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Abstract: An organizer is defined as a group of cells that secrete extracellular proteins that specify
the fate of surrounding cells according to their concentration. Their function during embryogenesis
is key in patterning new growing tissues. Although organizers should also participate in adult
development when new structures are regenerated, their presence in adults has only been identified
in a few species with striking regenerative abilities, such as planarians. Planarians provide a unique
model to understand the function of adult organizers, since the presence of adult pluripotent stem
cells provides them with the ability to regenerate any body part. Previous studies have shown that
the differential activation of the WNT/β-catenin signal in each wound is fundamental to establish an
anterior or a posterior organizer in the corresponding wound. Here, we identify the receptors that
mediate the WNT/β-catenin signal in posterior-facing wounds. We found that Wnt1-Fzd1-LRP5/6
signaling is evolutionarily conserved in executing a WNT/β-catenin signal to specify cell fate and to
trigger a proliferative response. Our data allow a better understanding of the mechanism through
which organizers signal to a “competent” field of cells and integrate the patterning and growth
required during de novo formation of organs and tissues.

Keywords: Wnt pathway; Wnt receptors; posterior fate; proliferation; regeneration; planarians

1. Introduction

An organizer can be defined as a group of cells that secrete an extracellular protein
that can specify the fate of the surrounding cells according to their concentration [1–4].
A broader vision of organizers includes other essential properties: (i) the receiving tissue
must be “competent” to receive the signal, and (ii) specifying a pattern must come together
with promoting growth in order to form a new and complete patterned structure [1]. Thus,
organizers pattern a field of cells which is in continuous growth. The term organizer was
used for the first time by Spemann and Mangold, when they discovered the ability of dorsal
cells in the blastopore lip of amphibians to induce the formation of a complete axis when
grafted to the opposite site of a second embryo [5]. The homologous structure has also been
identified in all vertebrates and has been given different names, such as Hensen’s node in
the chick [6]. Organizing centers, referring to organizing cells that pattern a tissue or an
organ but not a complete body axis, have been identified in several stages of development
of all organisms, for instance, in the limb bud of tetrapods [7] or the isthmic organizer at the
midbrain–hindbrain boundary [8]. As observed, organizers or signaling centers have been
mainly studied in embryonic stages. However, the first experiment that suggested their
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existence was performed in 1909 by Ethel Browne using adult Hydra. By transplanting
head tissue into the body column of a host, she observed the induction of a secondary axis
that was predominantly made of host cells, concluding that the Hydra head has the ability
to instruct the fate of the host tissue [9].

Although organizers should also participate in adult development (for instance, when
new structures must be regenerated), the presence of organizers in adult tissues has
received little attention since its discovery in 1909 [2], and their presence has only been
identified in few species with striking regenerative abilities. Molecular and genetic studies
in whole-body-regenerating animals, such as Hydra and planarians, have demonstrated
that the formation of organizers in the wounds is a crucial step to specify the fate of the
regenerating tissue [2,10]. In zebrafish, organizing cells have also been identified in the tip
of the regenerating caudal fin [11]. All of these studies have identified the WNT/β-catenin
(cWNT) as the key signal providing organizing properties. Thus, the cWNT signaling
pathway appears as an evolutionary conserved mechanism to specify the primary body
axis both during regeneration and during embryogenesis in all metazoans [12–14].

