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Abstract

Motivation: Peptidic natural products (PNPs) are considered a promising compound class that has

many applications in medicine. Recently developed mass spectrometry-based pipelines are trans-

forming PNP discovery into a high-throughput technology. However, the current computational

methods for PNP identification via database search of mass spectra are still in their infancy and

could be substantially improved.

Results: Here we present NPS, a statistical learning-based approach for scoring PNP–spectrum

matches. We incorporated NPS into two leading PNP discovery tools and benchmarked them on

millions of natural product mass spectra. The results demonstrate more than 45% increase in the

number of identified spectra and 20% more found PNPs at a false discovery rate of 1%.

Availability and implementation: NPS is available as a command line tool and as a web application

at http://cab.spbu.ru/software/NPS.

Contact: aleksey.gurevich@spbu.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antimicrobial resistance is a global concern as admitted by WHO in

its recent review (World Health Organization, 2014). Coordinated

action from governments, physicians and scientists is required to

minimize the emergence and spread of antimicrobial resistance. An

important component of such complex solution is the boost in the

discovery of new antibiotics and other drugs from natural sources.

This kind of speed up is now possible with the latest breakthroughs

in experimental and computational technologies, as exemplified by

the discovery of teixobactin (Ling et al., 2015), the first class of anti-

biotics with a novel mode of action reported in three decades.

Modern mass spectrometry methods enable high-throughput

screening of huge volumes of natural products that potentially lead

to the discovery of many more bioactive compounds. However, the

interpretation of these large amounts of data remains a bottleneck.

For instance, recently launched Global Natural Products Social

(GNPS) molecular network (Wang et al., 2016) contains more than

a billion of natural product mass spectra but only a tiny fraction of

them is annotated to date. Thus, mature computational methods are

needed to turn antibiotic discovery into a high-throughput technol-

ogy and to realize the promise of GNPS and other massive metabo-

lomics projects (da Silva et al., 2015).

Natural product researchers tend to maximize the discovery of

new compounds while minimizing the reevaluation of known ones.

Identification of known molecules (so-called dereplication) per-

formed early in a workflow significantly reduces time and cost

required for the discovery of novel compounds (Gerwick and

Moore, 2012). One of the state-of-the-art dereplication strategies is

the search of tandem mass spectra (MS/MS) against databases of

known chemical structures performed computationally. Given a

spectrum and a peptide database, a dereplication algorithm should

find a peptide in the database that generated the given spectrum or

report that the database does not contain peptides with statistically

significant similarity to this spectrum (Kertész-Farkas et al., 2012).

This problem is nearly solved for regular peptides and many proteo-

mics software for database search of MS/MS spectra are freely avail-

able nowadays (Craig and Beavis, 2004; Eng et al., 1994; Frank and

Pevzner, 2005; Kim and Pevzner, 2014).

However, identification of spectra derived from natural products

is usually much more difficult than traditional peptide identification

in proteomics. This study focuses on algorithms for identification of

peptidic natural products (PNPs), an important class of natural

products with many pharmacological applications. PNPs consist of

non-ribosomal peptides (NRPs) (Marahiel et al., 1997) and riboso-

mally synthesized and post-translationally modified peptides (RiPPs)
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(Arnison et al., 2013). Despite the fact that PNPs are much more

similar to regular peptides than all other classes of natural products,

they have several important structural differences preventing the use

of conventional proteomics tools for PNP identification.

In contrast to regular peptides, PNPs are often short and have

non-linear structures, such as cyclic or branch-cyclic compounds.

Moreover, while regular peptides can be represented as strings over

an alphabet of 20 letters (proteinogenic amino acids), PNPs contain

non-standard amino acids and complex modifications making the

number of different building blocks larger than a hundred. Finally,

most PNPs form families of related peptides and only the most abun-

dant representatives of the families are commonly present in the cur-

rent PNP databases. Thus, PNP identification requires blind-search

algorithms for finding of an unknown PNP from its known modified

or mutated variants available in the database (so-called variable der-

eplication). Variable PNP identification is difficult because the set of

possible modifications/mutations is not known in advance which

makes the computational space of this problem several orders of

magnitude larger than for standard PNP identification.

To date, there are just a few computational tools for dereplica-

tion of natural products and all of them have some important

limitations.

NRP-Dereplication (Ng et al., 2009) and iSNAP (Ibrahim et al.,

2014) algorithms are among the first in silico dereplication tools

designed to work with cyclic peptides. NRP-Dereplication was ini-

tially developed with the ability to perform variable identification

and iSNAP was extended with such functionality in later versions

(Yang et al., 2015). However, both tools are focused on NRPs only

and have critical shortcomings in their software implementations

preventing their use in high-throughput analysis pipelines. NRP-

Dereplication development was discontinued a while ago and there

is no possibility to download the tool now. iSNAP software is avail-

able only as a web-service application for analyzing a single spec-

trum per run.

