
ORIGINAL RESEARCH
published: 29 May 2020

doi: 10.3389/fonc.2020.00592

Frontiers in Oncology | www.frontiersin.org 1 May 2020 | Volume 10 | Article 592

Edited by:

Zaiyi Liu,

Guangdong Provincial People’s

Hospital, China

Reviewed by:

Zhenyu Liu,

Institute of Automation (CAS), China

Zhongxiang Ding,

Zhejiang University, China

*Correspondence:

Tijiang Zhang

tijzhang@163.com

Rongping Wang

wangrongpin@126.com

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 07 February 2020

Accepted: 31 March 2020

Published: 29 May 2020

Citation:

Jiang Y, Li W, Huang C, Tian C,

Chen Q, Zeng X, Cao Y, Chen Y,

Yang Y, Liu H, Bo Y, Luo C, Li Y,

Zhang T and Wang R (2020) A

Computed Tomography-Based

Radiomics Nomogram to

Preoperatively Predict Tumor Necrosis

in Patients With Clear Cell Renal Cell

Carcinoma. Front. Oncol. 10:592.

doi: 10.3389/fonc.2020.00592

A Computed Tomography-Based
Radiomics Nomogram to
Preoperatively Predict Tumor
Necrosis in Patients With Clear Cell
Renal Cell Carcinoma
Yi Jiang 1,2, Wuchao Li 3,4, Chencui Huang 5, Chong Tian 3,4, Qi Chen 2, Xianchun Zeng 3,4,

Yin Cao 6, Yi Chen 6, Yintong Yang 6, Heng Liu 7, Yonghua Bo 8, Chenggong Luo 9, Yiming Li 5,

Tijiang Zhang 7* and Rongping Wang 1,3,4*

1Medical College, Guizhou University, Guiyang, China, 2Department of Medical Records and Statistics, Guizhou Provincial

People’s Hospital, Guiyang, China, 3Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, China,
4Guizhou Provincial Key Laboratory of Intelligent Medical Image Analysis and Precision Diagnosis, Guizhou Provincial

People’s Hospital, Guiyang, China, 5 Research Collaboration Department, R&D Center, Beijing Deepwise & League of PHD

Technology Co.LTD, Beijing, China, 6Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, China,
7Department of Radiology, Affiliated hospital of Zunyi Medical University, Zunyi, China, 8Department of Pathology, Affiliated

hospital of Zunyi Medical University, Zunyi, China, 9Department of Urinary Surgery, Guizhou Provincial People’s Hospital,

Guiyang, China

Objective: To develop and validate a radiomics nomogram for preoperative prediction

of tumor necrosis in patients with clear cell renal cell carcinoma (ccRCC).

Methods: In total, 132 patients with pathologically confirmed ccRCC in one hospital

were enrolled as a training cohort, while 123 ccRCC patients from second hospital

served as the independent validation cohort. Radiomic features were extracted from

corticomedullary and nephrographic phase contrast-enhanced computed tomography

(CT) images. A radiomics signature based on optimal features selected by consistency

analysis and the least absolute shrinkage and selection operator was developed. An

image features model was constructed based on independent image features according

to visual assessment. By integrating the radiomics signature and independent image

features, a radiomics nomograph was constructed. The predictive performance of

the above models was evaluated using receiver operating characteristic (ROC) curve

analysis. Furthermore, the nomogram was assessed using calibration curve and decision

curve analysis.

Results: Thirty-seven features were used to establish a radiomics signature, which

demonstrated better predictive performance than did the image features model

constructed using tumor size and intratumoral vessels in the training and validation

cohorts (p<0.05). The radiomics nomogram demonstrated satisfactory discrimination

in the training (area under the ROC curve [AUC] 0.93 [95% CI 0.87–0.96]) and validation

(AUC 0.87 [95% CI 0.79–0.93]) cohorts and good calibration (Hosmer-Lemeshow

p>0.05). Decision curve analysis verified that the radiomics nomogram had the best

clinical utility compared with the other models.
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Conclusion: The radiomics nomogram developed in the present study is a promising

tool to predict tumor necrosis and facilitate preoperative clinical decision-making for

patients with ccRCC.

