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Abstract
CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in
development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically
predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation,
recent studieshave shown that such computational annotations suffer from inaccuracies. Hereweusedwhole-genomebisulfite
sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI
catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence
features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of
California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal
significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate
ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in
intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at
novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the
regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic
hotspots of epigenetic regulation.

Introduction
Since their initial discovery almost three decades ago (1–3), nu-
merous studies have established the critical importance of CpG
islands (CGIs) in fundamental regulatory and developmental pro-
cesses (4–8). Originally defined as hypomethylated stretches of
CpG-rich sequences (1–3), CGIs punctuate otherwise heavily
methylated, CpG-depleted mammalian genomes (9–13). Cell
type- and tissue-specific CGI methylation is a key regulatory

signal for genomic imprinting (14), gene expression regulation
(4) and developmental programming (5,7,11,15). Aberrant CGI
methylation is implicated in numerous diseases, particularly
cancers (16,17) and neurodevelopmental disorders (18).

Even though CGIs were originally experimentally defined (1),
subsequent annotations of CGIs relied on sequence-based com-
putational algorithms, due to the lack of actual DNAmethylation
data (2,19–21). These computational algorithms have been
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extremely valuable for almost two decades. However, whether
computationally identified CGIs truly represent hypomethylated
CpG clusters has recently been called into question by genome-
wide methylation surveys. For example, substantial numbers of
computationally defined CGIs are consistently hypermethylated
in several tissues (5,22,23) (i.e. false positives). Moreover, many
hypomethylated CpG-rich sequences (representing the very def-
inition of CGIs) are missing from the computationally annotated
CGI sets (5,24) (i.e. false negatives). Furthermore, a considerable
fraction of CGIs has undergone CpG loss during recent evolution,
suggesting that they are constitutively methylated and are not
bonafide CGIs (25).With the developments of techniques to iden-
tify different types of hypomethylated genomic regions (26–28), it
is feasible that the term CpG island itself may even be replaced
with some other terms in the future. Nevertheless, CGIs are still
one of themost widely analyzed genomic elements in epigenetic
analyses, and many commercial toolkits preferentially target
them (23). Consequently, re-visiting the epigenetic definition of
CGIs and providing an experimentally defined CGI catalog that
overcomes the limitations of computational predictions will
offer a tremendous resource for advancing our knowledge.

Indeed, important efforts have previously been made to gen-
erate an accurate CGI data set (5,22,24). However, these early
studies lacked DNA methylation maps with nucleotide-level
resolution. They were also limited to only a few tissue types.
Here, we utilize whole-genome bisulfite sequencing data sets
(11,15,29–34) generated from diverse cell types, including embry-
onic stem cells (ESCs), germ cells, fetal tissues and six adult som-
atic tissues spanning all three germ layers (Fig. 1A). From this
comprehensive collection of whole-genome methylation maps,
we identified more than 50 000 experimentally supported CGIs
(‘eCGIs’). The eCGI catalog presented here is the most compre-
hensive experimentally defined bona fide CGI catalog to date, re-
vealing a large number of novel CGIs that were previously
undetected. This experimental definition allows for the discovery
of hypomethylated CpG clusters associated with constitutively
expressed genes, thereby expanding the list of CGI genes. More-
over, in contrast to thehousekeeping nature of classical promoter
CGIs, many novel eCGIs showpromoter- and enhancer-like chro-
matin features and associate with facultative transcription
factors (TFs) to putatively regulate tissue-specific coding and
non-coding transcription.

Figure 1. (A) Tissues analyzed for eCGI identification, including embryonic, gonad, germ line and fetal tissues, aswell as six adult somatic tissues of distinct developmental

origins. Thesewere selected to have the highest cell type diversity with respect to gene expression patterns (68) while avoiding overly cell heterogeneous tissues. Ovaries

comprise germ-line cells and endoderm-derived tissue. The adrenal glandhas both ectodermal (medulla) andmesodermal (cortex) origins. (B) The genomic distribution of

eCGIs. (C) The correlation between the numbers of protein-coding genes and eCGIs on each chromosome. (D). Distribution of eCGIs and cCGIs across tissues.
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Results
Comprehensive eCGI set

We integrated 10 deep-coverage nucleotide-resolution whole-
genome methylation maps to detect eCGIs (Fig. 1A). We used a
sliding window approach with 200 bp windows (50 bp step size),
with each window containing at least 10 CpGs. We extended the
window until it contained <80% of sparsely (<0.2) methylated
CpGs. These criteria were selected to provide a fair comparison
to computationally identified CGI sets (see Materials and Meth-
ods). Results from analyses using other criteria are qualitatively
similar and shown in Supplementary Material. Following these
procedures, we identified a set of 51 572 non-overlapping eCGIs
across tissues (Supplementary Material, Table S1). The genomic
distribution of these eCGIs across chromosomes (Fig. 1B) corre-
lates more strongly with gene contents than with chromosome
lengths (Pearson’s r = 0.949, P < 10−5 and r = 0.631, P = 0.0016, re-
spectively, Fig. 1C), suggesting that these hypomethylated re-
gions include functional elements. Almost half (46.5%) of the
eCGIs are found in all tissues analyzed, whereas over a quarter
(25.94%) are tissue-specific (present in only one tissue, Fig. 1D).
Consistent with the global hypomethylation of the sperm and
placenta genomes (9), most (>80%) of the tissue-specific eCGIs
are sperm-specific and another 7.3% are placenta-specific (Sup-
plementary Material, Fig. S1A). In contrast, somatic tissues har-
bor fewer tissue-specific eCGIs (Supplementary Material, Fig.
S1B). Indeed, any somatic sample can recover between 77 and
93% of all somatic CGIs, whereas with four tissues the novel
eCGI discovery rate plateaus, indicating that our survey likely
identified the majority of somatic eCGIs (Supplementary Mater-
ial, Fig. S2).