MS-FINDER (Lai et al., 2018; Tsugawa et al., 2016) and

SIRIUSþCSI: FingerID (Böcker et al., 2009; Böcker and Dührkop,

2016; Dührkop et al., 2015) are popular programs for metabolomics

mass spectra annotation. The both instruments try to predict chem-

ical formulas based on spectra isotope patterns and further analyze

the formula fragmentation to annotate MS/MS peaks. The formula

deduction problem gets significantly more complex with the increase

of molecular weight of putative compounds, so these methods work

prohibitively slow for molecules larger than 500 Da (the majority of

known PNPs). Technically, these tools can still be used for PNP der-

eplication since the number of allowed molecular formulas is limited

by the chemical database and is relatively small. However, a special-

ized PNP search tool will produce much better results. Beyond that,

MS-FINDER is currently available for Windows platform only

which complicates its usage for analysis of large collections of MS/

MS spectra typically stored and processed on Linux-based servers.

Dereplicator (Mohimani et al., 2017a) and its extension for vari-

able identification, VarQuest (Gurevich et al., 2018), are the first

tools that enabled high-throughput PNP identification via database

search of mass spectra. They were incorporated into the GNPS plat-

form and tested on more than one hundred million MS/MS spectra.

The benchmarking revealed an order of magnitude more PNPs (and

their new variants) than any previous dereplication effort on this

data. Despite the success of these methods, their core module uses a

pretty naı̈ve function for computing similarity score between given

experimental spectrum and PNP chemical structure. This issue is

partially solved by using two-stage scoring (Kim et al., 2008) that

involves estimation of the statistical significance of the primitive

first-level scores (Mohimani et al., 2013). Nonetheless, strict thresh-

olds on false discovery rate (FDR) induce these tools to filter out

many true identifications which can be safely revealed with a more

thoughtful scoring method.

In this work, we present NPS—a two-stage approach for scoring

PNP-spectrum matches (NPScore) and estimating the statistical sig-

nificance of such scores (NPSignificance). The method takes into ac-

count intensities of MS/MS peaks and occurrence of various

additional ions during the fragmentation process in mass spectrome-

ters. Both the set of considered ion types and the weights for scoring

annotated and missed peaks of various intensity are computationally

learned from real data.

To create an appropriately sized training dataset, we processed

over one hundred million natural product mass spectra with

Dereplicator and curated the most reliable PNP annotations. Until

recently, such high-quality training dataset was nearly impossible to

obtain in the case of PNPs, so NPS to our knowledge is the first

high-throughput PNP identification method that uses statistically

learned scoring model. The created dataset is freely available at our

website and can be used by other researchers in their future studies.

We incorporated NPS into Dereplicator and VarQuest pipelines

and benchmarked it against the current baseline algorithm. The test

on millions of GNPS mass spectra showed a more than 20% in-

crease in the number of identified PNPs comparing to the baseline at

a conservative FDR level of 1%. As a sanity check, we also tested

our method on a well-studied regular peptides dataset (Kim et al.,

2014) and demonstrated that NPS accuracy is comparable with the

accuracy of one of the leading proteomics tools, MS-GFþ (Kim and

Pevzner, 2014).

2 Materials and Methods

2.1 Baseline scoring model
Similarly to other database search algorithms, Dereplicator com-

pares each spectrum in the spectral dataset against each PNP in the

chemical database. A PNP-spectrum match (PSM) is formed if

the precursor mass of the spectrum matches the molecular mass of

the PNP (up to a predefined maximum error, typically 0:02 Da for

high-resolution spectra). VarQuest can form a PSM even if the

masses of a spectrum and a PNP do not match but in this case it con-

siders the mass difference as a modification/mutation and applies it

to the PNP structure (Gurevich et al., 2018).

In any case, the scoring of a PSM requires comparison of an ex-

perimental spectrum and a chemical structure. For doing this, the

tools construct a theoretical spectrum of the compound which mod-

els its ionization and fragmentation in a mass spectrometer. The the-

oretical and experimental spectra are further examined and a

measure of their similarity is reported as the PSM score.

2.1.1 Theoretical spectrum construction

The simplest fragmentation model assumes that a mass spectrometer

cleaves peptide bonds in a charged molecule passing through the in-

strument and breaks the compound into two parts which mass-to-

charge ratios are measured. For a linear peptide, this assumption

results in the theoretical spectrum consisting of masses of all prefixes

(b-ions) and all suffixes (y-ions) of the peptide sequence. For a non-

linear peptide—which most of PNPs are—a single bond cleavage

may not result in the molecule breakage. To model the fragmenta-

tion of a such compound, a PNP graph is constructed with amino

acids as nodes and generalized peptide bonds as edges (Mohimani

et al., 2017a). The PNP graph could be fragmented into subgraphs
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by removing of a single edge (bridge) or a pair of edges (2-cut). The

theoretical spectrum is then a set of masses of all such subgraphs.