Keywords: clear cell renal cell carcinoma, tumor necrosis, computed tomography, radiomics, prediction model

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant
neoplasm of the kidney in adults, of which clear cell RCC
(ccRCC) is the most prevalent subtype, accounting for
70–80% of neoplasms (1, 2). Tumor necrosis is defined as
coagulation necrosis of tumor cells observed by microscopy,
exhibiting characteristics of dead and degraded tumor cells
formed into homogeneous clusters and sheets (3, 4). However,
histopathological features, including hemorrhage, cystic
transformation, hyalinization, as well as foci of fibrosis, should
not necessarily be regarded as tumor necrosis (3). Numerous
studies have demonstrated that the presence of tumor necrosis is
a reflection of aggressive behavior and an independent predictor
of poor survival in patients with ccRCC (5, 6). Therefore,
The International Society of Urological Pathology (ISUP)
recommended that tumor necrotic pathological information
should be routinely included in pathological reports for ccRCC
(7). Furthermore, tumor necrosis can enhance the prognostic
performance of other prognostic variables including tumor size,
TNM stage, and nuclear grade in prognostic algorithms, the
most well-known of which is the Mayo Clinic Stage, Size, Grade
and Necrosis (SSIGN) score (8, 9). It is becoming increasingly
important to obtain accurate prognostic information and to
accurately assess tumor aggressiveness before treatment to
determine the optimal treatment strategy (4, 10). However,
information regarding tumor necrosis is available only after
surgical pathological evaluations. Although preoperative biopsy
provides important histological information, it has some
limitations, including insufficient accuracy, resulting in sampling
bias and the risk for significant complications (11). Therefore, a
non-invasive and accurate method to predict tumor necrosis in
patients with ccRCC before treatment is urgently needed.

Computed tomography (CT) is generally considered a
common non-invasive imaging modality for preoperative tumor
staging and assessing aggressiveness in patients with ccRCC
(12). However, the accuracy of visually assessing CT images
is extremely limited by the subjectivity and experience of the
radiologists (13). Recent studies have proposed that images are
more than pictures; they are, in fact, data (14). An emerging
field, known as radiomics, proposes a new concept for precision
medicine based on medical images, the methodology of which

Abbreviations: CC, Renal cell carcinoma; ccRCC, Clear cell renal cell carcinoma;

SSIGN, Stage, Size, Grade and Necrosis; CT, Computed tomography; GZPPH,

Guizhou Province People’s Hospital; AHZMU, Affiliated hospital of Zunyi Medical

University; WHO, World Health Organization; ISUP, International Urological

Pathology Association; ROI, Region of interest; LASSO, Least absolute shrinkage

and selection operator; ICC, Intraclass correlation coefficient; VIF, Variance

Inflation Factor.

is to extract large numbers of quantitative features from images
to describe tumor phenotypes using advanced mathematical
algorithms (15, 16). ccRCC is a highly heterogeneous tumor, with
which radiomic features demonstrate an excellent correlation
(17, 18). Subsequently, recent advances have shown that
radiomics holds great promise in evaluating and predicting
histopathological features and treatment response (19–21). To
date, however, the feasibility of CT-based radiomics models in
preoperatively predicting tumor necrosis in patients with ccRCC
has not been evaluated.

Therefore, the purpose of this study was to evaluate the
performance of radiomics signature and image features model
in preoperatively predicting tumor necrosis, and to establish
a radiomics nomogram integrating radiomics signature and
independent image features, which is expected to categorize
tumor necrosis accurately and effectively guide individualized
treatment in patients with ccRCC.

MATERIALS AND METHODS

Participant Selection
All patients were consecutively enrolled between August 2013
and December 2017 at Guizhou Province People’s Hospital
(GzPPH; Guiyang, China) or between February 2010 and
December 2017 at the Affiliated Hospital of Zunyi medical
University (AHZMU; Zunyi, China). Inclusion criteria were
as follows: postoperative pathological diagnosis of ccRCC;
not having undergone any treatment before operation; and
availability of complete contrast-enhanced CT imaging data
within 30 days before the operation. Individuals in whom
percutaneous renal mass biopsy was performed before CT
enhancement examination, those with Ct images with obvious
noise and artifacts, and those with incomplete imaging, clinical
or pathological data were excluded.

Demographic data, including age and sex, and pathological
information were retrieved from the electronic medical records
system. The corticomedullary, nephrographic phase contrast-
enhanced CT images from all patients were retrieved and
downloaded from the image archiving and communication
system and saved in dicom format for further analysis
The ct scans from the two centers involved in this study
were performed using two different CT scanners. Specific
details of the CT equipment and parameters are detailed in
Supplementary Materials.

Pathological Assessment
Tumor necrosis in ccRCC from different hospitals was reviewed
by two senior pathologists, Y.Y.T (from GZPPH, with 21 years’
experience in pathological diagnosis) and B.Y.H. (from AHZMU,
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with 14 years’ experience in pathological diagnosis), according
to the 2016 World Health Organization (WHO) system based
on the consensus conference of the ISUP. Although the two
physicians knew that all cases were ccRCC, they were blinded to
the diagnosis of tumor necrosis.

