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Abstract: Meningiomas are the most common non-malignant intracranial tumors and prefer, like
most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis
leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is
known to react with amino groups of proteins. This reaction is called glycation, thereby building
advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on
sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO
grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression
of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are
known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to
decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the
product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of
sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with
less aggressive behavior.

Keywords: intracranial tumor; methylglyoxal; MGO; sialylation; tumorigenesis; posttranslational
modification

1. Introduction

Meningiomas arise from the arachnoid and are the most common non-malignant
intracranial tumor [1–5]. They are classified according to WHO (World Health Organi-
zation) in grades I, II, and III. The benign grade I represents the most frequent subtype
(>80%), and has a low risk of recurrence and slow growth [5,6]. As opposed to benign
meningioma, grade III meningiomas (anaplastic, rhabdoid, and papillary subtype) are rare
(1–3%) and little is known about factors that influence their survival and malignity. The
present surgical, medicinal, and radiotherapeutic treatments are not adequate to manage
the morbidity and mortality in this subtype [7–10].

Like many other tumors, meningiomas use glucose as a primary energy source (War-
burg effect), which is considered as one of the “hallmarks of cancer” [11–13].

During glycolysis, up to 0.4% of the glucose is converted into methylglyoxal (MGO).
MGO is a typical side product of glyceraldehyde-3-phosphate, which is generated by the
aldolase reaction from fructose-1,6-bisphosphate. Please note that MGO is more than
20,000 times more reactive than glucose [11]. Previous studies showed that MGO concen-
trations are elevated in diabetic and or aged individuals [14]. Many studies suggest that
diabetes is linked to an increased risk of cancer [15,16]. In line with this, there is a correlation
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between serum glucose levels and meningioma risk [17,18]. However, there are contrary
data suggesting a positive [19,20] or inverse [21] correlation between diabetes and serum
glucose levels and the risk of meningioma. For example, patients with type 2 diabetes have
a decreased survival after surgical resection of a WHO grade I meningioma [22].

The dicarbonyl MGO reacts primarily with proteins (through arginine, lysine, and
cysteine residues) or to a small extent also with DNA and lipids. This non-enzymatic
reaction between the carbonyl groups of dicarbonyls (i.e., MGO) or monosaccharides (i.e.,
glucose) and the amino groups of proteins is called glycation [23,24]. Another important
glycating agent is glyoxal (GO), which is formed by degradation of glucose or autoxidation
of glycoaldehyde to glyoxal [25]. Glycation is much stronger with dicarbonyls than with
monosaccharides [26]. The end products of this reaction are called advanced glycation
end products (AGEs) [27–29]. Recently, we demonstrated that glycation through MGO led
to an increased invasive behavior in benign meningioma cells [30]. Several other studies
propose MGO as a tumor-promoting agent [31,32].

Another common posttranslational modification is glycosylation. In contrast to
glycation, glycosylation is an enzymatic addition of carbohydrates, glycans to a non-
carbohydrate-structure, commonly a lipid or protein in the endoplasmatic reticulum
(ER)/Golgi. Sialylation is of deep interest and describes the addition of sialic acids (Sia) to
lipids (i.e., gangliosides) or proteins (i.e., neural cell adhesion molecule (NCAM)) through
sialyltransferases (ST) [33].

N-acetyl neuraminic acid (Neu5Ac) represents the major Sia of mammals. It is synthe-
sized from UDP-N-acetyl glucosamine (UDP-GlcNAc) in the cytosol [34]. The key enzyme
of the Sia biosynthesis is the bifunctional UDP-N-acetyl glucosamine 2-epimerase/N-
acetyl mannosamine kinase (GNE) [35]. Sialylation is taking place in the Golgi and is
catalyzed by STs. They are 20 known STs in humans, which use CMP-activated Sia as
substrate (Figure 1). These STs are subdivided into 4 families dedicated to the carbohy-
drate linkages they synthesize: beta-galactoside alpha 2,3-sialyltransferases (ST3Gal1-6),
beta-galactoside alpha 2,6-sialyltransferases (ST6Gal1-2), N-acetyl galactosamine (GalNAc)
alpha 2,6-sialyltransferases (ST6GalNAc1-6) and alpha 2,8-sialyltransferases (ST8Sia1-
6) [36,37]. The members of the ST3Gal family transfer Sia from CMP-Sia to terminal
galactose residues through 2,3 linkages, whereas the two known members of the ST6Gal
family do this through 2,6 linkages. The six members of the ST6GalNAc family transfer Sia
from CMP-Sia to GalNAc residues via 2,6 linkages. In addition, the ST8Sia-family transfer
Sia from CMP-Sia to other terminal Sia residues by 2,8-linkages [36,37]. High blood glucose
concentrations in individuals with diabetes result in a UDP-GlcNAc-dependent change
to more complex N-glycans [38]. Especially, glycoproteins with only few N-glycosylation
sites such as transforming growth factor β (TGFβ) or glucose transporter 4 (GLUT4) show
rapid response to increasing GlcNAc concentrations causing complex glycan formation
and branching [39]. Gangliosides are glycosphingolipids that contain Sias. The synthesis
of gangliosides begins with ceramide (Cer) in the ER. During GM3-synthesis, Cer will
be glucosylated by the glucosylceramid synthase. After this step in the cis-golgi, gluco-
sylceramide is converted in the trans-golgi to lactosylceramide [40]. This is the substrate
for GM3-synthase (ST3Gal5). It is known that GM3 plays a role during several diseases
(chronic inflammation, insulin resistance or cancer) [41–43].