2.1.2 SPC scoring

Dereplicator and VarQuest measure similarity between a spectrum S

and a PNP P simply as the shared peak count (SPC)—the number of

peaks shared between S and the theoretical spectrum of P. Two

peaks are shared if their masses are within a certain threshold e

(0:02 Da for high-resolution spectra by default). Therefore, the SPC

scoring does not take into account peak intensities but it is very easy

to compute and this model does not require training of any

parameters.

Early versions of Dereplicator also used more advanced MS-

GFþ score (Kim and Pevzner, 2014) for evaluating linear PNPs con-

sisting of proteinogenic amino acids (Mohimani et al., 2017a).

However, such compounds represent a small fraction of the broad

chemical diversity of PNPs. For the sake of simplicity and consist-

ency, MS-GFþ scoring was removed from Dereplicator starting

from v.2.0 (Gurevich et al., 2018) and SPC is used for all com-

pounds as the baseline scoring method.

2.2 Proposed scoring model
2.2.1 Peak intensities

There are several common strategies for considering peak intensities

in proteomics software. Some of them, such as PepNovo (Frank and

Pevzner, 2005), deal with normalized intensity values while others,

such as MS-GFþ (Kim and Pevzner, 2014), utilize the ranking ap-

proach. In this approach, all the peaks are ranked according to their

intensities such that ith highest intensity peak gets rank i. In either

case, intensity-aware scoring models normally have different

weights for various intensity levels. To minimize the number of

model parameters, normalized intensity values are usually discre-

tized into a small number of bins and only a few first K ranks (the

highest intensity peaks) are distinguished while the rest are consid-

ered to have the same rank (Kþ1).

In this work, we try both the strategies to find an optimal ap-

proach to PNP data interpretation. In case of normalized intensity

values, we discretize intensities into PepNovo-like bins [each peak’s

intensity is divided by the grass level, four intensity levels are distin-

guished (Frank and Pevzner, 2005)] or simple logarithmic bins (10

levels). In case of the ranking approach, we distinguish the first 100

ranks for well-fragmented spectra of regular linear peptides and 50

ranks for experimental spectra derived from PNPs. We further refer

to the described approaches as NPSPN�bins; NPS log�bins, and

NPSranks, respectively. Since ranks can be considered as intensity

bins, the experimental spectrum in either case may be represented as

a set S ¼ ðmz1; b1Þ; . . . ðmzn;bnÞ, where mzj characterizes mass-to-

charge ratio of the jth peak (X-axis position) and bj characterizes its

intensity bin (Y-axis position).

2.2.2 Ion types

We further refer to the set of masses obtained by the aforementioned

theoretical spectrum construction procedure as TheorMasses. This

set provides a good estimate of masses of basic ionized fragments

passing through a mass spectrometer. However, TheorMasses does

not describe many additional types of ions occurring during the frag-

mentation and present in the most experimental spectra. These types

of ions include doubly and triply charged ions (which have different

X-axis position in experimental spectra since mass spectrometers

measure mass-to-charge ratios rather than the real fragment masses),

neutral loss fragment ions, isotopic shifts, etc. To take this into

account, we transform short TheorMasses into an expanded set of

mass-to-charge ratios using the following procedure.

An ion type is characterized by a pair ðcharge; offsetÞ, where

offset represents a mass shift (in Da) and charge represents charge of

the fragment. For example, the most abundant basic ionized frag-

ments (b-ions and y-ions) correspond to the ion type (1, 0) while

peaks occurring due to the neutral loss of water (H2O) correspond

to the ion type (1, 18.011). For a given set TheorMasses and an ion

type ion ¼ ðcharge;offsetÞ, we define a corresponding set of mass-

to-charge ratios Tion as

Tion ¼
mass� offsetþH � charge

charge
jmass 2 TheorMasses

� �
;

where H corresponds to the mass of proton (1.007 Da). The result-

ing NPS theoretical spectrum T is defined then as

T ¼ [
ion2I
fðmz; ionÞjmz 2 Tiong;

where I is a set of the considered ion types.

The set I can be derived for a particular dataset using the off-

set frequency function (OFF) approach (Dan�cik et al., 1999).

Given a set of reliable PSMs, OFF constructs an empirical distribu-

tion of the offsets characteristic for the spectral data. This is done

by matching all the experimental peaks that are located at distance

offset from the basic peaks of the related peptide/PNP, that is the

peaks corresponding to the ion type (1, 0). The resulting counts

are averaged over the dataset. The ion type is selected if the value

of OFF at the corresponding offset is above a certain threshold.