Subjective Image Features Analysis
CT images from all cases were reviewed by two attending
radiologists (Z.X.C. and L.H., GPPH and AHZMU, with 19
years and 11 years’ experience in abdominal imaging diagnosis,
respectively). They assessed the imaging features of the cases in
their respective hospitals. All physicians knew that the tumor
was diagnosed as ccRCC, but were blinded to the pathological
diagnosis of tumor necrosis.

The image features assessed in the present study were as
follows: tumor size, defined as the maximum diameter of
the tumor at the axial level; tumor boundary, divided into
clear boundary and blurred boundary according to the signs
of infiltration around the tumor in the nephrographic phase;
necrosis imaging, defined as the non-enhanced liquid area
of the tumor is >50% of the tumor; renal vein invasion,
defined as the imaging feature of tumor thrombus in renal vein
and inferior vena cava; collecting system invasion, defined as
deformation of the collection system or tumor invading the

renal pelvis and renal cone; intratumoral vessels, defined as
visible vascular enhancement in the corticomedullary phase;
positive lymph node metastasis, defined as the short-axis
diameter of lymph nodes >10mm in the renal hilum and
retroperitoneum; visual relative enhancement, divided into
hyperattenuating (more obvious than renal cortex enhancement),
isoattenuating (similar to renal cortical enhancement), and
hypoattenuating (weaker than renal cortical enhancement)
(7); and enhancement pattern, divided into homogeneous
enhancement (90%), relative homogeneous enhancement (75–
90%), and heterogeneity enhancement (<75%) according to
the homogeneous of tumor enhancement (7). A representative
example of the above imaging features is shown in Figure 1.

Image Features Model Building
Candidate indicators of image features models included the
following: age, sex, tumor size, imaging necrosis, renal vein
invasion, collective system invasion, intra-tumoral vessels,
positive lymph node metastasis, enhancement mode, and relative
visual enhancement. Univariate analysis was used to assess the
correlation between the above indicators and tumor necrosis in
the training cohort. Important risk indicators in the univariate
analysis (i.e., those with p < 0.05) were included in the
multivariate logistic regression analysis to identify independent

FIGURE 1 | Illustration of CT features of CCRCC in axial images: (A) tumor size (white line) and blurred tumor boundary; (B) necrosis imaging; (C) renal vein invasion;

(D) collecting system invasion; (E) intratumoral vessels; (F) positive lymph node metastasis; (G–I); visual relative enhancement: (G) hypoattenuating, (H) isoattenuating,

(I) hyperattenuating; (J–L) enhancement pattern: (J) homogeneous enhancement, (K) relative homogeneous enhancement, (L) heterogeneity enhancement.
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risk indicators. A predictive model of image features was
then constructed in the training cohort and confirmed in the
verification cohort.

Tumor Segmentation
This study used ITK-SNAP version 3.8 software (www.itksnap.
org) to perform three-dimensional manual segmentation of
the tumor region of interest (ROI). First, an attending
radiologist (T.C., GZPPH, 6 years’ experience in abdominal
diagnosis) identified tumor boundaries based on CT multi-
phase enhancement images. Then, the ROI was outlined
along the borders of the tumors on the corticomedullary and
nephrographic phases, while avoiding covering adjacent vessels,
perirenal fat, and the renal parenchyma. Finally, the senior
radiologist (Z.X.C) reviewed all ROI segmentation.

Radiomics Feature Extraction
This study used the Dr. Wise Multimodal Research Platform
(https://research.deepwise.com) (Beijing Deepwise & League of
PHD Technology Co., Ltd, Beijing, China) for feature extraction
in the training cohort. First, pre-processing was performed
using B-spline interpolation resampling techniques, resampling
all of the CT images such that they were 0.75 × 0.75 ×

0.75 mm3 voxels. Then, 1,218 features were extracted from
the ROI on corticomedullary, nephrographic phase contrast-
enhanced CT images. The extracted radiomics features were
divided into three categories: features based on tumor shape and
size; first-order gray-scale statistical features; and texture-based
features, including gray-scale co-occurrence matrix (GLCM),
gray-level size zone matrix (GLSZM), gray level run length
matrix (GLRLM) and gray level difference matrix (GLDM).
Moreover, the whole radiomic feature set also contained higher
order statistical features, including the intensity and texture

features derived from the images processed with 2 types of filters
(logarithm and wavelet transformation).

Radiomics Signature Construction
The corticomedullary and nephrographic features were
combined and analyzed because different contrast-enhanced
phases can characterize tumor different biological information.
High-dimensional data may contain highly redundant and
uncorrelated information, which may lead to over-fitting and
reduce the performance of the learning algorithm. Feature
dimension reduction and screening were then performed in
two steps.

