
REVIEW ARTICLE

Host and viral mechanisms of congenital Zika syndrome
Brooke Liang a*, José Paulo Guidab*, Maria Laura Costab, and Indira U. Mysorekara,c,d

aDepartment of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA; bDepartment of Obstetrics and
Gynecology, School of Medical Sciences, University of Campinas, Campinas, Brazil; cDepartment of Pathology and Immunology, Washington
University School of Medicine, St. Louis, MO, USA; dCenter for Reproductive Health Sciences, Washington University School of Medicine,
St. Louis, MO, USA

ABSTRACT
In 2015–2016, in the Americas, and especially in northeast Brazil, a significant number of cases of
microcephaly and other congenital brain abnormalities were linked with an outbreak of Zika virus (ZIKV)
infection in pregnant women. While maternal symptoms of ZIKV are generally mild and self-limiting,
clinical presentation in fetuses and newborns infected is extensive and includes microcephaly,
decreased cortical development, atrophy and hypoplasia of the cerebellum and cerebellar vermis,
arthrogryposis, and polyhydramnios. The term congenital ZIKV syndrome (CZS) was introduced to
describe the range of findings associated with maternal-fetal ZIKV transmission. ZIKV is primarily
transmitted by Aedes aegypti mosquitoes, however non-vector-dependent routes are also possible.
Mechanisms of maternal-fetal transmission remain unknown, and the trans-placental route has been
extensively studied in animal models and in human samples. The aim of this review was to summarize
recent studies that helped to elucidate the mechanism of CZS in animal models and observational
studies. There are still challenges in the diagnosis and prevention of CZS in humans, due to the large gap
that remains in translating ZIKV research to clinical practice. Translational research linking governments,
local health workers, scientists and industry is fundamental to improve care for mothers and children.
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Introduction

Zika virus (ZIKV) transitioned from a generally unknown
entity to one of the most studied viruses worldwide over
a one-and-a-half-year period. In 2015–2016, the virus was
responsible for an outbreak in the Americas and especially
in Brazil. During this outbreak, ZIKV infections in preg-
nant women were linked for the first time to severe fetal
malformations, with an impressive number of cases of
microcephaly and other congenital brain abnormalities.
In 2015–2016, Brazil reported more than 200,000 probable
ZIKV cases and nearly 2,000 cases of microcephaly [1–6].
Due to rapid spread and high numbers of suspected cases,
ZIKV infection was declared a Public Health Emergency of
International Concern on 1 February 2016 [7]. Soon after,
inMarch 2016, theWorld Health Organization announced
there was scientific consensus causally linking congenital
brain abnormalities to ZIKV infection [8,9].

ZIKV is a flavivirus similar to Dengue, West Nile,
yellow fever, and Japanese encephalitis viruses. It is an
arbovirus transmitted primarily by Aedes aegyptimosqui-
toes and was first identified in humans in Uganda around
1952. Between 1952 and 2015 there were two major

outbreaks. The first was in Yap, Micronesia in 2007 and
the second was in French Polynesia in 2013 [10,11]. ZIKV
can also be transmitted to humans through non-vector-
dependent routes, including sexual transmission, blood
transfusion, or maternal-fetal transmission [12].

ZIKV is a member of the TORCH family, which
includes Toxoplasma gondii, rubella virus, cytomegalo-
virus, and herpes simplex virus. This family of pathogens
possesses the relatively unusual ability to transmit from
a mother to her developing fetus or newborn [13].
Precise mechanisms of maternal-fetal transmission dur-
ing pregnancy remain largely unknown. Hypothesized
routes of trans-placental ZIKV transmission include
direct infection of the SYN layer, infection of extravillous
trophoblasts (EVTs) (cells that anchor the placenta to
the uterine wall), infection of the decidua and/or mater-
nal microvasculature, and infection of feto-placental
macrophages (Hofbauer cells) [14–17].