The selected I sets for regular linear peptides and PNPs are in

Supplementary Table S1.

2.2.3 NPScore

The intuition behind our scoring procedure is to estimate probability

ProbðSjTÞ of observing an experimental spectrum S given a theoret-

ical spectrum T. To compute it, we assume that all the experimental

peaks are generated independently. An experimental peak can be

generated by a matching theoretical peak or may have nothing to do

with the theoretical spectrum but occur due to noise, contamination

or some rare ion types. Furthermore, an experimental peak corre-

sponding to a certain theoretical peak can be missing in the actual

spectrum. Considering all these possibilities, define MatchðS;TÞ as a

union of the three following sets:

SharedðS;TÞ ¼ fðbi; ionjÞji 2 S; j 2 T s:t: matchði; jÞ ¼ 1g;
NoiseðS;TÞ ¼ fðbi; ;Þji 2 S s:t: matchði; jÞ ¼ 08j 2 Tg;

MissingðS;TÞ ¼ fð0; ionjÞjj 2 T s:t: matchði; jÞ ¼ 08i 2 Sg;

where ion ¼ ; stands for a dummy ion type which represents a noise

peak (that is absent in the theoretical spectrum), and analogously in-

tensity bin b¼0 represents a missing experimental peak. Here

matchði; jÞ ¼ 1; jmzi �mzjj < e;
0; otherwise:

�

The probability of S given T is then defined as

ProbðSjTÞ ¼
Y

ðb;ionÞ2MatchðS;TÞ
ProbðbjionÞ;

where ProbðbjionÞ is the probability of an experimental peak from

the intensity bin b to be generated by a theoretical peak of the ion

type ion.
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We also formulate a null hypothesis that spectrum S is generated

by an empty theoretical spectrum denoted by 1. Evidently, in this

case MatchðS;1Þ ¼ NoiseðS;1Þ, and

ProbðSj1Þ ¼
Y

ðb;ionÞ2MatchðS;1Þ
Probðbj;Þ:

Define scoring function as a log odds ratio for these hypotheses,

NPScore ðS;TÞ ¼ log
ProbðSjTÞ
ProbðSj1Þ :

Substituting the expressions for ProbðSjTÞ and ProbðSj1Þ into

the expression above, we finally come up with

NPScore ðS;TÞ ¼
X

ðb;ionÞ2SharedðS;TÞ
log

ProbðbjionÞ
Probðbj;Þ

þ
X

ðb;ionÞ2MissingðS;TÞ
log

Probð0jionÞ
Probð0j;Þ :

(1)

The first summand in (1) defines gains for the theoretical peaks

that explain some experimental peaks and the second summand

penalizes the rest peaks in the theoretical spectrum.

Note that computation of log odds ratios is a common approach

employed in scoring models of many proteomics tools (Cannon

et al., 2005; Dan�cik et al., 1999; Frank and Pevzner, 2005; Havilio

et al., 2003; Kim et al., 2009; Kim and Pevzner, 2014; Tanner et al.,

2005), so its use for PNP data analysis is a natural direction to pro-

ceed in.

2.2.4 Learning NPScore parameters

Given a set of ion types I and a number of different intensity levels

K, NPScore function relies on K � jI j and jI j parameters for defining

the first and second summands in (1), respectively. We statistically

learn them using training datasets of highly reliable PSMs. The prob-

abilities in (1) are estimated as frequencies of the corresponding

events in the dataset. For example, in case of the ranking approach,

Probðb ¼ 1jion ¼ ð1; 0ÞÞ is computed as the number of PSMs in

which the most intense experimental peak is explained by a theoret-

ical peak of type (1, 0) divided by the total number of PSMs in the

training set.

For the sake of regularization, a smoothing function was applied

for learning the ranking approach parameters. For each ion type, the

value at any rank was smoothed with moving average with the win-

dow length of 11 ranks. The parameters for the normalized intensity

methods were not smoothed.

2.3 Proposed significance estimation procedure
Since PSM scores are often biased toward spectra with many peaks

or PNPs with different molecule structures and sizes (Mohimani

et al., 2017a), it is critically important to estimate the statistical sig-

nificance of the scores (Gupta et al., 2011). Proteomics software

normally estimate score P-values in the space of 20k possible linear

peptides of a given length k. At the same time, PNP identification

tools have to deal with several orders of magnitude of larger space

of potential compounds and require completely different algorithms.

To estimate P-value of a PSM score, Dereplicator uses MS-DPR

(Mohimani et al., 2013), one of a few algorithms specialized in

working with PNPs. Given a spectrum S and a peptide P forming the

PSM, MS-DPR approximates a tail of the score distribution of S

against a population of millions of compounds similar to P (having

the same molecular weight and structure but different amino acid

compositions). The approximation technique is based on

constructing a Markov chain on a state space of all possible scores

of peptides from the population. By design, the number of states has

to be finite or in other words the scoring function has to be discrete.