In the first step, intra- and interobserver intraclass correlation
coefficient (ICC) were used to screen radiomics features with
better robustness in feature extraction. Thirty randomly selected
patients were used to test the ICC, 15 patients of them
from the training cohort and 15 patients from the validation
cohort. The radiological attending physician (T.C.) and the
senior physician (Z.X.C.) independently delineated the ROI
for the corticomedullary and nephrographic phases of the 30
patients. Two weeks later, the radiologist repeated the two
ROIs. The consistency of the extracted features was based on
ROI delineation between the intra-observer and interobserver.
Features with ICC > 0.75 were considered to be consistent and
retained for further analysis.

In the second step, the radiomic features were standardized
by the standard scaler package in tranning cohort. The mean
of features set was mapped to zero, and the standard deviation
mapped to one in the process of features standardization. Then,
the standardized model in the training cohort was applied
to the validation cohort. Then using least absolute shrinkage
and selection operator (LASSO) logistic regression, the best
feature data set with the smallest binomial deviation was selected
by 10 fold cross-validation, and the radiomics features with

FIGURE 2 | A flowchart of radiomics analysis in this study.
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significant coefficient non-zero and tumor necrosis was screened
out. Based on the LASSO weighting coefficients of the selected
features, radiomics features were linearly combined to construct
a radiomics score (Rad score) formula (i.e., radiomics signature).
Based on this formula, a risk score can be calculated for each
patient that reflects the predicted risk of imaging histology
labeling for the presence of tumor necrosis. In the training set,
the best cut-off value for the Rad score was statistically analyzed
using the Youden index, then the patients were divided into
high-risk groups (with tumor necrosis) or low-risk groups (non-
tumor necrosis). Finally, the verification of radiomics signature
was performed in the verification set.

Radiomics Nomogram Construction
To provide patients and clinicians with an individualized and
easy-to-use preoperative predictive tool for tumor necrosis,
this study constructed a radiomics nomogram. The radiomics
nomogram integrated the radiomics signature and independent
image features. Then, the multicollinearity analysis between
variables in the model based on variance inflation factor (VIF).
Finally, the nomogram was tested in the verification cohort.

Model Evaluation
ROC curves were plotted and area under the ROC curve
(AUC) was used to evaluate the predictive performance of
the radiomics signature, image feature model, and radiomics
nomogram for tumor necrosis in ccRCC in the training and
validation cohorts. The optimal cut-off values for the different
models were evaluated using the Youden index, and differences
in AUC values among the three models were compared using
the Delong test in both cohorts. Consistency of the predicted
risk for tumor necrosis using actual results of the radiomics
nomogram was demonstrated by a calibration curve. And the
calibration of the nomogram was evaluated through the Hosmer-
Lemeshow goodness-of-fit test with 8 groups. To assess the
clinical usefulness of the radiomics nomogram, decision curve
analysis was used to quantify the net benefit at different threshold
probabilities in the validation cohort. A flowchart of radiomics
analysis is shown in the Figure 2.

Statistical Analysis
Statistical analysis was performed using SPSS version 21.0
(IBM Corporation, Armonk, NY, USA), R (version 3.4.0;
http://www.r-project.org), or Python version 3.6.8 (https://www.
python.org). Continuous variables are expressed as mean ±

standard deviation and categorical variables are expressed as
number (percent [%]). In the univariate analysis, the continuous
variables were tested using t-test or Mann–WhitneyU-test, while
categorical variables were analyzed using the chi-squared test
or Fisher’s exact test; a two-sided p < 0.05 was considered to
be statistically significant. Intra- and interobserver consistency
of features extracted from the ROIs was assessed using
Kappa statistics. The scikit-learn (https://scikit-learn.org/) and
Matplotlib (https://matplotlib.org/) packages of Python were
used to perform LASSO regression model analysis, as well as
to plot ROC curves, Rad-score map, and calibration curves.
The multivariate binary logistic regression and nomogram

construction were performed in R using the rms (Regression
Modeling Strategies) package. The generalhoslem and rmda
packages of R were used to perform Hosmer-Lemeshow test and
plot decision curves, respectively.

RESULTS

Patient Characteristics
In this study, a total of 255 patients with ccRCC from two
hospitals was enrolled. The AHZMU included 132 ccRCC
patients (81 male, 51 female; median age, 56 years [range,
11–85 years) as the training cohort, including 51 cases of
tumor necrosis (38.6%). The GZPPH included 123 ccRCC
patients (76 male, 47 female; median age, 56 years [range 23–
80 years]) as the independent validation cohort, including 37
cases of tumor necrosis (30.0%). Demographic, pathological
characteristics, and subjective image features of all patients are
summarized in Table 1. Except for imaging necrosis (P < 0.001)
and intra-tumoral vessels (P < 0.035), there were no statistically
significant differences in other clinical and image information
(P = 0.060–0.870).