The term congenital ZIKV syndrome (CZS) has been
adopted recently to describe the range of findings asso-
ciated with maternal-fetal ZIKV transmission [18]. While
pregnant women infected with ZIKV often reported no
symptoms or only self-limiting flu-like symptoms, a broad
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spectrum of clinical presentations has been reported in
fetuses and newborns of women infected with ZIKV dur-
ing pregnancy. Although microcephaly has been the hall-
mark finding in these fetuses and newborns, not all
affected fetuses demonstrated microcephaly. Other clin-
ical signs of CZS include decreased cortical development
and atrophy and hypoplasia of the cerebellum and cere-
bellar vermis. Arthrogryposis and polyhydramnios, likely
due to swallowing impairment because of brain injury, are
also common findings [19,20].

The rapid spread of the ZIKV epidemic and the
devastating congenital defects it produced spurred gov-
ernments, the healthcare industry, academia, physi-
cians, and patient advocates internationally. Vast
amounts of knowledge have been obtained on the
viral genome, structure, pathogenesis and mechanisms
of maternal-fetal transmission of ZIKV. Studies con-
tinue to address clinical features, fetal complications,
long-term consequences of the infection in humans, as
well as routes of infection and pathophysiology of the
disease in animal models [21,22]. Specific interactions
between host and environmental factors, differences
among strains, the role of co-infections, differences in
placental infection according to gestational age of infec-
tion, and long-term effects in exposed fetuses born
apparently normal remain largely unknown. Of note,
there still exists no treatment or vaccine for ZIKV
infection or CZS that has been approved for use in
patients. This is despite extensive work in the develop-
ment of vaccines and neutralizing antibodies, which has
been covered in excellent recent reviews [18,23–26].

In this review, we focus on a number of recent
studies that have helped elucidate the mechanism of
CZS using animal models and observational studies in
humans, and we reflect on lessons learned from the
epidemic now that it has waned.

Placental host defenses and ZIKV

The placenta is the primary organ responsible for nurtur-
ing the fetus during development. In human placentas,
fetal-derived anchoring and chorionic villi form connec-
tions to maternal structures. Anchoring villi possess spe-
cialized cells, extravillous trophoblasts (EVTs), at their
distal ends. These extravillous trophoblasts specifically
invade the maternal decidua basalis and maternal vascu-
lature. Chorionic villi are branching tree-like structures
that are bathed inmaternal blood of the intervillous space.
At the core of these chorionic villi are blood vessels that
connect to fetal circulation. The surface chorionic villi is
composed of an inner layer of cytotrophoblast (CTB) cells
and an outer layer of syncytiotrophoblast (STB) cells, and
it mediates exchange of materials between maternal and

fetal circulations [27,28]. Other cell types present in the
placenta include stromal cells and immune cells.

Themouse placenta can be divided into three layers. The
outermost layer is the maternal compartment which
includes the decidua basalis. The middle layer, referred to
as the junctional zone, facilitates placental attachment to the
uterus. It contains spongiotrophoblasts, a type of cytotro-
phoblast, and trophoblast giant cells, which invade the
decidua basalis. The inner layer, the labyrinth zone, is the
site of nutrient and gas exchange between maternal and
fetal compartments. Here, fetal capillaries, lined by fetal
endothelial cells, are separated from maternal sinusoids by
a layer of mononuclear trophoblasts and a bilayer of multi-
nucleated syncytiotrophoblasts [29,30]. Although mouse
and human placentas differ in many aspects, both consti-
tute effective barriers against pathogenic insults to the
developing fetus.

To understand how ZIKV overcomes placental host
defenses, mouse models were developed. Initially, efforts
to study ZIKV vertical transmission in amousemodel were
hindered by ZIKV’s inability to infect wild-type mice [31].
This challenge was overcome after it was discovered that
mice lacking an intact interferon signaling response were
susceptible to ZIKV infection as evidenced by weight loss,
decreased survival, and neurologic disease [31]. The inter-
feron signaling pathway, a major component of antiviral
host defense, proved to be critical to the difference between
mouse and human susceptibilities to ZIKV as the NS5
protein of ZIKV binds to and facilitates degradation of
human STAT2, which participates in signal transduction
downstream of the interferon α/β receptor, but not mouse
STAT2 [32,33].