eCGIs can be used to evaluate and complement
computational CGIs

One of the most widely used CGI sets is that from the University
of California Santa Cruz (UCSC) Genome Browser (25,35,36).
These CGIs have been computationally predicted (hereafter re-
ferred to as computational CGI, ‘cCGI’) on the basis of the follow-
ing criteria: a minimum length of 200 bps, a minimum GC
content of 50% and an observed/expected ratio of CpG sites
above 0.6 (19). We observe an extensive overlap between cCGIs
and eCGIs (true positives; 76.1% of the autosomal cCGIs are pre-
sent in the eCGI set, Fig. 2A). At the same time, however, many
cCGIs are not validated by the experimental DNA methylation
data (Fig. 2A). Although both sets are identified under the same
minimum length criterion, the boundary definition differs. Spe-
cifically, the maximum segmental algorithm is used to merge
adjacent cCGIs, whereas eCGI boundaries are defined by local
methylation values. Consequently, some of these adjacent
eCGIs could have arisen due to the lack of coverage in the in-
between regions (i.e. Fig. 3A). Nevertheless, the majority of the
cCGIs that were not represented in our experimental set showed
extensive DNA methylation in all tissues (n = 4208, Fig. 2B) and
thus are likely false positives. Notably, the current cCGI set fails
to identify a substantial number of hypomethylated CGIs (high
rate of false negatives), as 39.2% of the eCGIs we report are
‘novel’ (i.e. not on the list of UCSC cCGIs, Fig. 2A). Even if we
merge all adjacent eCGIs, of eCGIs remain as novel (Supplemen-
tary Material, Fig. S3).

The tissue distributions of cCGIs and eCGIs reveal a striking
difference (Fig. 1D). The cCGI sets often occupy eCGIs that are hy-
pomethylated across all tissues examined (referred to as ‘consti-
tutive’ eCGIs), although we also identify many novel constitutive

eCGIs that are missed by cCGIs (Fig. 3 and Supplementary
Material, Fig. S4). In particular, computational algorithms under-
perform in the identification of tissue-specific eCGIs. This dis-
crepancy can be at least partially explained by the distinctive
DNA sequence characteristics of cCGIs and eCGIs. For example,
eCGIs, particularly tissue-specific eCGIs, show significantly
lower GC contents and observed/expected CpG ratios (CpGO/E ra-
tios) than cCGIs (SupplementaryMaterial, Fig. S5). Approximately
23.45% of the novel eCGIs have GC contents and CpG O/E ratios
that are below the thresholds used by computational methods,
with values as low as 0.36 and 0.40, respectively. Thus, the arbi-
trary GC content and CpG O/E ratio thresholds used by computa-
tional methods may compromise their power to predict more
tissue-specific CGIs.

The presence of repetitive elements is yet another genomic
feature that can interfere with the computational prediction of
CGIs. Typically, transposable elements are masked for CGI pre-
diction algorithms to avoid false positives (confounding of GC-
rich repetitive elements, particularly the Alu family). In contrast,
eCGIs substantially overlap with short interspersed repetitive
(SINE), long interspersed repetitive (LINE), and long terminal re-
peat (LTR) elements (Supplementary Material, Fig. S6). For ex-
ample, we identified a constitutive eCGI in the promoter of
TRIM16, a widely expressed tumor suppressor-like gene
(Fig. 3B). This novel CGI comprises sequences derived from

Figure 2. (A) Venn diagram showing the overlap between eCGI and cCGI sets. (B)
Heat map of CpG methylation patterns at cCGIs. cCGIs validated by whole-

genome DNA methylation maps are labeled as dark blue, and not-validated

cCGIs are shown in gray. Methylation levels are shown as a gradient (blue to red).
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Figure 3. Examples of novel constitutive eCGIs in promoter regions. (A) Novel eCGIs are identified in the promoter region of the retinoblastoma binding protein 5 gene RBBP5 (white blocks) which are not currently annotated in UCSC.