Image Features Model Construction
Univariate analysis of demographic and subjective image features
in both cohorts are summarized in Table 1. Univariate analysis
revealed that tumor size, tumor margin, intra-tumoral vessels,
invasive system infiltration, lymph node metastasis, and tumor
necrosis were closely related (P < 0.05) in the training cohort.
However, after multivariate analysis, only tumor size (OR 1.404
[95% CI 1.129–1.795]; P < 0.001) and intratumoral vessels
(OR 8.044 [95% CI 2.407–36.971]; P = 0.002) remained as
independent predictors. Therefore, the image features model was
constructed by integrating tumor size and intratumoral vessels,
which yielded an AUC of 0.82 (95% CI 0.75–0.89) in the training
cohort and 0.72 (95% CI 0.62–0.82) in the validation cohort.

Radiomics Signature Construction
A total of 2,436 radiomics features were extracted from the
corticomedullary and nephrographic phase contrast-enhanced
CT images, and used for feature selection simultaneously. After
removing redundant features by consistency analysis, 1,194
radiomics features remained for the corticomedullary phase and
1,189 for the nephrographic phase (ICC > 0.75). Subsequently,
37 robust radiological features with non-zero coefficients (26
corticomedullary and 11 nephrographic features) were screened
using the LASSO logistic regression model. Finally, a Rad score
formula was constructed based on the above features and their
corresponding weighting coefficients (i.e., radiomics signature),
as shown in Section S2. A Rad score could be calculated for each
patient in the training and validation cohorts using this formula,
with no significant difference in Rad score between the two
cohorts (P = 0.648), while with significant differences between
the tumor necrosis group and non-tumor necrosis group in both
cohorts, as shown in Table 2. The optimal cut-off value, based
on the Youden Index Rad score, was 0.313. Radiomics signatures
demonstrated AUCs of 0.91 (95% CI 0.87–0.96) and 0.86 (95% CI
0.79–0.93) in the training and validation cohorts, respectively.
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TABLE 1 | Characteristics of CCRCC Patients in the Training and Validation Cohorts.

Characteristics Training cohort (n = 132) Validation cohort (n = 123) P-value

Tumor necrosis

(n = 51)

Non-tumor necrosis

(n = 81)

P-value Tumor necrosis

(n = 37)

Non-tumor necrosis

(n = 86)

P-value

Age, mean SD 56.02 ± 15.78 56.99 ± 11.60 0.861 56.30 ± 11.78 55.91 ± 13.27 0.877 0.632

Gender (%) 0.067 0.69 1

Male 26 (50.98%) 55 (67.90%) 24 (64.86%) 52 (60.47%)

Female 25 (49.02%) 26 (32.10%) 13 (35.14%) 34 (39.53%)

Tumor size, mean SD 6.39 ± 1.82 4.34 ± 2.02 <0.001* 6.30 ± 2.23 4.66 ± 2.10 <0.001* 0.924

Tumor boundary (%) 0.046* 0.002* 0.408

Circumscribed 39 (76.47%) 73 (90.12%) 23 (62.16%) 76 (88.37%)

Infiltrative 12 (23.53%) 8 (9.88%) 14 (37.84%) 10 (11.63%)

Necrosis imaging (%) 1 0.425 <0.001*

Absent 20 (39.22%) 33 (40.74%) 4 (10.81%) 15 (17.44%)

Present 31 (60.78%) 48 (59.26%) 33 (89.19%) 71 (82.56%)

Renal vein invasion (%) 0.285 0.007* 0.554

Absent 42 (82.35%) 73 (90.12%) 29 (78.38%) 82 (95.35%)

Present 9 (17.65%) 8 (9.88%) 8 (21.62%) 4 (4.65%)

Collecting system invasion (%) 0.001* <0.001* 1

Absent 32 (62.75%) 71 (87.65%) 21 (56.76%) 75 (87.21%)

Present 19 (37.25%) 10 (12.35%) 16 (43.24%) 11 (12.79%)

Intratumoral vessels (%) <0.001* 0.091 0.035*

Absent 3 (5.88%) 41 (50.62%) 4 (10.81%) 22 (25.58%)

Present 48 (94.12%) 40 (49.38%) 33 (89.19%) 64 (74.42%)

lymphatic metastasis (%) 0.045* 0.009* 0.153

Absent 44 (86.27%) 78 (96.30%) 27 (72.97%) 79 (91.86%)

