (%) CF (%)

Training set
 Minimum 1,170 1.470 0.030 0.300 0.020

 Median 3,501 14.130 3.480 2.110 3.020

 Mean 3,176 23.360 4.872 3.560 4.928

 Maximum 4,386 71.440 26.210 12.610 26.500

Testing set

 Minimum 1,148 1.700 0.030 0.560 0.320

 Median 3,275 15.270 3.150 3.010 3.985

 Mean 3,050 23.360 4.135 3.826 5.683

 Maximum 4,160 68.810 25.540 11.050 27.630

AMEn: nitrogen-corrected apparent metabolizable energy; CP: crude protein; EE: ether extract; CF: crude fiber.



7Application of Bayesian networks to the prediction of the AMEn

Translate basic science to industry innovation

areas where machine learning and related methods 
are beginning to be employed; it has the benefits 
that traditional methods cannot achieve, espe-
cially the BN. BN capture conditional dependence 

between random variables in a broader sense and 
of relationships between discrete and continuous 
variables simultaneously in the model. Especially in 
the era of information, that computational meth-
odologies have been experiencing have been more 
indicated by the listed properties. Emphasizes, 
to the AMEn values determined with chicks are 
found in Table 4, and that the values of  AMEn for 
corn with BN (3,701.423 kcal/kg), NN (3,682.410 
kcal/kg) and according to Rodrigues et al. (2001) 
using ordinary least squares of  multiple regression, 
for the same feedstuff, the AMEn value was 3,699 
kcal/kg, which declares the promising use of  BN in 
bringing these values closer to the methods estab-
lished by the literature.

According to the results found in this research, 
indicating good accuracy of the proposed equations 
via new machine learning methodology in poultry 
nutrition, authors in the literature show superiority 
in non-traditional models in the prediction of en-
ergy values. Ahmadi et al. (2007, 2008), Perai et al. 
(2010), and Mariano et  al. (2013), demonstrated 
that the NN model outperformed the traditional 
models or accurately predicted performance based 
on dietary metabolizable energy.

Table 2.  Prediction equations for nitrogen-corrected apparent metabolizable energy (AMEn) estimated 
using Bayesian networks

AMEn (kcal/kg) Coefficients

Category Animals Type food Intercept CP EE Ash CF

Energy Chicks Corn 3658.16 −2.41 −11.25 +83.41 + 16.76

Corn by-products 4209.57 −34.56 +32.84 −25.15 −142.57

Other Corn products 4335.88 −50.91 +35.40 −67.35 −87.06

Protein Chicks Soybean 3684.83 −19.84 −71.15 +18.14 −8.93

Soybean by-products 2951.05 +0.09 +37.96 +5.04 −17.60

Other soybean products 2327.69 +24.23 +77.72 −167.06 −22.28

Energy Cocks Corn 3321.82 +51.31 + 39.42 −377.11 +113.92

Corn by-products 4716.45 −227.63 +144.47 - -

Other Corn products 4133.39 −89.45 +100.32 −5.50 −96.37

Protein Cocks Soybean 4143.45 −3.18 −43.45 −213.55 +6.71

Soybean by-products 518.54 +26.25 +47.10 +184.42 +69.0

Other soybean products 6033.28 −15.02 −105.81 −556.50 +91.23

AMEn: nitrogen-corrected apparent metabolizable energy; CP: crude protein; EE: ether extract; CF: crude fiber.

Table 3. Accuracy of prediction equations using data from in vivo trials (Alvarenga et al., 2011)

Equation MSE MAD MAPE bias

Corn 27314.73 143.28 3.98 −104.56

Soybean 71737.46 254.97 10.74 −254.97

Corn by-products 9051.84 82.85 3.44 81.26

Soybean by-products 131069.90 299.25 10.84 −227.12

Other energy food 64831.12 213.58 7.42 −184.02

Other protein food 16473.99 81.66 2.16 −64.51

MSE: mean squared error; MAD: mean absolute deviation; MAPE: mean absolute percentage error; PMSE: prediction mean squared error.

Figure 3. Relationship between the observed and predicted for 
nitrogen-corrected apparent metabolizable energy (AMEn) values of 
different feedstuffs using test data.
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The results demonstrated in Perai et al. (2010) 
that the NN model predicts the nitrogen-corrected 
true metabolizable energy (TMEn) values of meat 
and bone meat samples based on their chemical 
composition outperformed the traditional models. 
Accurately predicted metabolizable energy, methio-
nine, and lysine using NN (Ahmadi et  al., 2007) 
as well, predicted the TMEn values of feather and 
poultry offal meal based on their chemical compos-
ition (Ahmadi et al., 2008) are corroborant with the 
research and application of machine learning meth-
ods in poultry nutrition. In addition to Alvarenga 

et al. (2015) that reinforces innovations in estima-
tion methods are necessary to obtain better esti-
mates of the energy values of feed for broilers.