While this requirement is obviously satisfied for the SPC scoring, the

state space resulting from NPScore model is, in practice, continuous,

and requires a certain discretization.

Our P-value estimation procedure, NPSignificance, is based on

MS-DPR and discretizes NPScore output in the following manner.

First, we make an initial guess of what the state space look like with

a naı̈ve Monte Carlo approach. Then we take an interval of scores

obtained from the previous step and divide it into N bins of equal

size. We performed a series of experiments with various values of N

and showed that our approach to the state space discretization pro-

duces rather stable results (see Supplementary Fig. S1). We take

N¼10 as it provides a conservative estimation of P-value in all

experiments.

2.4 Estimation of FDR
The target-decoy approach (Elias and Gygi, 2007) is the most popu-

lar strategy to estimate FDR in proteomics and metabolomics data-

base search experiments. The method is based on generating a

database of decoy peptides similar to the target peptide database

and searching spectra against the both databases at once. FDR is

then estimated as the number of identifications in the decoy data-

base divided by the number of identifications in the target database

at a given P-value or score threshold.

There are several approaches to generating decoy databases. For

benchmarking on regular peptide datasets, we use a traditional pro-

teomics approach, in which the decoy database is obtained from the

reversed protein sequences. For the experiments on PNP datasets,

we utilize the approach described in Gurevich et al. (2018), in which

decoys are generated from target PNPs by shuffling of amino acids

together with structure modification. PNP benchmarks using several

alternative decoy generation strategies are available in the

Supplementary Material.

3 Results

3.1 Benchmarking on proteomics data
To prove applicability of the NPS model, we first benchmark it

within the Dereplicator pipeline (referred to as DereplicatorNPS) on

a spectral dataset of linear peptides and compare its performance

with the baseline method (the SPC scoring, referred to as

DereplicatorSPC) and the state-of-the-art proteomics tool, MS-GFþ
(Kim and Pevzner, 2014). We run our model in the three different

intensity-aware modes (ranks, PN-bins and log-bins) increasing the

total number of compared approaches to five.

3.1.1 Spectral data

As a test dataset, we used a subset of the human proteome map pro-

ject (Kim et al., 2014). The full dataset is freely accessible on GNPS

under MassIVE accession number MSV000079514 and contains ap-

proximately 25 million high-resolution MS/MS spectra. These spec-

tra were obtained on LTQ-Orbitrap Velos and LTQ-Orbitrap Elite

mass spectrometers from proteins of 30 organ tissues. For our

benchmarking, we randomly selected two adult tissues and collected

all spectra related to them. We further refer to these spectral datasets

as SpectraHeart (heart, 426 086 spectra; used for training) and

SpectraKidney (kidney, 439 253 spectra; used for testing).
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3.1.2 Peptide database

The target peptide database HUMANdb was obtained from the

Human RefSeq proteins (Pruitt et al., 2005). The protein sequences

were digested with the Trypsin/P method allowing no missed clea-

vages using the Pyteomics framework (Goloborodko et al., 2013).

Carbamidomethylation of cysteine was set as a fixed modification.

Only peptides with sequence length from 8 to 20 amino acids were

kept. The decoy database was prepared from the reversed protein

sequences in the same manner. The resulting combined database

contains 47 284 target peptides and 47 239 decoy peptides.

3.1.3 NPS parameters training

To learn NPS parameters, we form a training dataset TrainSetLinear

from MS-GFþ identifications on SpectraHeart against HUMANdb at

FDR level 0%. We retained only PSMs with charge þ 1 and þ 2.

For each peptide, we kept only the best PSM according to E-value

reported by MS-GFþ. The resulting dataset contains 17 794 PSMs,

mostly of charge þ 2 (> 99%).

Using TrainSetLinear, we derived the most frequent ion types

(Supplementary Fig. S2a, Table S1) and trained a set of NPScore

model parameters for them (Supplementary Fig. S3).

3.1.4 Number of identifications

We compared the number of identified PSMs and unique peptides

from HUMANdb in SpectraKidney at various FDR levels (Fig. 1 and

Supplementary Table S2). Beside the five competing methods,

Figure 1 also shows four extra Dereplicator curves corresponding to

the runs without the significance estimation, that is the runs in

which PSMs were ranked based solely on the raw scores.

The raw score-based results highlight the importance of the two-

stage scoring. DereplicatorSPC with the P-value computation identi-

fied approximately 50% more PSMs at FDR 1% than its raw score

version (94 663 versus 61 250). While all three the raw score

DereplicatorNPS methods significantly improved over the SPC ana-

log, they still performed worse than the default P-value-based

DereplicatorSPC.