Initial studies in mice exploring ZIKV vertical transmis-
sion utilized mice lacking the interferon α/β receptor
(Ifnar1−/- mice) or WT mice treated with a monoclonal
antibody against the interferon α/β receptor. A trans-
placental route of infection was strongly suggested in this
model by staining of placental tissues which revealed ZIKV
particles in placental trophoblasts and adjacent fetal
endothelial cells. Moreover, apoptosis of trophoblasts, dis-
ruption of fetal capillaries, and increased nucleated fetal
erythrocytes were visualized, suggesting impairment of
basic placental functions with ZIKV infection [34].
Studies utilized Ifnar1−/- females crossed to Ifnar1± males
and noted that ZIKV titers were higher in placentas of
Ifnar1−/- offspring, whereas Ifnar1± fetuses were resorbed
due to abnormal placental labyrinth development in the
presence of type I interferon [35,36]. Thus, interferon α/β
signaling in the placenta is an important component of host
defense against ZIKV infection.

Type III interferon, namely Interferon-λ has also been
implicated in ZIKV infection of the placenta and the female
reproductive tract [37–40]. In one model, mice lacking the
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interferon-λ receptor demonstrated maintained suscept-
ibility to ZIKV-mediated disease later in gestation, unlike
previous interferon-deficient models which showed
decreased fetal and placental disease with increased gesta-
tional age at infection [39]. These studies show that mice
lacking any component of the interferon signaling pathway
are susceptible to vertical transmission of ZIKVand adverse
fetal outcomes.

Mouse models have also been used to study sexual
transmission of ZIKV. WT female mice vaginally inocu-
lated with ZIKV were shown to have persistence of local
ZIKV proliferation, and this effect was exaggerated in
mice lacking the interferon α/β receptor or IRF3 and
IRF7 (transcription factors involved in the innate immune
response upstream of interferon) [41]. Furthermore, vagi-
nal inoculation of ZIKV early during pregnancy (at
embryonic day 4.5) was associated with intrauterine
growth restriction and fetal resorptions in WT females
crossed with WT males, Ifnar1−/- females crossed with
WT males, and IRF3−/-IRF7−/- females crossed with
IRF3−/-IRF7−/- males. ZIKV titers were detected in fetuses
and placentas of Ifnar1−/- females crossed with WT males
and IRF3−/-IRF7−/- females crossed with IRF3−/-IRF7−/-

males. While ZIKV titers were not detected in fetuses of
WT females, electron microscopy showed evidence of
ZIKV infection in fetal brains from infected WT females
[41]. Further studies demonstrated that ZIKV-infected
Ifnar1−/- male mice were capable of transmitting ZIKV
to naïve Ifnar1−/- female mice, as evidenced by growth
restriction of their fetuses, ZIKV particles observed on
electron microscopy of fetal brains, and anti-ZIKV anti-
bodies found in the sera of females treated with medrox-
yprogesterone acetate [42]. Together, these studies
demonstrate sexual transmission of ZIKV in mouse mod-
els and its potential to couple with vertical transmission
and cause fetal disease.

Recently, mouse models have been developed to tackle
the problem of studying ZIKV only in artificially immuno-
compromised states. One model employed direct intrau-
terine inoculation of ZIKV in an immunocompetent
mouse. This model recapitulated fetal neural disease asso-
ciated with ZIKV, worse outcomes associated with infec-
tion at earlier gestational age, and the presence of ZIKV in
trophoblasts and fetal endothelial cells, and further demon-
strated activation of the type I interferon signaling pathway
with ZIKV infection [43]. Another model administered
a large ZIKV viral load to WT mice and recapitulated
adverse fetal outcomes [44]. A knock-in model sought to
replicate human vulnerability to ZIKV in mice by introdu-
cing humanized STAT2 to the mouse STAT2 locus. This
humanized model demonstrated maternal infection, pla-
cental infection, and vertical transmission unlike wild-type
mice [45].