Felipe et al. (2015) compared different meth-
odologies to predict total egg production in 
quails from different strains. The model with 
the combination of  the BN and NN resulted in 
a better performance to predict total egg pro-
duction. Töpner et al. (2017) used BN in a corn 
experiment to analyze the relationships between 
characteristics at genomic and residual levels. 
The BN obtained in this were classified in terms 

Table 4.  Energy levels predicted from Bayesian networks (BN) and neural networks (NN, MARIANO 
et al., 2013) and bias found to result in vivo trials with chicks (Alvarenga et al., 2011)

Food sample Alvarenga et al. (2011)

Prediction

BN NN BN1 NN2

Corn 3,747 3701.423 3682.410 −45.577 −64.590

 3,699 3718.852 3749.960 19.852 50.960

 3,813 3723.068 3691.330 −89.931 −121.670

 3,572 3783.902 3738.140 211.902 166.140

Soybean 2,373 2524.779 2532.720 151.778 159.720

 2,326 2703.916 2505.290  377.916 179.290

 2,355 2641.964 2500.180 286.963 145.180

 2,396 2677.614 2498.430 281.613 102.430

 2,478 2654.566 2513.110 176.566 35.110

Corn by-products 3,624 3628.778 3841.340 4.777 217.340

 3,676 3573.398 3803.920 −102.601 127.920

 2,184 2086.068 1931.880 −97.432 −251.620

Soybean by-products 3,159 3214.654 2527.200 55.653 −631.800

 3,779 3661.684 3580.770 −117.315 −198.230

 2,809 2992.756 2431.950 183.756 −377.050

 3,772 3938.579 3918.470 166.578 146.470

 2,387 2935.302 2342.300 548.302 −44.700

 3,971 3753.066 3519.050 −217.934 −451.950

 3,288 3617.693 3580.420 329.693 292.420

 2,314 2935.302 2351.800 621.302 37.800

 3,818 3753.066 3519.050 −64.934 −298.950

 3,173 3617.693 3580.420 444.693 407.420

 2,339 2935.302 2351.800 596.302 12.800

 3,793 3753.066 3519.050 −39.934 −273.950

 3,330 3617.693 3580.420 287.693 250.420

 2,309 2935.302 2351.800 626.302 42.800

 3,890 3753.066 3519.050 −136.934 −370.950

 3,267 3617.693 3580.420 350.693 313.420

Energy 3,598 3569.507 3498.87 −28.492 −99.130

 3,529 3515.214 3505.98 −13.786 −23.020

 3,862 3771.244 3537.47 −90.756 −324.530

 2,682 2839.403 2798.87 157.403 116.870

 1,941 2342.840 1939.12 401.840 −1.880

 3,362 3669.743 3512.24 307.492 149.990

Protein 3,934 3957.047 4049.53 23.046 115.53

 3,904 3979.133 4072.38 74.880 168.13

1BN: Prediction BN – Observed by Alvarenga et al. (2011); 2NN: Prediction NN – Observed by Alvarenga et al. (2011); Prediction NN: Obtained 
by Mariano et al. (2013).
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of  adjustability and predictive ability through 
structural equations. They concluded that when 
illustrating the connections of  characteristics 
concerning their genomic and residual nature, 
they become clearer, which makes it useful for 
predicting multiple traits and indirect selection. 
They confirm the potential of  the BN in health 
sciences, economics, agriculture among others, 
that previously were unprecedented in the field 
of  broiler nutrition.

In future studies, the dataset including other 
experimental studies will be updated. It will be 
to develop an innovative technological product 
based on the BN methodological proposal, with 
the objective of  obtaining prediction equations to 
assist broiler nutritionists. Research the behavior 
of  AMEn values in different probability distribu-
tions for the variables, to obtain prediction equa-
tions. Impute by BN the values of  acid detergent 

fiber and neutral detergent fiber; missing vari-
ables or incomplete in the set data used and 
evaluate the effect of  these values in the AMEn 
values. Increase the representativeness of  the vari-
ables through the Bayesian Fuzzy Evolutionary 
Networks.

CONCLUSIONS

After all, Alvarenga et  al. (2015) have shown 
that these prediction equations are important for 
increasing the accuracy of diet formulation, al-
lowing producers to correct energy values based on 
the variations in the chemical composition of feed-
stuffs. In conclusion, the MMHC algorithm and a 
partition with 80% of data to the training set seems 
to perform better in determining the DAG and re-
spective BN. The BN was accurate and as good 
a method as the previous NN, depending on the 

Figure 4. Predicted and realized values for nitrogen-corrected apparent metabolizable energy (AMEn) of different feedstuffs: corn (A), soy-
bean (B), corn by-products (C), soybean by-products (D), other energy feeds (E), and other protein feeds (F) using data from chick in vivo trials 
(Alvarenga et al., 2011).
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food category. The predicting equations estimated 
from a BN can be used to calculate energy levels 
for broilers.
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