The comparison of various NPS approaches to considering peak

intensities demonstrates that the ranks and log-bins methods are su-

perior to the PN-bins approach on the test dataset. However, the dif-

ferences in their results are mostly insignificant when using the two-

stage scoring procedure.

MS-GFþ obviously outperformed all other approaches at all

FDR levels. However, the beating of one of the leading proteomics

tools on its own ground is clearly out of scope of this paper. Note

that impressive MS-GFþ results are partially based on some extra

peptide-specific techniques, such as comparing distances between

experimental peaks with the known exact masses of 20 proteino-

genic amino acids (Kim and Pevzner, 2014). Since NPS is designed

for much more chemically diverse PNP structures, it cannot rely on

such assumptions. Moreover, despite the set of NPS estimated

parameters is large, it is still an order of magnitude smaller than the

number of MS-GFþ parameters. Thus, our approach will normally

lose to MS-GFþ and other leading proteomics tools on any regular

peptide dataset.

The more important observation is that all three DereplicatorNPS

approaches outperformed DereplicatorSPC at the most important 0–

1% FDR levels. Albeit the increase is mostly fractional with just 6%

more PSMs and 4% more peptides at FDR 1% for the best, rank-

based NPS method (100 444 versus 94 663 PSMs and 16 570 versus

15 968 peptides, Supplementary Table S2). The small improvement

on this dataset may be due to relative simplicity of the peptide iden-

tification from high-quality data. Note that the numbers of

DereplicatorNPS identifications are also close to almost gold-

standard MS-GFþ results at strict FDR 1% level (5% less PSMs and

3% less peptides for the rank-based NPS method, Supplementary

Table S2). The main aim of the NPS approach is to improve identifi-

cation of mediocre PSMs which are often present in PNP identifica-

tion experiments (see the benchmarking below).

3.1.5 Validation of the results

We validated DereplicatorNPS output by comparing its identifica-

tions to the results of DereplicatorSPC and MS-GFþ at FDR 1%.

Supplementary Figure S4 shows that all methods are in fairly good

agreement. Over 96% of PSMs reported by rank-based

DereplicatorNPS were also reported by MS-GFþ which output may

be roughly considered as the ground truth annotations.

3.2 Benchmarking on PNP data
3.2.1 Spectral data

We created the main natural product test dataset by combining 13

high-resolution GNPS spectral datasets (Supplementary Table S3).

The resulting dataset consists of �16 million spectra and we further

refer to it as SpectraGNPS. Three out of these 13 GNPS datasets were

Fig. 1. MS-GFþ, DereplicatorNPS and DereplicatorSPC results on SpectraKidney. The curves display the number of identified PSMs at different FDR levels. The

dashed curves correspond to Dereplicator runs without P-value estimation
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extensively studied before, so we used them separately for more

rigorous validation of the results and for benchmarking NPS within

the VarQuest pipeline which is considered as less robust than

Dereplicator. These three datasets are: SpectraPSEUD [�400 000

spectra from Pseudomonas isolates (Gurevich et al., 2018; Nguyen

et al., 2016)], SpectraSTREP1
[�200 000 spectra from Streptomyces

(Gurevich et al., 2018; Mohimani et al., 2014a)], SpectraSTREP2

[�500 000 spectra from Streptomyces (Duncan et al., 2015;

Gurevich et al., 2018; Mohimani et al., 2017a)].

3.2.2 PNP database

As a target chemical database we used the PNP database from

Gurevich et al. (2018) (further referred to as PNPdb). PNPdb con-

sists of 5021 compounds (1582 PNP families) from AntiMarin

(Blunt et al., 2007), DNP (Gozalbes and Pineda-Lucena, 2011),

MIBiG (Medema et al., 2015) and StreptomeDB (Lucas et al., 2013)

databases. The decoy database of the same size was generated using

Dereplicator API.

3.2.3 NPS parameters

To learn NPS parameters for PNP identification, we form a training

dataset TrainSetPNP from DereplicatorSPC identifications on virtually

the entire GNPS. To obtain the initial set of annotations,

Dereplicator v.2.0 was run with the default parameters on 120 high-

resolution publicly available GNPS datasets (�130 million spectra)

against PNPdb. The run resulted in 14 757 PSMs corresponding to

420 unique PNPs. To get the training set of a reasonable size and

quality, we further considered all identifications of charge þ 1 and

þ 2 at FDR level 5% and keep up to five best PSMs per compound.

The resulting dataset contains 2 213 PSMs (Supplementary Fig. S5).

Supplementary Figure S2b shows the offset frequency functions

(OFFs) computed for TrainSetPNP, which results in the ion types pre-

sented in Supplementary Table S1.