Present 7 (13.73%) 3 (3.70%) 10 (27.03%) 7 (8.14%)

Visual relative enhancement (%) 0.509 0.835 0.171

Hyperattenuating 6 (11.76%) 8 (9.88%) 7 (18.92%) 15 (17.44%)

Isoattenuating 31 (60.78%) 57 (70.37%) 22 (59.46%) 48 (55.81%)

Hypoattenuating 14 (27.45%) 16 (19.75%) 8 (21.62%) 23 (26.74%)

Enhancement pattern (%) 0.434 0.063 0.406

Homogeneous enhancement 14 (27.45%) 31 (38.27%) 7 (18.92%) 31 (36.05%)

Relatively homogeneous enhancement 17 (33.33%) 24 (29.63%) 14 (37.84%) 34 (39.53%)

Heterogeneous enhancement 20 (39.22%) 26 (32.10%) 16 (43.24%) 21 (24.42%)

WHO/ISUP grading (%) 0.035* <0.001* 0.667

I 4 (7.84%) 19 (23.46%) 0 (0.00%) 16 (18.60%)

II 29 (56.86%) 48 (59.26%) 15 (40.54%) 64 (74.42%)

III 15 (29.41%) 12 (14.81%) 17 (45.95%) 5 (5.81%)

IV 3 (5.88%) 2 (2.47%) 5 (13.51%) 1 (1.16%)

T stage (%) <0.001* <0.001* 0.709

T1 28 (54.90%) 71 (87.65%) 16 (43.24%) 72 (83.72%)

T2 19 (37.25%) 5 (6.17%) 14 (37.84%) 10 (11.63%)

T3 4 (7.84%) 5 (6.17%) 6 (16.22%) 4 (4.65%)

T4 0 (0.00%) 0 (0.00%) 1 (2.70%) 0 (0.00%)

N stage (%) 1 0.34 0.093

N0 4 (7.84%) 6 (7.41%) 4 (10.81%) 13 (15.12%)

N1 2 (3.92%) 3 (3.70%) 1 (2.70%) 0 (0.00%)

Nx 45 (88.24%) 72 (88.89%) 32 (86.49%) 73 (84.88%)

M stage (%) 0.335 0.009* 0.321

M0 45 (88.24%) 76 (93.83%) 32 (86.49%) 85 (98.84%)

M1 6 (11.76%) 5 (6.17%) 5 (13.51%) 1 (1.16%)

(Continued)
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TABLE 1 | Continued

Characteristics Training cohort (n = 132) Validation cohort (n = 123) P-value

Tumor necrosis

(n = 51)

Non-tumor necrosis

(n = 81)

P-value Tumor necrosis

(n = 37)

Non-tumor necrosis

(n = 86)

P-value

TNM stage (%) <0.001* <0.001* 0.813

I 24 (47.06%) 66 (81.48%) 16 (43.24%) 72 (83.72%)

II 17 (33.33%) 5 (6.17%) 12 (32.43%) 9 (10.47%)

III 4 (7.84%) 6 (7.41%) 4 (10.81%) 4 (4.65%)

IV 6 (11.76%) 4 (4.94%) 5 (13.51%) 1 (1.16%)

*P < 0.05 means statistical significance.

Data are in n (%) unless otherwise indicated.

Categorical variables are compared using chi-square tests or Fisher exact tests, while continuous variables are compared using t-test or Mann–Whitney U-test, as appropriate.

TABLE 2 | Rad-score in the Training and Validation Cohorts.

Training cohort (n = 132) P-value Validation cohort (n=123) P-value P-value

Tumor necrosis (n = 51) Non-tumor necrosis (n = 81) Tumor necrosis (n = 37) Non-tumor necrosis (n = 86)

Rad-score 0.577 (0.187 to 1.193) 0.224 (-0.006 to 0.732) <0.001 0.533 (0.057 to 1.100) 0.201 (-0.054 to 0.717) <0.001 0.6478

Radiomics Nomogram Construction
By integrating radiomics signature (OR 4.472 [95% CI 0.289–
8.654]; P = 0.048), tumor size (OR 0.550 [95% CI−1.981–3.080];
P = 0.019), and intra-tumoral vessels (OR 4.472 [95% CI 0.289–
8.654]; P = 0.048), a radiomics nomogram was built in the
training cohort, as shown in Figure 3A. The VIF of radiomics
signature, tumor size, and intra-tumoral vessels are 2.177,
2.202, and 1.458 in radiomic nomogram respectively, which
demonstrated there was a multicollinearity between radiomic
signature and tumor size, but not serious. In the nomogram, the
radiomics signature demonstrated the highest weight, indicating
it was the most important predictive factor for tumor necrosis.
The radiomics nomograph demonstrated satisfactory predictive
performance, with AUCs of 0.93 (95% CI 0.89–0.97) and 0.87
(95% CI 0.81–0.94) in the training and validation cohorts,
respectively. The calibration curve revealed that the radiomics
nomogram demonstrated good agreement between the predicted
probability and the expected probability, and the Hosmer–
Lemeshow test demonstrated good similarity in the training (p=
0.695) and validation (p= 0.131) cohorts, as shown in Figure 3B.