In this study, we compared the expression of STs in benign and malignant meningioma
cells and found significant differences between these two. Furthermore, we investigated
the role of the glycating metabolite MGO on the expression of STs in both benign and
malignant meningioma cells. Thereby, we could show that glycation has a dramatic effect
on the expression of STs and consequently on the GM3 expression. As a result, this could
change sialylation-dependent tumor progression in meningioma.
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Figure 1. Schematic representation of the Sia biosynthesis from glucose to Sia and glycation agents (MGO/GO) and sialyla-
tion of glycoproteins (i.e., N-glycans, O-glycans or gangliosides) in the endoplasmatic reticulum and Golgi. G-3-P = glycer-
aldehyde-3-phosphate; DHA-P = Dihydroxyaceton phosphate; MGO = methylglyoxal; GO = glyoxal; GlcNAc = N-acetyl-
glucosamine; Man = Mannose; Gal = Galactose; Neu5Ac = N-acetyl-neuraminic acid; GNE = UDP-N-acetyl glucosamine 2-
epimerase/N-acetyl mannosamine kinase; ER = Endoplasmatic reticulum. 
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(DMEM) supplemented with 100 µg/mL of streptomycin, 100 U/mL of penicillin, 4 mM of 
glutamine, and 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA) at 37 °C 
in a 5% CO2 incubator. The cell lines were split every 2–3 days with 0.1% Trypsin-EDTA 
(Ethylenediaminetetraacetic acid) solution for 2 min. 
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Cells were seeded in 12-well plates at a density of 3.95 × 104/ cm2 in DMEM with 1% 

FBS. After 2 h of attachment, the cells were treated with 0.3 mM MGO or GO. Controls 
(Ctrl) were cells (BEN-MEN-1, IOMM-Lee) without MGO or GO treatment. The cell lines 
were cultivated for 24 h. RNA was isolated using the Quick-RNA™ MiniPrep Kit (Zymo 
Research, Irvine, CA, USA) according to the manufacturer’s instructions. The quality and 

Figure 1. Schematic representation of the Sia biosynthesis from glucose to Sia and glycation agents (MGO/GO)
and sialylation of glycoproteins (i.e., N-glycans, O-glycans or gangliosides) in the endoplasmatic reticulum
and Golgi. G-3-P = glyceraldehyde-3-phosphate; DHA-P = Dihydroxyaceton phosphate; MGO = methylglyoxal;
GO = glyoxal; GlcNAc = N-acetyl-glucosamine; Man = Mannose; Gal = Galactose; Neu5Ac = N-acetyl-neuraminic acid;
GNE = UDP-N-acetyl glucosamine 2-epimerase/N-acetyl mannosamine kinase; ER = Endoplasmatic reticulum.

2. Materials and Methods
2.1. Cell Culture

The human benign meningioma cell line BEN-MEN-1 was obtained from Leibniz-
Institute DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,
Braunschweig, Germany) and the human malignant meningioma cell line IOMM-Lee
(ATCC® CRL-3370™) was obtained from American Type Culture Collection (ATCC, Man-
assas, VA, USA). Both cell lines were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 100 µg/mL of streptomycin, 100 U/mL of penicillin, 4 mM of
glutamine, and 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C
in a 5% CO2 incubator. The cell lines were split every 2–3 days with 0.1% Trypsin-EDTA
(Ethylenediaminetetraacetic acid) solution for 2 min.