Planarians provide a unique model system to understand the function of organizers
during adult development and, more specifically, to study the properties of the organizing
and the receiving cells in the “competent” tissue and its implication in the growth associated
with regeneration. This is because planarians can regenerate any body part due to the
presence of a huge population of adult pluripotent stem cells, called neoblasts [15,16], and
because they are Lophotrochozoa [17], which show bilateral symmetry and cephalization;
thus, their regeneration includes complex organs. After amputation, an apoptotic and a
proliferative response takes place, which should be coordinated to allow proper regeneration
and restoration of the missing structures [18,19]. Muscle cells in the regenerative tips act as
organizers, secreting molecules which will pattern the regenerating blastema according to the
pre-existent tissue [20,21]. As mentioned, the cWNT pathway plays a crucial role in defining
anterior-posterior identity. The secreted element wnt1 is expressed in the posterior-facing
wounds and the secreted Wnt inhibitor, notum, in the anterior [22–24]. Inhibition of wnt1 or
notum during planarian regeneration produces a shift in polarity, giving rise to two-headed or
two-tailed animals, respectively [22,25,26]. However, milder inhibition of the cWNT signal
during posterior regeneration gives rise to the so-called tailless planarians, which are animals
that close the wound without specificating a posterior midline, preventing the formation of
a tail structure [23–26]. In these animals, neither a posterior nor an anterior organizer can
be formed, since no wnt1 or notum is expressed in the wounds [26]. Thus, we hypothesized
that in planarians, organizers, and particularly the cWNT signal, could not only specify the
identity but also enable the growth required to regenerate a complete tail.

In this study we identified fzd1, fzd4-1, and lrp5/6 as cWNT signal receptors that are
expressed in the “competent” cells that receive the cWNT signal and are required for
posterior identity specification. In addition, we demonstrate the requirement of the cWNT
signal to trigger the growth of the posterior blastema.

2. Material and Methods
2.1. Phylogenetic and Sequence Analysis

Protein lrp5/6 sequences were obtained from NCBI (Table S1) and aligned together
using MAFFT [27] with the FFT-NS-i strategy. IQ-TREE [28] was used to generate a
phylogenetic tree with the generated alignment. All the web server options were used by
default, with exceptions for the number of bootstrap alignments (set at 2500), the single
branch test number of replicates (set at 2000), and the approximate Bayes test option
(selected). Dendroscope3 v3.6.3 [29] with default parameters was used to visualize the
tress. To identify the conserved domains, the NCBI web server was used (http://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) [30].

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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2.2. Gene Cloning

Smed-lrp5/6 fragments were cloned in pGEM-T Easy (Promega, Madison, WI, USA)
and pCRII (Life Technologies, Grand Island, NY, USA) vectors for ssRNA and dsRNA
synthesis, respectively. All primers used in this study are shown in Table S2. The re-
ported nucleotide sequence data are available in the Third Party Annotation Section of the
DDBJ/ENA/GenBank databases under the accession number TPA: BK014290.

2.3. Animal Care

Planarians used in this study belonged to the asexual clonal strain of Schmidtea mediter-
ranea BCN-10 and were maintained in PAM water as described in [31]. Animals were
fed twice per week with liver to maintain the population, and the animals selected for
experiments underwent starvation for one week.

2.4. RNAi Experiments

In vitro transcription (Roche) was used to synthesize double-stranded RNA (dsRNA)
as described in [32]. Over three consecutive days per week, injections of dsRNA (3 × 32.2 nL
per animal) into the digestive system were performed using a Nanoject II injector (Drum-
mond Scientific Company, Broomall, PA, USA). Intact RNAi animals were injected for one
week with 1000 ng/µL. The usual regenerative experimental RNAi inhibition consisted
of two or three weeks of inhibition using 1000 ng/µL and amputations at the end of each
week. In simultaneous gene-silencing experiments, the total amount of dsRNA injected in
each animal was maintained constant. The new soaking protocol consisted of one week
of inhibition using 2000 ng/µL, and the animals were amputated one day after the last
injection. Pieces were then soaked in dsRNA diluted in PAM water with a final concentra-
tion of 1000 ng/µL. A laboratory film square piece was folded twice to generate a cross
in the middle of the piece, followed by wrapping to obtain a cone. Then, the cone was
seated and stacked on a Petri dish to avoid movement. A total of 12 µL of dsRNA diluted
in PAM was placed in the middle of the cone. Using a brush, the planarian pieces were
placed in the drop for 5 h. The folded cones were kept in a humid dark box at 20 ◦C to
avoid evaporation. Then, the soaking protocol pieces were transferred to a Petri dish for a
recovery period, and two washes with PAM water were performed during the first 15 min.
The control animals were injected and/or soaked in dsRNA of gfp.