Using the same dataset for both training NPS parameters and

evaluating the tool performance raises concern about overfitting. To

prove that this is not the case, we come up with the following pro-

cedure. From TrainSetPNP, we randomly formed subsets Train1,

Train2 and Test so that they do not contain PSMs obtained from the

same spectral datasets. Since some of the spectral datasets share the

producing organisms, we also required that Train1 and Train2 do

not contain PSMs related to the same PNP families (see Fig. 2). The

resulting datasets Train1 and Train2 contain 346 and 493 PSMs, re-

spectively. Using these datasets we trained two sets of NPS parame-

ters. We compared performance of these two models on spectra

from Test dataset. The comparison shows difference of less than 5%

at FDR level 1% (Supplementary Fig. S6).

The final set of NPS model parameters was trained on the full

TrainSetPNP dataset. The resulting weights are shown in

Supplementary Figure S7.

3.2.4 Standard identification

We matched SpectraGNPS against PNPdb with DereplicatorNPS (the

three different intensity-aware models) and compared the results

with the baseline (DereplicatorSPC). To retain only the most reliable

hits, all PSMs with P-values above 10�10 were removed beforehand

and the FDR was conservatively computed for the remaining PSMs

(see Section 2).

Figure 3 depicts a significant boost in the number of PSMs identi-

fied by NPS comparing to DereplicatorSPC at all FDR levels using all

three models for considering peak intensities. The ranking approach

(NPSranks) demonstrates the best results at all FDR levels, although

its advantage over the normalized intensity methods (NPSPN�bins

and NPS log�bins) is insignificant despite the higher number of esti-

mated parameters (50 ranks versus 4 and 10 intensity levels for each

ion type, respectively). Nevertheless, the running time for all three

methods is the same since all of them require O(1) lookup in the

weight table. Thus, we decided to simply use currently the best strat-

egy (NPSranks) as the only method in further experiments and refer

to it simply as NPS. Note that this intensity-aware approach also

shows the best results among the three alternative methods in the

proteomics benchmarking experiment (see above).

Table 1 shows a more than 20% increase in the number of PNPs

and a more than 45% increase in the number of PSMs identified by

NPS at FDR 1% under the default decoy generation strategy.

Experiments with two alternative strategies also demonstrate a su-

periority of the suggested scoring method over the baseline

(Supplementary Fig. S8).

3.2.5 Variable identification

We benchmarked NPS within the VarQuest pipeline (referred to as

VarQuestNPS) on SpectraPSEUD, SpectraSTREP1
, and SpectraSTREP2

and compared its results to the VarQuest baseline (VarQuestSPC)

and the standard dereplication of these datasets (DereplicatorSPC

and DereplicatorNPS).

Figure 4 shows that VarQuestNPS significantly increased the

number of identified PSMs and PNP families comparing to all other

considered methods at all FDR levels and on all spectral datasets.

Table 1 demonstrates that while VarQuestSPC showed the less accur-

ate results than the Dereplicator-based methods, NPS-powered ver-

sion of VarQuest outperformed all the competitors even at the

strictest FDR 0% level in all categories.

Fig. 2. Split of TrainSetPNP into training and testing datasets

Fig. 3. DereplicatorSPC and DereplicatorNPS results on SpectraGNPS. The curves

display the number of identified PSMs at different FDR levels
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3.2.6 Validation of the results

A comparison of DereplicatorNPS and DereplicatorSPC identifications

on SpectraGNPS shows that over 96% PSMs (91% PNPs) found by

DereplicatorSPC were also reported by DereplicatorNPS

(Supplementary Fig. S9). On the other hand, only 64% PSMs (70%

PNPs) found by DereplicatorNPS were reported by DereplicatorSPC.

To check that these additional identifications represent likely true

positives, we limited ourselves to SpectraSTREP1
, SpectraSTREP2

and

SpectraPSEUD datasets. We considered all PNPs found by

DereplicatorNPS at 0% FDR and compared them to DereplicatorSPC

Table 1. Summary on DereplicatorNPS; DereplicatorSPC; VarQuestNPS and VarQuestSPC results on natural products spectral datasets

Method Number of PSMs Number of PNPs Number of PNP families

P�10 FDR0 FDR1 P�10 FDR0 FDR1 P�10 FDR0 FDR1

SpectraGNPS

DereplicatorSPC 8544 4538 6972 351 231 304 108 80 92

DereplicatorNPS 10 504 8811 10 287 395 290 378 132 101 129

SpectraSTREP1

VarQuestSPC 1978 177 177 429 13 13 196 8 8

VarQuestNPS 2650 412 783 497 33 82 218 14 37

DereplicatorSPC 233 230 233 21 20 21 10 10 10

DereplicatorNPS 250 250 250 24 24 24 12 12 12

SpectraSTREP2

VarQuestSPC 220 15 15 78 2 2 52 2 2

VarQuestNPS 402 174 186 138 30 33 66 12 14

DereplicatorSPC 83 83 83 13 13 13 6 6 6

DereplicatorNPS 179 179 179 29 29 29 10 10 10

SpectraPSEUD

VarQuestSPC 5311 280 949 290 32 68 145 15 30

VarQuestNPS 6562 2495 5405 256 143 226 121 58 102

DereplicatorSPC 1380 814 1380 36 29 36 12 11 12

DereplicatorNPS 1881 1881 1881 42 42 42 11 11 11

Note: P�10, FDR0 and FDR1 stand for the number of identified PSMs, unique PNPs or unique PNP families with P-value below 10�10, at FDR 0% and 1%, re-

spectively. Here NPS stands for the rank-based NPS model, the finally best overall intensity-aware approach.