2.2. Glycation and Real-Time PCR Analysis

Cells were seeded in 12-well plates at a density of 3.95 × 104/cm2 in DMEM with 1%
FBS. After 2 h of attachment, the cells were treated with 0.3 mM MGO or GO. Controls
(Ctrl) were cells (BEN-MEN-1, IOMM-Lee) without MGO or GO treatment. The cell lines
were cultivated for 24 h. RNA was isolated using the Quick-RNA™ MiniPrep Kit (Zymo
Research, Irvine, CA, USA) according to the manufacturer’s instructions. The quality and
concentration of the RNA were analyzed using the NanoDrop 1000 Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). RNA (2 µg) was transcribed into cDNA
using SuperScript™ II Reverse Transcriptase according to the manufacturer’s instructions.
PCR reactions were performed using DreamTaq DNA polymerase (Thermo Fisher Scien-
tific), and products were separated on a 1.5% agarose gel. The following conditions were
used: initial denaturation for 2 min at 95 ◦C, 35 cycles (30 s at 95 ◦C, 30 s at 55 ◦C, 30 s at
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72 ◦C), final elongation for 5 min at 72 ◦C. We use for all sialyltransferases the same primer
pairs which were used in a previous study [44].

The sialyltransferase expression of untreated meningioma cell lines (BEN-MEN-1;
IOMM- Lee) and after 24 h of glycation with 0.3 mM MGO were measured via quantitative
real-time PCR (qPCR) using the iQ™ 5 Multicolor Real-Time PCR Detection System (Biorad,
Hercules, CA, USA) and qPCR GreenMaster (Jena Bioscience, Jena, Germany) with the
same primer pairs used for normal PCR. The following conditions were used for qPCR:
initial denaturation for 1:30 min at 95 ◦C, 40 cycles (10 s at 95 ◦C, 10 s at 62 ◦C, 25 s at 72 ◦C),
final elongation for 1 min at 72 ◦C, followed by a melting curve analysis. The expression
level of sialyltransferases in control and glycated cell lines was determined relative to
GAPDH (165 bp; fw: GGAGCGAGATCCCTCCAAA; rv: ATGACGAACATGGGGGCATC),
calculated as ∆CT. The control was relatively computed to glycated cell line (2−∆∆CT). All
reactions were performed in triplicate.

2.3. Cultivation of BEN-MEN-1 Cells and Preparation of GSL-Glycan Alditols Released from
BEN-MEN-1 Cells

Extraction of GSLs and preparation of GSL-glycan alditols from cells were performed
in triplicate as previously described [45]. The cells were cultivated until 80% of confluence
and followed by 24 h treatment with and without 0.3 mM MGO. Shortly, 2 × 106 cells
were harvested, washed and resuspended with 200 µL of water. The cell samples were
lysed by vortexing and sonication for 30 min. In this step, 2.5 µL of 0.5 µM ganglioside
GT1b in ethanol were added as a spiked internal standard to monitor sample preparation
and to normalize roughly absolute quantification. Chloroform (550 µL) was added to the
samples followed by 15 min sonication. Methanol (350 µL) was added to the cell pellets and
incubated for 4 h with shaking at room temperature. The upper phase containing GSLs was
collected after centrifugation at 2700× g for 20 min. Then, 400 µL of chloroform/methanol
(2:1, v/v) was added, followed by adding 400 µL of methanol/water (1:1, v/v). After
sonication and centrifugation, the upper phase was collected and pooled to the previous
sample. The process of adding methanol/water (1:1, v/v), sonication, centrifugation and
removing the upper phase was repeated another two times. In each replicate, the upper
phase was collected and replaced by the same volume of methanol/water (1:1, v/v). The
combined upper phases were dried under vacuum in an Eppendorf Concentrator 5301
(Eppendorf, Hamburg, Germany) at 30 ◦C.

Before the purification of the GSLs using reverse-phase (RP) SPE, the samples were
dissolved in 100 µL methanol followed by the addition of 100 µL water. TC18-RP-cartridges
were prewashed with 2 mL of chloroform/methanol (2:1, v/v), 2 mL of methanol followed
by equilibration with 2 mL methanol/water (1:1, v/v). The extracted GSLs were loaded
to the cartridge and washed with 2 mL methanol/water (1:1, v/v). The GSLs were eluted
from the column with 2 mL methanol and 2 mL chloroform/methanol (2:1, v/v). The
samples were dried under vacuum in an Eppendorf Concentrator at 30 ◦C.

To release the glycans from the GSLs, a mixture of EGCase I (12 mU, 2 µL), EGCase I
buffer (4 µL) and water (34 µL) (pH 5.2) was added to each sample and incubated for 36 h
at 37 ◦C. The released glycans were collected and loaded on TC18-RP-cartridges, which
had been preconditioned with 2 mL of methanol and 2 mL of water. The samples were
washed with 200 µL of water and residual glycans were loaded to the cartridge. Then,
500 µL of water were added to the cartridge to wash the glycans from the column. The
flow-through and wash fractions were pooled and dried in an Eppendorf Concentrator
at 30 ◦C.