2.5. Whole-Mount In Situ Hybridization

RNA probes were synthesized in vitro using SP6 or T7 polymerase and DIG- or FITC-
modified (Roche). For colorimetric whole-mount in situ hybridization (WISH), the previously
described [33] protocol was followed. Animals were sacrificed with 5% N-acetyl-L-cysteine
(NAC), fixed with 4% formaldehyde (FA), and permeabilized with reduction solution. For
double fluorescent in situ hybridization (dFISH), the previous protocol was followed [34].
Animals were sacrificed with 7.5% NAC and fixed with 4% FA. An azide step (150 mM
sodium azide for 45 min at room temperature) was added to quench the first signal probes.
Nuclei were stained with DAPI (1:5000; Sigma, St-Quentin-Fallavier, France).

2.6. Immunohistochemistry Staining

Whole-mount immunohistochemistry staining was carried out as previously de-
scribed [35]. Animals were sacrificed with 2% HCl, fixed with 4% FA and blocked in
1% bovine serum albumin (BSA) in 1× PBST × 0.3% (blocking solution) for 2 h at RT.
Primary antibodies were incubated in blocking solution for 16 h rocking at 4 ◦C. Washes
were per performed for at least 4 h, and secondary antibodies were diluted in blocking
solution for 16 h rocking at 4 ◦C. The following antibodies were used in these experi-
ments: mouse anti-synapsin (anti-SYNORF1, 1:50; Developmental Studies Hybridoma
Bank, Iowa City, IA, USA), mouse anti-VC1 (anti-arrestin, 1:15000, kindly provided by
Professor K. Watanabe) and rabbit anti-phosphohistone H3 (Ser10) (D2C8) (PH3) (1:500;
Cell Signaling Technology, Leiden, Netherlands). The secondary antibodies used were
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Alexa 488-conjugated goat anti-mouse (1:400; Molecular Probes, Waltham, MA, USA) and
Alexa 568-conjugated goat anti-rabbit (1:1000: Molecular Probes, Waltham, MA, USA).
Nuclei were stained with DAPI (1:5000; Sigma).

2.7. Imagining and Quantification

In vivo images were obtained using Scmex 3.0 camera in a Zeiss Stemi SV 6 binocular
loupe. WISH and whole-mount immunostaining images were captured with a ProgRes
C3 camera from Jenoptik (Jena, TH, Germany). Cell counting of PH3+ staining was
carried out by eye quantification in a previous defined area of each animal. Areas are
schematically indicated in each figure. The total number of PH3+ cells was divided by the
animal area. Double FISH confocal images were obtained with a Leica TCS SPE confocal
microscope (Leica Microsystems, Mannhiem, BW, Germany). Representative confocal
stacks for each experimental condition are shown. Images were blind analyzed and later
grouped according to each genotype.

2.8. Single-Cell Visualization

PlanExp [36] at PlanNET [37] was used to perform t-SNE plots and gene coexpres-
sion counts with single-cell transcriptomic data [38]. Transcriptomes IDs of the used
Schmidtea mediterranea genes are shown in each figure. Parameters were used by default.

2.9. Statistical Analysis and Visualization

GraphPad Prism 8 was used for statistical analysis and visualization. To compare
the means of two populations, two-sided Student’s t-tests (α = 0.05) and box plots were
used for statistical analysis and visualization, respectively. Box plots depicted the median,
the 25th and 75th percentiles (box), and all included data points (black dots). Whiskers
extend to the largest data point within the 1.5 interquartile range of the upper quartile
and to the smallest data point within the 1.5 interquartile lower ranges of the quartile. To
represent the percentage of the phenotype populations, heat maps were used, and in order
to represent the percentage of gene presence in different cell-type populations, pie charts
were used.

3. Results
3.1. Identification of an lrp5/6 Homolog That, Together with fzd1 and fzd4-2, Is Expressed in
Posterior Blastemas during Regeneration

The S. mediterranea genome contains 9 frizzled (fzd) genes, which are grouped into three
families (fzd-1/2/7, fzd-5/8-4, and fzd4) [39–41]. Two of these fzd appeared as good candidates
to receive the cWNT signal during posterior regeneration: fzd4-1, which is expressed in the
tip of the tail and when inhibited produces smaller tails [21], and fzd-1/2/7 (fzd1 from now
on), whose inhibition produces a posterior head in intact planarians [40]. Whole-mount
ISH (WISH) shows that fzd1 is expressed in the nervous system and in the pharynx. During
regeneration, it is expressed in both blastemas (Figure 1A and Figure S1A). fzd4-1 is highly
expressed in the tail of intact animals, and during regeneration, it is only detected in
posterior blastemas (Figure 1A and Figure S1A).