Model Evaluation
The ROC curves of the three models for prediction of tumor
necrosis are shown in Figure 4, while predictive performance
(AUC, sensitivity, specificity, and accuracy) is summarized in
Table 3. The predictive performance of the radiomics signature
was superior to the image features in both cohorts. After
combining radiomics signature with tumor size and intra-
tumoral vessels to construct the radiomics nomogram, the
predictive performance of the clinical model was significantly
improved in the training cohort (from 0.82 to 0.93; P < 0.001).
This significant improvement was also verified in the validation
cohort (from 0.72 to 0.87; P = 0.001), indicating that the
radiomics signature had a gain value for the prediction of the

image features model. The AUC of the radiomics nomogram was
also slightly higher than the radiomics signature, although the
difference was not statistically significant (P = 0.222 [training
cohort], p= 0.425 [validation cohort]).

The clinical decision curve is presented in Figure 3C, which
shows that when the threshold probability was >5%, the
radiomics signature was higher or similar to the radiomics
nomogram in the partial threshold probability. However, within
most of the above threshold probabilities, the radiomics
nomogram demonstrated a larger net benefit than did the
radiomics signature, indicating that the nomogram had the
best clinical utility for prediction of tumor necrosis in patients
with ccRCC.

DISCUSSION

To our knowledge, this was the first study to develop and validate
a CT-based radiomics signature to preoperatively predict tumor
necrosis in patients with ccRCC from two different centers.
The results demonstrated that the predictive performance of
the radiomics signature was significantly superior to the image
features model. In addition, by integrating the radiomics
signature and significant imaging features, an easy-to-use
radiomics nomogram was established to facilitate individualized
preoperative prediction with the best performance, which is
expected to provide valuable information to support clinical
decision making.

An image features model based on tumor size and
intratumoral vessels was developed first, which demonstrated
good predictive performance for tumor necrosis in ccRCC in
both cohorts. Tumor size in the model, as a primary predictor,
suggested that larger tumors are more prone to tumor necrosis,
which is consistent with previous studies in which tumor size
was reported to be a significant independent factor for invasive
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FIGURE 3 | The radiomics nomogram, calibration curves of the radiomics nomogram and decision curve analysis. The radiomics nomogram was established based

on radiomics signature, tumor size, intratumoral vessels in the training cohort (A). Calibration curves of the radiomics nomogram in the training and validation cohorts

(B). The y-axis expresses the actual tumor necrosis rate, the x-axis expresses the predicted possibility and the 45◦gray dotted line expresses the ideal prediction.

Calibration curves demonstrated the goodness-of-fit of the radiomics nomogram. Decision curve analysis for three model. Decision curve analysis DCA) for each

model in the validation dataset (C). The DCA demonstrated that if the threshold probability was >5%, the application of radiomics nomogram to predict tumor

necrosis adds more benefit than treating all or none of the patients, radiomics signatrue and image features model.

FIGURE 4 | Comparison of ROC curves between radiomics nomogram, image features model and radiomics nomogram for prediction of tumor necrosis in the

training cohort (A) and validation cohort (B). The three colors of the curves represent different models: red, radiomics signature; blue, image features model; green,

radiomics nomogram.

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 592

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Radiomics Preoperatively Predict Tumor Necrosis

TABLE 3 | Predictive performance of the image features model, the radiomics signature, and the radiomics nomogram.

Model Training cohort (n = 132) Validation cohort (n = 123)

AUC (95% CI) Sensitivity Specificity Precision AUC (95% CI) Sensitivity Specificity Precision

Image features model 0.82 (0.75–0.89) 86.42% 84.31% 85.61% 0.72 (0.62–0.82) 59.30% 78.38% 65.04%

Radiomics Signature 0.91 (0.87–0.96) 75.31% 82.35% 78.03% 0.86 (0.79–0.93) 82.56% 70.27% 78.86%

radiomics nomogram 0.93 (0.89–0.97) 76.54% 96.08% 84.09% 0.87 (0.81–0.94) 72.26% 83.78% 76.42%

biological behavior of ccRCC (5). In addition, the results show
that the imaging findings of intratumoral vessels are more
common in ccRCC with tumor necrosis, which may be related
to the mechanism of tumor necrosis; more specifically, excessive
blood supply, immature blood vessels, and hypoxia associated
with vascular remodeling in the tumor (7, 22, 23). Therefore,
intratumoral vessels can be used to indicate the presence of tumor
necrosis in patients with ccRCC.