The reduction was carried out with slight modifications following the same procedure
as described in previous work [45,46]. In brief, GSL-glycans were reduced to alditols
in 20 µL of sodium borohydride (500 mM) in potassium hydroxide (50 mM) for 2 h at
50 ◦C. Subsequently, 2 µL of glacial acetic acid were added to acidify the solution and
quench the reaction. The desalting of GSL-glycans was performed as previously described.
Glycan alditols were eluted with 50 µL of water twice. The combined flow-through and
eluate were pooled and dried under vacuum in an Eppendorf Concentrator at 30 ◦C. The
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carbon SPE clean-up was performed and the purified glycan alditols were re-suspended in
20 µL of water prior to Porous Graphitized Carbon (PGC) nano-Liquid Chromatography
(LC)-Electro Spray Ionization (ESI)-Mass Spectrometry (MS)/MS/MS analysis.

2.4. Analysis of GSL-Glycan Alditols Using PGC Nano-LC-ESI-MS/MS

The analysis of glycan alditols was performed using PGC nano-LC-ESI-MS/MS fol-
lowing a method described previously [45,46]. Measurements were performed on an
Ultimate 3000 Ultra-High-Performance Liquid Chromatography (UHPLC) system (Thermo
Fisher Scientific) equipped with a home-packed PGC trap column (5 µm Hypercarb,
320 µm × 30 mm) and a home-packed PGC nano-column (3 µm Hypercarb 100 µm ×
150 mm) coupled to an amaZon ETD speed ion trap (Bruker, Bremen, Germany). Mobile
phase A consisted of 10 mM ABC, while mobile phase B was 60% (v/v) acetonitrile/10 mM
ABC. The trap column was packed with 5 µm particle size PGC stationary phase from
Hypercarb PGC analytical column (size 100 × 4.6 mm, 5 µm particle size, Thermo), while
the PGC nano-column was packed with 3 µm particle size PGC stationary phase from
Hypercarb PGC analytical column (size 30 × 4.6 mm, 3 µm particle size, Thermo).

To analyze glycans, 2 µL injections were performed and trapping was achieved on
the trap column using a 6 µL/min loading flow in 1% solvent B for 5 min. Separation was
achieved with a linear gradient from 1% to 50% solvent B over 73 min, applied followed by
a 10 min wash step using 95% of B at a 0.6 µL/min flow rate. The column was held at a
constant temperature of 35 ◦C.

Ionization was achieved using the nanoBooster source (Bruker) with a capillary voltage
of 1000 V applied and a dry gas temperature of 280 ◦C at 3 L/min and isopropanol enriched
nitrogen at 3 psi. MS spectra were acquired within an m/z range of 340–1850 in enhanced
mode using negative ion mode, smart parameter setting was set to m/z 900. MS/MS spectra
were recorded using the top 3 highest intensity peaks.

Structures of detected glycans were studied by MS/MS in negative mode. Glycan
structures were assigned based on the known MS/MS fragmentation patterns in negative-
ion mode [47,48], elution order, and general glycobiological knowledge, with the help
of Glycoworkbench [49] and Glycomod [50] software. To get an estimate of the glycan
amount per cell, glycan intensity was normalized to the intensity of the internal standard
GT1b. Then, assuming complete release of glycans and similar response factors between
released glycan and GT1b standard, the number of glycans per cell was estimated.

Structures are depicted according to the Consortium of Functional Glycomics (CFG).
Blue square is N-acetylglucosamine; yellow square is N-acetylgalactosamine; blue cir-
cle is glucose; yellow circle is galactose; red triangle is fucose; purple diamond is N-
acetylneuraminic acid, grey diamond is N-glycolylneuraminic acid.

2.5. Statistical Analysis

All analyses and visualizations were performed using OriginPro 2019 software (Origin-
Lab Corporation, Northampton, MA, USA). Paired Student t-test against the control group,
both cell lines of a theoretical value of 1 (due to data normalization), were executed. Fig-
ures show the average mean with standard deviation (SD) and levels of significance are
represented within the figures.