The low receptor protein (LRP) is a transmembrane protein with an evolutionary
conserved function as a coreceptor of the cWNT signal [42,43]. We identified three putative
homologs in the S. mediterranea genome. Two of these were previously identified as
homologs of low- and very low-density lipoprotein receptors (LDLR and VLDLR), which
are closely related to LRP receptors (Smed-ldlr and Smed-vldlr) [40], and the third was not
described (dd_Smed_v6_10112_0_1). The analysis of the conserved domains shows that the
three homologs present low-density lipoprotein domains (Figure S1D). The phylogenetic
analysis demonstrates that the homolog to the LRP5/6 receptor is the new transcript, and
we named it Smed-lrp5/6 (Figure 1B). WISH shows that Smed-lrp5/6 is expressed in the
parenchyma and in the nervous system (Figure 1A). During regeneration, Smed-lrp5/6 can
be observed in the parenchyma, in the pharynx, and in the brain, but also in the posterior
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blastema within a duration of 48 h, suggesting its participation in the specification of the
posterior fate (Figure 1A and Figure S1A).

Genes 2021, 12, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. fzd1, fzd4-1, and lrp5/6 are expressed in posteriors blastemas after amputation. (A) 
Whole-mount in situ hybridization (WISH) of fz1, fzd4-1, and lrp5/6 in intact animals and at 48 h of 
regeneration (48 hR), showing its presence in posterior blastemas (blue arrows). Blue shadows in 
the schematic cartoons represent the studied regenerative pieces: heads and trunks. Scale bar: 100 
µm. (B) The phylogenetic tree based on LRP sequences (Table S1) showed that lrp5, lrp6, and lrp5/6 
genes cluster together. At nodes, values for the approximate Bayes (square) and Likelihood (circle) 
ratio tests are shown. Colour indicates % of confidence. Dark asterisks indicate Schmidtea mediter-
ranea (Smed) genes. Scale indicates expected aminoacidic substitution per site. The following spe-
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Figure 1. fzd1, fzd4-1, and lrp5/6 are expressed in posteriors blastemas after amputation. (A) Whole-
mount in situ hybridization (WISH) of fz1, fzd4-1, and lrp5/6 in intact animals and at 48 h of regen-
eration (48 hR), showing its presence in posterior blastemas (blue arrows). Blue shadows in the
schematic cartoons represent the studied regenerative pieces: heads and trunks. Scale bar: 100 µm.
(B) The phylogenetic tree based on LRP sequences (Table S1) showed that lrp5, lrp6, and lrp5/6 genes
cluster together. At nodes, values for the approximate Bayes (square) and Likelihood (circle) ratio
tests are shown. Colour indicates % of confidence. Dark asterisks indicate Schmidtea mediterranea
(Smed) genes. Scale indicates expected aminoacidic substitution per site. The following species were
used: Homo sapiens (Hsap), Xenopus tropicals (Xtro), Branchiostoma floridae (Bflo), Saccoglossus kowalewski
(Sko), Crassostrea gigas (Cgig), Octopus bimaculoides (Obim), Schistosoma mansoni (Sman), Nematostella
vectensis (Nvec), and Amphimedon queenslandica (Amq).

Overall, fzd1, fzd4-1, and the newly identified Smed-lrp5/6 are expressed in posterior
blastemas during regeneration, suggesting that they might have a role in defining posterior
identity.