Additional models were used to investigate ZIKV
viral entry into cells of the maternal-fetal interface.
The TAM family of receptors (Tyro3, Axl, and Mertk)
are known sites of entry exploited by flaviviruses.
However, mice lacking TAM receptors did not show
a decrease in ZIKV maternal infection or adverse fetal
effects [39]. TIM1 is another receptor or factor facil-
itating viral entry that is ubiquitously expressed in
placental tissues. In one study, duramycin, a TIM1
inhibitor, demonstrated greater ZIKV inhibition than
an Axl inhibitor, suggesting a role for TIM1 in ZIKV
vertical transmission [14]. Mechanisms underlying
ZIKV viral entry in vivo into the placenta remains an
open avenue of investigation. .

Innate immune mechanisms in the context of con-
genital ZIKV infection have been investigated.
Inhibition of toll-like receptors (TLRs) 3 and 8 were
recently shown to inhibit the cytokine output of ZIKV-
infected trophoblasts [46]. Inflammatory cytokines
resulting from placental infection have been associated
with congenital diseases in the past, and Luo et al.
argue that it is the maternal inflammation produced
in response to ZIKV infection rather than ZIKV trop-
ism for trophoblasts that is responsible for CZS, as the
other flaviviruses dengue and yellow fever showed simi-
lar tropism without causing congenital disease [46].
Further studies such as Novak et al. [47] are required
to establish the independent effect of inflammatory
cytokines and chemokines on fetal development.

The autophagy pathway functions to catabolize intracel-
lular units to produce energy and structural components.
Autophagy is recognized to be a key player in host defense
through xenophagy, the lysosomal degradation of intracel-
lular pathogens. Autophagy has also been shown to be
important in placental defense against pathogens [48,49].
However, flaviviruses are known to co-opt the autophagy
pathway to enhance their intracellular replication andmiti-
gate viral-mediated stress [50]. Indeed, a wide variety of
flaviviruses, such as hepatitis C virus, dengue virus,
Japanese encephalitis virus, West Nile virus appear to sub-
vert autophagy to promote their survival. In the context of
CZS, Cao et al. demonstrated that ZIKV increases autop-
hagic flux in infected mouse placentas. Conversely, inhibi-
tion of autophagy through a knockout model of a key
autophagy gene, atg16l1, important for autophagosome
formation inhibited placental ZIKV infection and vertical
transmission in a mouse model [48,51]. Furthermore, Cao
et al., demonstrated that atg16l1 deficiency exclusively in
the placenta was sufficient to limit ZIKV infection and
vertical transmission. Loss of ZIKV-induced autophagy in
the placenta rescued intrauterine growth restriction and
limited viral load in fetal brain. Thus, the autophagy path-
way activity has physiological significance for determining
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the outcomes of congenital ZIKV syndrome [52–55].
Further work is needed to elucidate how ZIKV co-opt
autophagy.

Viral mechanisms contributing to CZS

Microcephaly was the first fetal abnormality linked with
congenital infection by ZIKV. Subsequently severe cer-
ebral atrophy, ventriculomegaly, and intracranial calci-
fication were also identified, expanding the spectrum of
fetal malformations associated with ZIKV infection.

Animal models showed that ZIKV infection during
pregnancy results in reduced fetal cerebral cortical sur-
face area. It was hypothesized that neural progenitor
cells are specifically targeted by the virus. Following
infection, ZIKV has an inhibitory effect on the prolif-
eration of these cells and this initiates the sequence of
malformations associated with CZS [56].

Another study involving animal models used ZIKV
isolated from a febrile case from Brazil to demonstrate
a reduced number of cells and thickness of cortical
layers. This study also used an in vitro model based
on neurospheres and cerebral organoids and showed
that these structures, when infected with a Brazilian
strain of ZIKV, are smaller than uninfected controls
and controls infected with an African strain of ZIKV
[57]. Neurospheres and cerebral organoids are struc-
tures made of neural stem cells that simulate tissue
responses to various experimental conditions [58,59].
In line with the Brazilian study, other studies [60,61]
showed similar findings using neurospheres and ZIKV
infection, further suggesting that the observed cortical
thinning is due to ZIKV effects on neural progenitor
cells. Of note, the destruction of these cells contributes
significantly to the clinical phenotype of CZS.