3. Results
3.1. Expression of Sialyltransferases in Meningioma Cell Lines

Since there is evidence that sialyltransferases have an impact on tumorigenesis, we
analyzed benign (BEN-MEN-1) and malignant (IOMM-Lee) meningioma cell lines regard-
ing differences in expression of sialyltransferases (Figure 2, Table 1). Figure 2A shows
the expression of ST3GAL1–6 in BEN-MEN-1 and IOMM-Lee. ST3GAL1–ST3GAL3 and
ST3GAL5–ST3GAL6 were detected in both cell lines. The band intensity of ST3GAL2 was
higher in the malignant cell line compared with the benign cell line, whereas the ST3GAL3,
ST3GAL5–6 band intensities were higher in BEN-MEN-1 compared to the malignant cell
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line. Agarose gel of ST6GAL1–2 is shown in Figure 2B for both cell lines. ST6GAL2 was
only expressed in the benign cell line. In contrast, no differences could be found in terms
of band intensity of ST6GAL1 in both cell lines. The expression of ST6GALNAC1–6 for both
cell lines is shown in Figure 2C. In contrast to IOMM-Lee, a weak band in ST6GALNAC2
was detectable in BEN-MEN-1. Expression of ST6GALNAC4–6 was detectable in both cell
lines. The band intensities of ST6GALNAC5 and ST6GALNAC6 were higher in IOMM-
Lee compared to BEN-MEN-1. The expression of ST8SIA1–6 in both cell lines is shown
in Figure 2D. For ST8SIA1–2 and ST8SIA5–6, the expression has been detected in both
meningioma cell lines. In BEN-MEN-1, we observed a higher expression of ST8SIA2 and
ST8SIA6 compared to the malignant cell line. Again, the band intensity of ST8SIA5 was
stronger in IOMM-Lee compared to the benign cell line.
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3.2. Sialyltransferases Are More Affected by MGO in Benign Cell Line

Since the expression of sialyltransferases is different in the benign and malignant
meningioma cell lines, we quantified the sialyltransferase mRNA expression level after 24 h
of glycation of the cells to verify the influence of glycation on sialylation. Figure 3 displays
the different mRNA expressions of ST3GAL1–6 in BEN-MEN-1 (Figure 3A) and IOMM-Lee
(Figure 3B). Glycation led to changes in ST expression. In the benign cell line, we observed
an increased overall expression, whereas we noticed a decreased overall expression of STs in
the malignant cell line. ST3GAL1 (1.4812± 0.115 fold change), ST3GAL2 (3.143 ± 0.476 fold
change), and ST3GAL3 (1.28 ± 0.189 fold change) expression were increased in contrast
to non-glycated cells in BEN-MEN-1. Furthermore, the relative expression of ST3GAL5
(0.7863 ± 0.0933 fold change) and ST3GAL6 (0.572 ± 0.126 fold change) were decreased
in contrast to non-glycated cells. The relative expression of ST3GAL1 (0.601 ± 0.223 fold
change), ST3GAL2 (0.288 ± 0.0535 fold change), ST3GAL3 (0.6175 ± 0.217 fold change),
ST3GAL5 (0.4561 ± 0.1271 fold change), ST3GAL6 (0.502 ± 0.1325 fold change) were
decreased in contrast to non-glycated cells in the malignant cell line.
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Table 1. Overview of sialyltransferase expressions in both meningioma cell lines.

GENE BEN-MEN-1 IOMM-Lee

ST3GAL1 +++ +++
ST3GAL2 + ++
ST3GAL3 +++ +++
ST3GAL4 - -
ST3GAL5 +++ +++
ST3GAL6 +++ +++
ST6GAL1 +++ +++
ST6GAL2 ++ -

ST6GALNAC1 - -
ST6GALNAC2 + -
ST6GALNAC3 - -
ST6GALNAC4 +++ +++
ST6GALNAC5 ++ +++
ST6GALNAC6 ++ ++

ST8SIA1 +++ +++
ST8SIA2 +++ +
ST8SIA3 - -
ST8SIA4 - -
ST8SIA5 + +
ST8SIA6 +++ +

Table 1 shows overview of sialyltransferase expression in both meningioma cell lines. The expression levels are displayed in +++ = high
expression level; ++ = middle expression level; + = low expression level; - = no expression.
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Figure 4 shows the expression of the ST6GAL-family in BEN-MEN-1 (Figure 4A) and
IOMM-Lee (Figure 4B). Glycation led to opposing changes in the expression of this sialyl-
transferase. We observed a higher expression in the benign cell line after treatment with
MGO (3.2402 ± 0.962 fold change), whereas no changes could be measured in the glycated
malignant cell line (1.018 ± 0.164 fold change). The expression of ST6GAL2 was only de-
tected in BEN-MEN-1 and increased after treatment with MGO (1.624 ± 0.188 fold change).