3.2. fzd1, fzd4-1, and Smed-lrp5/6 Specify Posterior Identity

To study the function of each receptor during posterior regeneration, we performed
RNAi experiments and analyzed the posterior blastema of regenerating head and trunk
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fragments. Animals were injected and amputated for 3 weeks (three rounds of inhibition,
see Figure S2A and the Materials and Methods section). On day 7 of regeneration (7dR),
after these three rounds of inhibition, most fzd1 and lrp5/6 (RNAi) regenerating heads
presented a smaller and indented posterior blastema compared to controls, a phenotype
related to a lack of posterior identity (Figure 2). fzd4-1 (RNAi) regenerating heads also
presented smaller posterior blastemas, but in a lower percentage (Figure 2). Regenerating
trunks also presented posterior defects, although they were less penetrant (Figure S2B).
In the trunk fragments, we also observed that all RNAi animals showed some defects in
the regenerating head, which presented smaller blastema and smaller eyes (Figure S2B).
The defects in the eyes were corroborated with anti-arrestin (VC-1) immunostaining, and
the smaller brains were also visualized with nuclear staining (DAPI) (Figure S2B). Despite
the defects in the anterior regeneration, fzd1, lrp5/6, and fzd4-1 (RNAi) animals presented
normal expression of notum, a marker of the anterior pole [22,44] (Figure S2B).
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localization after the inhibition of the three receptors. On the left, schematic illustrations are added 

Figure 2. fzd1, fzd4-1, and lrp5/6 inhibition produces tailless heads. In vivo images of fzd1, fzd4-1, and
lrp5/6 (RNAi) regenerating heads showed indented or rounded blastemas. Immunostaining of the
neural system using α-SYNAPSIN (3C11) showed that fzd1, fzd4-1, and lrp5/6 (RNAi) animals do not
properly close the ventral nerve chords in the posterior tip (white arrows) and that the new pharynx
is not regenerated after fzd1 and lrp5/6 RNAi (cyan asterisks), which is corroborated with nuclear
staining (DAPI). WISH using a slit probe shows the disorganization of the midline (red arrows) in
fzd1 and lrp5/6 (RNAi) animals. WISH of wnt1 in regenerating blastemas shows its delocalization
after the inhibition of the three receptors. On the left, schematic illustrations are added showing
which parts were studied (dark boxes) after amputation (red dashed line) and the expression of 3C11,
slit, and wnt1 in intact animals. Scale bars: 200 µM.

When cWNT is silenced, planarians present a shift in polarity or a milder phenotype
that is tailless. In tailless animals, the ventral nerve cords (VNCs) do not fuse at the
posterior tip, and wnt1, which is expressed in the posterior midline in wild type animals, is
absent or delocalized [23,25,26]. The analysis of the VNCs through anti-synapsin (3C11)
staining demonstrates that fzd1, fzd4-1, and lrp5/6 (RNAi) regenerating heads were not able
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to close the VNCs in the posterior tip as controls (Figure 2). Anti-synapsin staining also
shows that inhibition of fzd1 and lrp5/6 but not fzd4-1 prevented the regeneration of a new
pharynx (Figure 2). Analysis of wnt1 by WISH showed a decrease in and a delocalization of
wnt1 in the posterior blastemas after RNAi of the three receptors, with accentuation in fzd1
(RNAi) (Figure 2). This is a trait of tailless planarians generated after cWNT inhibition [26],
which are not able to properly form the posterior midline. In agreement, expression of
slit, a marker of the midline, was absent or disorganized in fzd1 and lrp5/6 (RNAi) animals
(Figure 2). In fzd4 (RNAi) animals, which present a milder phenotype, slit expression was
not affected.

Overall, these results demonstrate that fzd1, fzd4-1, and lrp5/6 present a tailless phe-
notype, phenocopying the one described when inhibiting other elements of the cWNT
pathway as wnt1, wnt11-2, or βcat1 in planarians [23,25,26,45]. Thus, fzd1, fzd4-1, and lrp5/6
might be the receptors activated by the cWNT signal to specify posterior identity.