Tumor necrosis is a major cause of image heterogeneity
in patients with ccRCC. It is challenging to visually assess
this heterogeneity because there are significant differences in
the size, morphology, and degree of enhancement of tumor
necrotic areas in CT images (24). However, the emergence
of radiomics provides a new approach to solve this problem,
which hypothesizes that medical images contain numerous
and important phenotypic information invisible to the naked
eye, and the relationship between imaging data and tumor
characteristics can be uncovered through deep mining and
quantitative analysis of imaging data (14). As reported by
Aerts et al., intratumor heterogeneity can be described by
radiomics (25). This hypothesis was also proven by the results
of this study, in which the radiomics signature outperformed
the image features model in predicting tumor necrosis in
ccRCC. Consistent with previous studies, the radiomics signature
consists mainly of three-dimensional texture features, and its
prediction performance was significantly better than that of
morphological features and first-order features (26, 27). The
reason is that the three-dimensional texture features can provide
gross characterization of tumor heterogeneity through analysis
of the distribution and relationship with gray levels of pixels
or voxels in CT images (28). In addition, radiomics features
are better than image features with regard to repeatability and
robustness by automating high-throughput feature extraction
algorithms, thus avoiding intra- and interobserver disagreement.
Both the training and validation cohorts demonstrated good
predictive consistency, indicating that radiomics signatures
have better generalization ability between different centers. In
summary, objective and quantitative radiomics analysis offers
a new approach to the assessment of tumor invasiveness
in ccRCC.

To explore clinical use, further incorporating the radiomics
signature, tumor size and intratumoral vessels, a radiomics
nomograph was established to preoperatively evaluate the
tumor necrosis risk for each ccRCC patient, which achieved
significantly and slightly improved performance compared with
imaging features and radiomics models alone. Unexpectedly,

the tumor size were negatively correlated with tumor necrosis
in the radiomic nomogram, which opposited of that in image
feature model. Radiomic signature contains a radiomic feature
representing the maximum diameter of the tumor on the coronal
plane, that is, the Maximum_2D_Diameter_Row. Based on
the VIF, there was some multicollinearity between radiomic
signature and tumor size, but not serious. Therefore, we think
that the tumor size may be weakened in the risk forecast weight
and shows an opposite prediction trend for tumor necrosis,
but it still play an important role in the model optimization.
Moreover, decision curve analysis demonstrated that more net
benefits within the most of thresholds probabilities could be
achieved using the radiomics nomograph, meaning that using the
nomogram for therapy strategy would achieve a better clinical
outcome. Therefore, a radiomics nomograph can be regarded as
a promising assistive tool to guide clinical management in ccRCC
patients for radiologists and oncologists.

Biopsy is the primary method for preoperative diagnosis of
tumor necrosis in patients with ccRCC; however, it is limited by
its invasiveness and potential for complications. In addition, the
accuracy of diagnosing tumor necrosis through biopsy is poor
due to tumor heterogeneity and sampling error (11). In contrast,
a radiomics nomogram demonstrates better performance in
the preoperative discrimination of tumor necrosis, given
the advantage in characterization of spatial heterogeneity
of the entire tumor. In addition, a radiomics nomogram
with quantitative analysis and non-invasive examination can
be used as a simple, well-accepted method for longitudinal
assessment of tumor progression. Therefore, although radiomics
is currently not an alternative to biopsy for the assessment
of tumor necrosis, it can provide an important reference or
Supplementary Materials.

There were several notable limitations to our study. Although
this study used an independent patient population as a
validation cohort, the radiomics nomogram should be further
validated in a prospective study with a larger dataset. Due
to the two-center nature of the study, differences in the
diagnosis of tumor necrosis and the CT scan protocols
were unavoidable, which may have led to inherent bias.
Different proportions of necrosis have different prognostic
value (29); however, this study only explored the performance
of radiomics signature in discrimination of tumor necrosis.
ROI segmentation is an important preprocessing step in
radiomics analysis; as such, automated or semi-automated
segmentation is expected to improve the robustness of the
radiomics model.
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In conclusion, this study proposed a radiomics nomogram
for preoperative assessment of tumor necrosis in patients with
ccRCC, which demonstrated satisfactory performance. As a non-
invasive, efficient, quantitative approach, a radiomics signature
can add incremental value to imaging features for assessment of
tumor invasiveness and facilitate preoperative clinical decision
making and/or management of patients with ccRCC.
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