Cells 2021, 10, 3298 8 of 17

Cells 2021, 10, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 4. Relative mRNA expression of ST6GAL1–2 in BEN-MEN-1 (A) and IOMM- Lee (B). (A): Normalized control (grey) 
and mRNA expression after 24 h treatment with 0.3 mM MGO (green). (B): Normalized control (black) and the mRNA 
expression after 24 h treatment with 0.3 mM MGO (red). Statistical analysis was performed using t-test and error bars 
represent SD (n = 4; (ST6GAL1: p = 0.0274 (A), p = 0.863 (B); ST6GAL2: p = 0.0213 (A)). 

 
Figure 5. Relative mRNA expression of ST6GALNAC1–6 in BEN-MEN-1 (A) and IOMM- Lee (B). (A): Normalized control 
(grey) and mRNA expression after 24 h treatment with 0.3 mM MGO (green). (B): Normalized control (black) and mRNA 
expression after 24 h treatment with 0.3 mM MGO (red). Statistical analysis was performed using t-test and error bars 
represent SD (n = 4; (ST6GALNAC2: p = 0.0275 (A); ST6GALNAC4: p = 0.0583 (A), p = 0.4882 (B); ST6GALNAC5: p = 0.0366 
(A), p = 0.024 (B); ST6GALNAC6: p = 0.0339 (A), p = 0.1311 (B)). 

Finally, we quantified the expression of ST8SIA 1–6. Glycation influenced more 
strongly the expression level of these sialyltransferases in BEN-MEN-1 cells compared to 

Figure 4. Relative mRNA expression of ST6GAL1–2 in BEN-MEN-1 (A) and IOMM- Lee (B). (A): Normalized control (grey)
and mRNA expression after 24 h treatment with 0.3 mM MGO (green). (B): Normalized control (black) and the mRNA
expression after 24 h treatment with 0.3 mM MGO (red). Statistical analysis was performed using t-test and error bars
represent SD (n = 4; ST6GAL1: p = 0.0274 (A), p = 0.863 (B); ST6GAL2: p = 0.0213 (A)).

Moreover, the mRNA expression of ST6GALNAC1–6 in BEN-MEN-1 (Figure 5A) and
IOMM-Lee (Figure 5B) is also differently altered after glycation. ST6GALNAC2 expression
decreased after glycation in contrast to the untreated benign cell line (0.6807 ± 0.1106 fold
change). ST6GALNAC4 expression is not affected in BEN-MEN-1 (2.556 ± 1.232 fold
change) and IOMM-Lee (1.005 ± 0.2552 fold change), but glycation decreased the mRNA
expression of ST6GALNAC5 in both cell lines (0.5575 ± 0.283; 0.5991 ± 0.2174). Glyca-
tion led to a higher expression of ST6GALNAC6 in the benign cell line (1.5141 ± 0.1999).
ST6GALNAC6 expression is not influenced by glycation in the malignant cell line (0.839
± 0.203).

Finally, we quantified the expression of ST8SIA 1–6. Glycation influenced more
strongly the expression level of these sialyltransferases in BEN-MEN-1 cells compared
to the malignant IOMM-Lee cell line. The expression of ST8SIA1 was highly increased
(2.696 ± 0.627 fold change) after glycation in the benign cell line (Figure 6A) and decreased
(0.744± 0.07712 fold change) in the glycated malignant cell line (Figure 6B). The expression
of ST8SIA2 (3.2171 ± 0.6837 fold change) and ST8SIA5 (1.696 ± 0.3475 fold change) were
both increased in BEN-MEN-1 (Figure 6A). ST8SIA5 expression was not influenced by
glycation in IOMM-Lee cells. The expression of ST8SIA6 was not influenced by glycation
in both cell lines.

3.3. MGO-Treatment Decreases Ganglioside GM3 Expression in BEN-MEN-1

To prove that MGO-induced reduction of ST3GAL5 expression has an impact on BEN-
MEN-1 cells, we quantified ganglioside GM3 by PGC nano-LC-ESI-MS/MS. Figure 7A
summarizes the biosynthesis of GM3. Figure 7B shows the signal intensity of GM3 before
and after glycation in comparison to the internal standard of GT1b in BEN-MEN-1 cells.
The absolute quantification of GM3 is shown in Figure 7C. We could show a decreased GM3
expression after glycation (p = 0.00314), which is in line with the decreasing expression of
ST3GAL5 (see: Figure 3A). The normalized copy numbers of GM3 per cell in the untreated
BEN-MEN-1 cell line (1.32 × 108 ± 9.15 × 106) were decreased by 235% compared to the
glycated cells (5.61 × 107 ± 3.89 × 106).
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biosynthesis. Cer = Ceramide; GalCer = Galactosylceramide; GlcCer = Glucosylceramide; LacCer = Lactosylceramide; GM3
= Monosialoganglioside 3. (B): Signal intensity of GM3 in BEN-MEN-1 Ctrl and BEN-MEN-1 0.3 mM MGO in comparison
to the internal standard GT1b. (C): Absolute quantification of GM3 signal by PGC nano-LC-ESI-MS/MS of Ctrl (grey) and
0.3 mM MGO-treated BEN-MEN-1 (green). Statistical analysis was performed using t-test and error bars represent SD (n = 3;
p = 0.00134).