3.3. Smed-fzd1 and Smed-lrp5/6 Cooperate in Specifying Posterior Identity

Since LRP5/6 acts as a coreceptor of Fzd to activate the cWNT signal [46], we studied
their possible cooperation. First, we studied their expression in different cell types. It has
been previously reported that Smed-fzd1 and Smed-fzd4-1 are expressed in neoblasts and
muscle cells [40]. Through double FISH analysis, we demonstrate here that lrp5/6 is also
present in neoblasts and muscle cells (Figure S3A). Analyzing single-cell databases [36],
we found that in intact animals, Smed-fzd1, Smed-fzd4-1, and Smed-lrp5/6 were present in
several cell types (Figure S3B), and there was coexpression between them, mostly in the
epidermis, muscle cells, neurons and neoblasts (Figure S3C). Since we were interested in the
signaling occurring when regenerating a posterior organizer, we analyzed the expression
of wnt1, wnt11-2, and the three receptors in the single-cell databases corresponding to
tail fragments [36] using the Plannet interface (https://compgen.bio.ub.edu/PlanNET/
planexp) [36,37]. Interestingly, we observed that very few cells coexpress wnt1 and wnt11-2
(Figure S3C). Among the wnt1+ or the wnt11-2+ cells, cells expressing any combination of
the three receptors were identified (Figure S3C). Smed-lrp5/6 and Smed-fzd1 showed more
similar phenotypes compared to wnt1 (RNAi) when silenced. Thus, we hypothesized that
those two receptors can cooperate in specifying posterior identity. To test this hypothesis,
we simultaneously inhibited both receptors and studied regenerating heads and trunks.
The results show that when silencing Smed-lrp5/6 and Smed-fzd1, all knockdown head-
regenerating animals present a tailless phenotype (Figure 3). However, it is in the trunk
fragments where the cooperation of the two receptors is more evident. In this case, only
in the double Smed-lrp5/6 and Smed-fzd1 RNAi condition does the animal partially show
a shift in polarity and become two-headed, while the others all remain tailless (Figure 3).
Immunostaining with anti-arrestin (3C11) demonstrates the appearance of the posterior
head (Figure S4).

Overall, these results suggest that fzd1 and lrp5/6 cooperate during regeneration to
specify posterior identity and could be the receptors of Wnt1.

3.4. The cWNT Pathway Triggers Cell Proliferation during Regeneration

Not only does the tailless phenotype observed after cWNT inhibition [25,26] show
patterning defects, but blastemas also appear smaller, which could result from a decrease
in the proliferative response. After amputation, two proliferative peaks are observed
in planarian wounds: the first is general and appears at 6 h of regeneration (hR), while
the second is local and occurs at 48 hR (hours of regeneration) [18]. To identify which
role could have the cWNT signal in controlling proliferation, we analyzed the levels of
PH3, which label cycling cells in the M phase [47], after wnt1 and wnt11-2 (RNAi). We
analyzed the trunk fragments, because after wnt1 inhibition head fragments produce a high
percentage of two-headed animals [24,26], and the aim was to analyze proliferation in the
tailless phenotype, which does not show any organizing activity [26]. Performing the usual
protocol of RNAi inhibition (two rounds of RNAi and cut) [48], and then immunostaining

https://compgen.bio.ub.edu/PlanNET/planexp
https://compgen.bio.ub.edu/PlanNET/planexp
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with anti-PH3, we observed no significant changes in proliferation at 6 hR and an increase
at 48 after wnt1 RNAi (Figure S5A). The opposite results were observed after wnt11-2 RNAi,
that is, an increase in proliferation at 6 hR but no differences at 48 h (Figure S5A). According
to the dynamics of expression, this result was not expected, since wnt1 is expressed in
posterior blastemas already at 6 hR [23,24]. We reasoned that since both genes were already
silenced for two weeks before the analysis of the regenerating wounds, the animals could
have suffered from remodeling before the last amputation, and this could have affected the
regenerative process. Furthermore, 20% of the resulting animals showed a shift in polarity;
thus, they were regenerating an anterior organizer in the posterior wound (Figure S6A,B),
which could also impact the proliferative response. Therefore, we designed an alternative
approach to restrict the time of inhibition of the genes and ensure that none of the animals
suffered from a shift in polarity. In this case, we injected dsRNA for three consecutive days
using a higher concentration of dsRNA, and after amputation, animals were soaked for
6 h in dsRNA diluted in PAM water (Figure 4A and Figure S5A) (see the Materials and
Methods Section for the soaking protocol). When using this protocol and analyzing PH3
levels, we found that both wnt1 and wnt11-2 (RNAi) animals show a reduction on the first
mitotic peak, while the second is increased in wnt1 and not affected in wnt11-2 (RNAi)
animals (Figure 4A).
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The same soaking protocol was then used to analyze the proliferative response after
inhibition of lrp5/6. In this case, the regenerating heads were analyzed since they showed
more penetrance of the tailless phenotype than the trunk fragments (see Figure 2 and
Figure S2). lrp5/6 (RNAi) animals showed a reduction in the first peak, although it was not
statistically significant, and all differences were observed in the second peak in comparison
to controls (Figure 4B and Figure S5C).