Over the past two years, many studies have investigated
ZIKV structure and function to better understand how the
virus overcomes placental defenses. ZIKV, like other flavi-
viruses, possesses an approximately 11-kb single-stranded,
positive-sense RNA genome. Translation of this genome
produces a single viral polypeptide, which is cleaved by viral
and host proteases into functional proteins. The ZIKV
genome encodes three structural proteins (capsid, pre-
membrane, and envelope), and seven nonstructural pro-
teins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5)
[62,63]. A number of these proteins have been targeted
for developing or repurposing drugs against ZIKV.

Drug repurposing is an attractive strategy in the face
of an epidemic, as an existing drug can be quickly put
into practice whereas development of a new drug or
vaccine may not be completed before the epidemic
reaches the end of its natural course. Several studies
screened large libraries of existing drugs for candidates

to test against ZIKV. For example, Xu et al. identified
a caspase inhibitor, emricasan, and several inhibitors of
cyclin-dependent kinases that demonstrated neuropro-
tection during ZIKV infection [64]. Barrows et al. iden-
tified known anti-flaviviral drugs (e.g. bortezomib and
mycophenolate) and drugs without known antiviral
properties (e.g. daptomycin) as having anti-ZIKV activ-
ity in a number of human cell types, including placenta
and neural stem cell [65]. Rausch et al. identified nan-
changmycin as a ZIKV entry inhibitor across cell types
[66]. Bullard-Feibelman et al. focused their assays on
sofosbuvir, an RNA-dependent RNA polymerase inhibi-
tor used to treat chronic hepatitis C, a flavivirus distantly
related to ZIKV. Sofosbuvir protected cells in culture
from multiple strains of ZIKV, it protected human-
derived neural stem cells from ZIKV, and it reduced
mortality rate in interferon-deficient mice inoculated
with a mouse-adapted ZIKV strain [67]. Chan et al.
identified bromocriptine, a dopamine agonist, as an
effective inhibitor of ZIKV in vitro, through binding
and inhibition of the ZIKV NS2B-NS3 protease [68].

Other groups focused their studies on drugs with
existing approved uses during pregnancy. Viral and host
mechanisms can intersect to facilitate ZIKV vertical trans-
mission and thus offer promising points of therapeutic
intervention. An excellent example of this is hydroxycho-
loroquine (clinically prescribed under the brand name
Plaquenil). Hydroxychloroquine is an antimalarial and
anti-rheumatic drug also known to inhibit autophagy.
Importantly, Cao et al., demonstrated that pharmacologic
inhibition of autophagy with hydroxychloroquine attenu-
ated ZIKV infection in mouse placentas and ameliorated
fetal growth restriction associated with ZIKV [51]. The
mechanism for ZIKV upregulation of autophagy was
elucidated by Liang et al., who showed that the ZIKV
proteins NS4A and NS4B cooperatively dysregulate the
Akt-mTOR pathway leading to increased autophagy. This
effect was not observed with the NS4A and NS4B proteins
of the related flavivirus, dengue [69]. Hydroxychloroquine
was the top hit in an in silico screen using a US Food and
Drug Administration (FDA)-approved drug library for
candidates that target the NS2B-NS3 protease of ZIKV
[70]. Using molecular docking, molecular dynamics simu-
lations, and enzyme kinetic studies, Kumar et al., demon-
strated that hydroxychloroquine has high binding affinity
for the active site of the NS2B-NS3 protease.
Hydroxychloroquine’s anti-ZIKV activity was subse-
quently demonstrated in placental cells in culture.
Shiryaev et al. also identified chloroquine as capable of
attenuating neural disease and vertical transmission of
ZIKV in a mouse model [71]. As hydroxychloroquine is
already approved for chronic use throughout human
pregnancy for women with systemic lupus erythematosus
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and other rheumatologic conditions [72–75], it is posited
as a promising option for human trials.