3.4. Glyoxal-Treatment Has Different Effects in ST3GAL5

Finally, we analyzed whether another glycation agent than MGO has the same effect
on ST3GAL5 expression as MGO. We could show by Western blot analysis that 0.3 mM
glyoxal (GO) leads to glycation in both cell lines (data not shown). Using qPCR of cDNA of
BEN-MEN-1 cells (Figure 8A) or IOMM-Lee (Figure 8B), which were grown for 24 h in the
presence of 0.3 mM GO, we could show that GO-induced glycation had the same effect on
ST3GAL5 expression as MGO treatment in BEN-MEN-1 cells. However, GO did not alter
the expression of ST3GAL5 in malignant IOMM-Lee cells, which is in contrast to MGO.
This suggests a glycation agent-specific change of ST3GAL5 expression.
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4. Discussion

Many studies demonstrated that sialylation has an impact on tumorigenesis [51–55].
Abnormal levels of different glycosyltransferases were found in different types of human
cancers [56,57]. In addition, high serum levels of sialyltransferases are associated with the
progression of advanced breast cancer [58].

However, little is known about the influence on glycosylation by glycation, which is
increased in several cancers because of the Warburg effect [59,60]. In this study, we could
show, that glycation affects sialylation by modulating ST expression, which could have an
impact on different ganglioside patterns and thereby on tumor development. Most of the
STs were expressed in both BEN-MEN-1 and IOMM-Lee cell lines. Glycation of both cell
lines resulted in an increasing level of STs in the benign meningioma cells and decreasing
level in the malignant cells.

There are many reports of changes in ST expression in cancer. Overexpression of
ST3GAL1 in ovarian cancer led to transforming growth factor (TGF)-β1-induced epithelial-
mesenchymal-transition, migration, and invasion, and a knockdown resulted in the oppo-
site [61]. Another study by Mehta et al. has revealed that ST3GAL2 and ST6GAL1 were
significantly upregulated in tumors with positive perineural invasion status [62], which
we observed in the glycated benign cell line. ST3GAL3 was increased in the glycated
BEN-MEN-1 cell line but decreased in glycated IOMM-Lee cells. Expression of ST3GAL3
is important for the regulation of biosynthesis of brain disialoganglioside (GD)1a and
trisialoganglioside (GT)1b [57]. In several studies, the altered expression of ST3GAL3 has
an impact on cell adhesion and invasion. Glycation of meningioma cell lines resulted
in decreased ST3GAL5 expression in both cell lines. This sialyltransferase is also known
as monosialoganglioside (GM3) synthase [63] and suppresses the epidermal growth fac-
tor receptor (EGFR) phosphorylation, which influences the cell proliferation [64] and the
cellular resistance to oxidative stress and radiation therapy through upregulation of extra-
cellular signal-regulated kinases (ERK) [42]. The total amount of GM3 was decreased in
BEN-MEN-1 cells after glycation. Yamashita and colleagues reported that GM3 synthase
knockout mice displayed enhanced ligand-induced insulin receptor phosphorylation. Fur-
thermore, they could show that an increased sensitivity in glucose and insulin tolerance
consequently results in an elevated insulin signaling response [65]. Other studies show that
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decreasing expression of GM3 leads to decreased cell motility and cell adhesion through
ERK phosphorylation along with Ras upregulation. This regulates migration through
mitogen-activated protein kinase (MAPK) [41,42,66,67]. The glycating agent GO has the
same effect in BEN-MEN-1 cells (downregulation of ST3GAL5) as MGO. However, in
IOMM-Lee cells, we observed no effect after glycation with GO, which could be explained
by higher glyoxalase 1 activity, which degrades dicarbonyls and has been described in
many studies on cancer and glycation [68–70]. The expression of ST3GAL6 was reduced in
both glycated meningioma cell lines, which is known to play a key role in the generation
of functional Sialyl Lewis X [71]. Decreasing levels of ST3GAL6 can lead to decreasing
migration and invasion in 5637 and J82 UBC cells as well as decreasing adhesion and
migration in multiple myeloma cells [72,73].