(a) (b)

(c) (d)

Fig. 4. VarQuestNPS; VarQuestSPC; DereplicatorNPS and DereplicatorSPC results on (a) SpectraSTREP1
, (b) SpectraSTREP2

, (c) SpectraPSEUD and (d) the combination of

the three. The curves display the number of identified PSMs (a–c) and PNP families (d) at different FDR levels
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identifications at FDR 0% and 5%. The results are listed in

Supplementary Tables S4–S6. The origin of PNPs was determined

based on literature search. Our analysis shows that in the

Streptomyces datasets 72% for SpectraSTREP1
and 43% for

SpectraSTREP2
of PNPs were found both by DereplicatorSPC and

DereplicatorNPS. The rest of found PNPs can be attributed to

Streptomyces spp. or contaminants such as Bacillus spp. which are

common to these datasets (Gurevich et al., 2018). One of the PNPs

found in SpectraSTREP2
is of unknown origin. We manually curated

the corresponding PSM and it suggests that this identification repre-

sents contamination rather than a false positive (see Supplementary

Fig. S10c). In the Pseudomonas dataset 72% of found PNPs were

reported by both of the methods. Over 96% of found PNPs have

Pseudomonas or Bacillus origin. We further examined identifica-

tions visualizing the PSMs related to PNPs which were reported only

by DereplicatorNPS. Some of the visualizations are presented in

Supplementary Figure S10. Supplementary Figure S10b–d shows

matches attributed to putative contaminants.

Supplementary Figure S11 shows that over 98% PSMs (87%

PNP families) found by VarQuestSPC in SpectraSTREP1
dataset at

FDR 1% were also reported by VarQuestNPS. For SpectraSTREP2
and

SpectraPSEUD datasets, these figures rise to 100% PSMs (100% PNP

families) and 97% PSMs (100% PNP families), respectively.

VarQuest is designed to identify PNP families rather than PNPs,

that is why we compared the PNP families identified by

VarQuestNPS at FDR 0% to VarQuestSPC identifications at FDR 0%

and 5% (Supplementary Tables S7–S9). We further visualized some

of the VarQuestNPS identifications in Supplementary Figure S12 to

show matches with PNPs related to the datasets origins and attrib-

uted to likely contaminants.

4 Discussion

Although there are many highly reliable computational tools for

analysis of MS/MS spectra in proteomics, there is still a lack of them

in the field of natural products discovery. Here, we demonstrate

how some of the state-of-the-art computational ideas from proteo-

mics could be adapted to the specifics of natural products data. The

developed approach enabled a significant boost in the results of the

leading PNP database search instruments.

Moreover, the proposed model can be further improved if more

high-quality PNP training data become available in the future. In

particular, it is known that peak intensities strongly depend not only

on the ion type but also on the fragmentation site. While proteomics

tools successfully utilize such information (Frank and Pevzner,

2005), there is currently not enough training data to learn these pat-

terns in the case of PNPs. Other possible directions include

structure-specific and/or instrument-specific weights, e.g. having dif-

ferent parameters for linear, cyclic or branch-cyclic compounds

obtained on maXis, micrOTOF or LTQ-Orbitrap mass

spectrometers.

The created method has a much wider range of applications than

solely PNP dereplication. In particular, a proper procedure for scor-

ing of PSMs and estimation of their statistical significance is desper-

ately needed for discovery of novel PNPs. Recently developed

NRPquest (Mohimani et al., 2014b) and MetaRiPPquest

(Mohimani et al., 2017b) use genome mining technique for creating

databases of putative compounds and further match them against

MS/MS data to find the correct predictions. Since the PNP databases

in such cases are huge and error-prone, it is critically important to

minimize the number of false positive identifications.

Implementation of NPS inside easy-to-use Dereplicator and

VarQuest pipelines makes it useful for natural product researchers

with various computational background. In particular, the scientists

without Unix command-line experience can use convenient web

interfaces of the aforementioned tools at the GNPS platform. We be-

lieve that our method will be helpful for the natural products com-

munity and will be used for identifying numerous PNP spectra that

evaded all attempts to interpret them.
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