Challenges in the diagnosis and prevention of
CZS in humans

Despite the tremendous progress in cell culture and ani-
mal model work reviewed here and elsewhere [23,76–85],
there remains a large gap in the translation of ZIKV
research from bench to bedside. One initial challenge
has been defining the disease pathologically. Case reports
and case series have described mild and nonspecific pla-
cental pathologic findings in ZIKV-affected pregnancies.
Pathology reports included descriptors such as chronic
placentitis, chronic villitis, increased Hofbauer cells, vari-
able perivillous fibrin and mononuclear cells, villous
immaturity, stromal fibrosis and calcification, increased
vascularity, lymphocytic deciduitis and focal syncytiotro-
phoblast necrosis [77,86–88].

It has also been a challenge to standardize the diagnosis
of CZS. Examination of placentas from suspected or con-
firmed cases of ZIKV infection is recommended as part of
gold-standard care for women and their newborns [89].
However, protocols and standards for placental sample
collection and storage have not been widely adopted and
are often not precisely worded. The official Brazilian
Ministry of Health guideline, for example, has no figures
to guide systematic placental sampling and only a statement
that 3 fragments, 1.0 × 1.0cm, be obtained with no recom-
mendation on depth or sites of collection expected [90].
Moreover, not all medical facilities possess the infrastruc-
ture required to perform detailed placental pathological
analyses.

Correlating gestational age at infection with CZS phe-
notype has been challenging. Most detailed cases repre-
sented first trimester infections with symptomatic disease,
which were associated with significant numbers of abor-
tions, stillbirths and neonatal deaths [77,86–88,91–95].
There have been reports of ZIKV inducing fetal disease
and/or adverse pregnancy outcomes with maternal infec-
tions well beyond the first trimester [3,96], however, poorer
outcomes are expected when the infection occurs earlier in
gestation and in particular during organogenesis. Multiple
arboviruses (such as dengue virus and yellow fever virus)
that produce similar clinical presentations are endemic to
areas affected by ZIKV [97]. Many symptomatic people do
not seek medical care unless they manifest severe features,
which might present after the optimal timing for sample
collection and diagnosis has passed.

An important consideration is the worldwide variation
in antenatal screening availability andmanagement options
for womenwith fetal congenital abnormalities. Of note, it is
illegal or highly restricted to obtain an induced abortion in

most Latin American countries, including Brazil [98].
These factors help explain the sparsity of tissue samples
and ultrasound images from earlier gestational ages.
Another finding that must be addressed is the existence of
placental tissue that tested positive for ZIKV infection in
apparently unaffected neonates [98]. Detection of ZIKV
RNA in the placenta does not discriminate between mater-
nal and fetal infection. Therefore, questions arise as to
whether certain infants were protected by an effective
immune response, whether placentas protect against
ZIKV more effectively during later gestation, whether
more advanced stages of organogenesis are immune to
ZIKV-related disturbances, and whether these neonates
will continue to appear normal throughout childhood
development. These questions will need to be addressed
through long-term follow-up of infants and through
experimental studies involving animal models and in vitro
work.

As of the end of 2018, a valiant cross-disciplinary effort
has provided us with incredible insights into the mechan-
ism of CZS. The epidemic has now waned, stalling clinical
trials for many drugs and new vaccines that have been
proposed for preventing ZIKV infection and CZS. This
review highlights key knowledge that has been gained
regarding the mechanism of CZS but also points to clinical
challenges surrounding CZS that have not been adequately
addressed. With climate change and increasing awareness
of the potential for arboviruses to undergo maternal-fetal
transmission [99,100], further translational research, espe-
cially in collaborationwith governments, local health work-
ers, and the pharmaceutical industry, is needed to better
equip us to face future challenges to maternal-fetal health.
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