Increased ST6GAL1 expression, as we have shown in glycated BEN-MEN-1 cells, was
also found in lung, colon, glioma, prostate, cervical, and breast cancer tissues [74–80].
The downregulation of ST6GAL1 decreased metalloproteinases (MMPs) expression and
suppressed invasive potential of A549 and H1299 cells in vitro [79], whereas bladder
cancer has ST6GAL1 upregulation, a tumor-suppressive role [81]. The upregulation of
ST6GAL2 was found in different types of cancer and was associated with breast cancer with
higher expression of intracellular adhesion molecule (ICAM)-1, vascular adhesion molecule
(VCAM)-1, CD24, MMP2, MMP9 and C-X-C motif chemokine receptor (CXCR)4 [82,83].

ST6GALNAC2 is known as a metastasis suppressor in breast cancer and a low expres-
sion of it, as we observed in glycated BEN-MEN-1 cells, is associated with a bad progno-
sis [84,85]. In Colorectal Carcinoma, Venkitachalam et al. have observed the same [86]. In
contrast, Schneider et al. could show, that a high expression of ST6GALNAC2 correlates
with metastases to the lymph system [87]. The expression level may be a prognostic marker,
but it seems that the mutation of the gene is more important. In our study, ST6GALNAC4
expression was elevated in glycated BEN-MEN-1. High expression of ST6GALNAC4 leads
to the prevention of O-glycan chain elongation [88]. In another study of Follicular Thyroid
Carcinoma (FTC)-238 cells, the suppression of the ST6GALNAC4 gene led to an inhibition
of invasive behavior in vitro and in vivo [89]. The lower expression of ST6GALNAC5 in
both glycated meningioma cell lines in our study could be a sign of transformation, because
it is restricted to the brain and synthesizes GD1alpha in the nervous tissues [90,91]. We
have observed an increased expression of ST6GALNAC6 in glycated BEN-MEN-1 cells.
A study in colon cancer has shown that ST6GALNAC6 is responsible for the synthesis of
sialyl Lewis (a), which is a significant inductive mechanism in cancer progression [92,93].

The increased expression of ST8SIA1 in glycated BEN-MEN-1 cells could lead to a
weak prognosis for patients. In contrast, we observed decreased expression of ST8SIA1
after glycation in IOMM-Lee cells. In melanoma brain metastases, it was shown that
ST8SIA1 (GD3 synthases) is upregulated and the GD3 expression is increased, which was
associated with a bad prognosis [94]. In gliomas, malignancy increased by higher GD3
and GD2 expression [95]. In addition, ST8SIA1 is one of the key drivers for malignancy
in glioblastoma [96]. Mennel et al. reported on different expression levels of GD3 and
GD2 in meningiomas, depending on the tumor origin [97]. A study for neuroblastoma
and melanoma cells demonstrated that most neuroblastoma cells had a high expression
of GD2 and melanoma cells had high expression of GD3 [98]. The increased expression
of ST8SIA2, as we observed in glycated BEN-MEN-1 cells, plays a role in the invasive
behavior and was significantly associated with the risk of relapse in non-small-cell lung
carcinoma [99]. The sialyltransferase ST8Sia5, which is increased in glycated BEN-MEN-1
cells, is known to synthesize GD1c/GT1a/Tetrasialogangliotetraosyl-ceramide (GQ)1b
from GM1b/GD1a/GT1b. The group of Schiopu et al. has identified thirty-four distinct
glycosphingolipid components (one GM4, nine GM3, two GM2, two GD3, nine GM1, and
six GD1) differing in their ceramide compositions [100].

The glycation of meningioma cell lines has opposite effects in benign or malignant
meningioma cells. Overall, glycated BEN-MEN-1 cells express more sialyltransferases
than unglycated, whereas glycation of IOMM-Lee cells leads to a downregulation of the
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sialyltransferase expression. These observations support our recent observations that
glycation of BEN-MEN-1 cells lead to increased invasive potential [30].

5. Conclusions

To sum up, glycation of meningioma cell lines has cell line-specific effects. The
glycated BEN-MEN-1 cell line is affected in a different expression of ST3GAL1/2/3/5/6;
ST6GAL1/2; ST6GALNAC2/6 and ST8SIA1/2. These STs have a direct or indirect impact
on tumor progression. The decreased expression of ST3GAL5 after glycation results in a
decreasing expression of GM3 in benign meningioma cells. The expression levels of some
sialyltransferases (ST3GAL1/2/3; ST6GALNAC5 and ST8SIA1) of the glycated IOMM-Lee
cell line were inhibited, which indicates less aggressive behavior.
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