To test whether the cWNT signal could be also controlling proliferation during pla-
narian homeostasis, we analyzed PH3+ cells in wnt1 (RNAi)-intact animals. After one week
of inhibition, the animals did not present the in vivo phenotype (Figure S5D). However, the
proportion of mitotic cells in the posterior region, where wnt1 is expressed, was decreased
when compared to controls (Figure S5D), suggesting that wnt1 controls proliferation in
homeostatic conditions.
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Overall, our results show that cWNT inhibition produces not only patterning defects but
also a decrease in proliferative cells. Furthermore, our data highlight the impact of the strategy
used to modulate gene expression when early time points of regeneration are studied.
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4. Discussion

To specify posterior identity and regenerate a proper tail, the appearance of a posterior
organizer, which is composed of muscular wnt1+ cells, is required during the first hours
of regeneration in planarians [23,24]. It is known that the subsequent activation of other
posterior Wnts (mainly wnt11-2) is required to pattern the tail [24,25]. However, the receptors
of the cWNT signal have not been carefully examined in the currently available literature.
Here, we have identified fzd1, fzd4-1, and lrp5/6 as receptors that mediate the cWNT action
during posterior regeneration. According to our results, Fzd1, rather than Fzd4-1, appears to
be the direct receptor of the Wnt1 signal from the organizing cells, since its RNAi produces
a stronger and more penetrant phenotype during posterior regeneration. Furthermore, fzd1
expression in posterior wounds is detected earlier than that of fz4-1, indicating that it could
be receiving an earlier signal of Wnt1, which could also account for the stronger phenotype
observed after its inhibition. Our data also indicate that LRP5/6 could act as a coreceptor of
Fzd1 since its inhibition produces a very similar phenotype regarding the posterior midline
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disorganization and the inability to regenerate a new pharynx. The absence of a pharynx in
fzd1and lrp5/6 RNAi animals could result from their early role in posterior specification [49]
or from their direct role in regeneration of the pharynx, since they are both expressed in it.
The finding that simultaneous inhibition of fzd1 and lrp5/6 produces a synergistic effect and
that it can produce a shift in polarity, also shown in wnt1 (RNAi) animals, further supports
the notion that LRP5/6 acts as an Fzd1 coreceptor. Thus, an Fz1/LRP5-6 signal would be
evolutionarily conserved in receiving the cWNT signal as described in other models [50–53].
Fzd4-1 could act as the receptor of Wnt11-2, since its expression pattern and RNAi phenotype
are very similar, always producing tailless animals, and it could also act as a receptor of the
late Wnt1 signal (Figure 5).
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Interestingly, despite the fact that the Fdz1/LRP5-6 receptors seem to mediate the signal
from the organizer, they are not expressed specifically in posterior wounds, but fzd4-1 is
the receptor found specifically in posterior-facing wounds. According to our data and
others [21,23,25,26], we propose that, during posterior regeneration, the early Wnt1 interacts
with the Fzd1/LRP5-6 receptors in the nearby cells, and, then, in these cells, the expression
of wnt11-2 and fzd4-1 is activated, generating a broader field of cells around the posterior
organizer that corresponds to the “competent” field of cells responding and executing the
posterior program (wnt11-2+ and fzd4-1+). In these cells, Fzd4-1 may be the receptor of Wnt11-
2 or the late Wnt1 signal (Figure 5). We have found that the three receptors are coexpressed
with wnt1+ or wnt11-2+ cells, at least in intact tails, suggesting that both cell types may be
activating their own transcription, thereby establishing a robust posterior program (Figure 5).
Using the cell-sequencing database, we also found that wnt1 and wnt11-2 do not coexpress
but can be identified as two different cell populations, which in the proposed model would
correspond to the organizing and receiving cells, respectively (Figure 5).

The Wnt1-Fz1/LRP5-6 signal appears not only necessary to specify the posterior fate
but also to trigger the proliferative response required for proper regeneration. This is not
surprising since the requirement of Wnt-Fzd-LRP signaling to mediate proliferation has
been extensively reported in other stem-cell-based systems, such as in intestinal crypts [54],
among others [55]. In acoels, it was recently demonstrated that inhibition of wnt3, which is
expressed in posterior muscular cells [56], also affected stem cell proliferation [57], although
in this case, the receptors remain unknown.

The inhibition of wnt1, wnt11-2, or lrp5/6 affected the proliferation of neoblasts at
6 h of regeneration, but not at 48 hR. It must be noted that the mitotic response that
occurs at 6 hR is general, and that at 48 hR is localized in the wounds. Thus, this result
means that inhibition of the function of the posterior organizer has a very early role in
the proliferative response of the stem cells, but it does not affect the later mitotic peak,
which is responsible for the formation of the blastema observed in tailless animals. Since
during planarian regeneration a very early apoptotic peak of apoptosis appears locally
in the wounds (4 hR) [19], interfering with the function of the organizer may directly
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affect the apoptotic response and, by extension, proliferation. In other systems, it has been
reported that dying cells generate cWNT ligands that modulate stem cell proliferation, as
in Hydra [58], in epithelial tissue in zebrafish [59], and in Drosophila imaginal discs [60,61]
(also reviewed in [62]). In Nematostella, it has also been proposed that cell death might
trigger regeneration and proliferation [63]. Thus, the analysis of cell death in wnt1 (RNAi)
animals may help in clarifying the role of the organizer with respect to cell death and
cell proliferation.

A further aspect to note regarding the role of the organizer in the control of prolifera-
tion is the finding that the results were highly dependent on the protocol used for gene
inhibition. This observation must be considered for further studies on early events in
regeneration. When the protocol of gene inhibition takes several days, which is usually
the case, planarians begin to remodel according to the new signals, and this can influence
the early regenerative response. This observation is related to the finding that inhibition
of wnt1 in homeostatic animals also produces a decrease in the proliferative rates of the
cells nearby. The wnt1+ cells in the posterior midline of adult animals do not maintain
the identity, since a shift in the polarity during homeostasis is observed just after βcat1
inhibition [45], but they do have a role in maintaining the homeostasis of posterior tissues.

5. Conclusions

The formation of organizers or organizing centers is a conserved mechanism in evo-
lution to pattern a growing field of cells. This continuously occurs during embryonic
development, but it is also required during regeneration of new structures in adult animals.
In highly regenerative animals, such as Hydra, planarians, or zebrafish, the existence of
regenerative organizers has been proved, and the molecular mechanism underlying their
properties is currently being deciphered. Through the study of these plastic models, it has
been shown that the cWNT signal appears as an evolutionary conserved signal providing
organizing properties. The identification of the cells in the organizer and the factors associ-
ated with them, expressed both in the organizer itself and in the surrounding cells, provides
us with a new frame to understand regeneration. A crucial property of organizers is that
they integrate patterning and growth, which are both the basis of a successful regenerative
process. We envisage that mirroring the knowledge gained through the study of organizers
in animal models to mammals and humans will provide a new frame to further explore the
field of regenerative medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
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types, Figure S4. fzd1 / lrp5/6 (RNAi) regenerating trunks showed a two-head phenotype, Figure S5.
cWNT elements control proliferation in intact animals and during posterior regeneration, Figure
S6. Efficiency of the injection and injection + soaking protocols, Table S1. LRP sequences, Table S2.
Primers used in this study.
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