Experimental eCGIs are identified using methylation data from individual CpG sites in each tissue (colored dots). (B) Novel eCGI at the promoter of the TRIM16 gene (tripartite motif containing 16) on chromosome 17 overlaps with

repetitive elements by repeatmasker (red blocks). These genes are ubiquitously expressed, show active promoter chromatin marks and overlap with TSS in CAGE data in B-cell. Additional examples are shown in Supplementary

Material, Figure S4.
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AluYb8 and AluSx1 SINE elements and was thus previously un-
detected by computational methods that mask repetitive ele-
ments. Sperm eCGIs are specifically enriched for SINE-class
elements (mostly Alus), as shown previously (33,37,38). Conse-
quently, our experimental approach overcomes the limitations
of sequence-based methods to detect CGIs with variable se-
quence contents and/or repetitive sequences.

CGI shores and eCGIs

Early genome-wide methylation studies found that computa-
tionally predicted CGIs show relatively lowmethylation variation
across normal and cancerous tissues. In contrast, the regions lo-
cated immediately upstream (the so-called ‘CGI shores’) were
highly variable regarding DNA methylation (39,40). Accordingly,
broadly hypomethylated cCGIs tend to be flanked by more tis-
sue-restricted eCGIs located upstream, which concentrate the
highest amount of methylation variation (Fig. 4). Interestingly,
the GC contents and CpG O/E ratios in the shores are below the
criteria used by computationalmethods, explaining why compu-
tational algorithms typically miss the tissue-restricted islands at
‘CGI shores’ and providing a mechanistic explanation to this
phenomenon.

TF binding potential and chromatin states of eCGIs
indicate promoter and enhancer features

To understand the functional roles of eCGIs, we analyzed several
epigenomic and transcriptomic profiles of eCGIs. Experimentally

annotated transcription start sites (TSSs) using CAGE data from
the FANTOM 5 project (41) show that nearly all eCGIs (98.1%)
harbor at least one TSS. Comparison of TSS distributions of
cCGIs and eCGIs illustrates different strengths of the two ap-
proaches: although cCGIs capture TSSs that are constitutively
active in a broad number of tissues, eCGIs excel at identifying
tissue-specific TSS (Fig. 5A). Moreover, patterns of DNAmethyla-
tion at eCGIs are informative of their transcription initiation
potential across tissues: the number of tissues where each eCGI
is hypomethylated (referred to as ‘hypomethylation breadth’)
and tissue-wise distribution of TSS are strongly positively
correlated (Spearman’s ρ = 0.73, P < 10−15, Supplementary Mater-
ial, Fig. S7A).

We further examined ChIP-seq data for binding of 161 TFs in
91 cell types (42) to better understand themechanistic underpin-
ning of the TSS potential of eCGIs. The majority (81%) of eCGIs
overlaps with experimentally characterized TF binding regions.
Constitutive eCGIs exhibit significantly greater overlap with TF
binding regions (99.8%) than tissue-specific ones (37%), as ex-
pected given some of our tissues do not have a direct correspond-
encewith ENCODE samples. Tissue distributions of eCGIs showa
strong correlation with the number of different TFs they can po-
tentially bind (Spearman’s ρ = 0.78, P < 2.2×10−16, Supplementary
Material, Fig. S7B). Consequently, constitutively hypomethylated
eCGIs appear to be recognized by awide repertoire of TFs, where-
as cell-type specific eCGIs bind to a restricted number of TFs. For
instance, B-cell eCGIs are enriched for regions binding key TFs in-
volved in B-lymphopoiesis and lymphoma pathogenesis (such as
BCL11A, EBF1, IKZF1 and SPI1), whereas ESC-specific eCGIs are

Figure 4. Sequence composition (top), methylation breadth, Shannon entropy (bottom) of cCGIs and upstream CGI shores and shelves.
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enriched for binding of NANOG, a key TF regulating pluripotency
(43,44). Constitutive eCGIs, in contrast, are associated with gen-
eral TFs such as CREB1 and TAF7 (Supplementary Material,

Table S2). TF binding patterns of eCGIs and cCGIs illustrate the
enhanced ability of eCGIs to capture genomic loci of higher TF
specificity (Fig. 5B).

Figure 5. (A) Differing counts of TSS in eCGIs and cCGIs. TheX-axis represents the number of FANTOM5 tissues inwhich a givenCGI harbors one ormore TSSs (CAGE data).

(B) DistinctiveTF bindingpotentials of eCGIs and cCGIs. TheX-axis represents thenumbers of different TFs that bind to eachCGI. Data on specific TF bindingwere obtained

fromChIP-Seq data from ENCODE. (C) Enrichment for chromatin states in different CGI categories. ChIP-Seq based chromatin statemaps for three cell types are shown: B-

lymphoblastic cells, lung fibroblasts and ESCs. Colors indicate the log10 of the fold enrichment values.
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We also examined chromatin state maps (45) in three cell
types: two cell types overlapping with eCGI discovery tissues
(B-lymphoblastoid cell and ESC) and a control cell type (lung
fibroblast). Constitutive eCGIs are associated with promoter-
related chromatin states (regions with high frequencies of
H3K4me2 and H3K4me3 marks) in all three tissues (e.g. >55-fold
in B-cells and >65-fold in lung fibroblasts, Fig. 5C). In contrast, tis-
sue-specific eCGIs are over-represented by enhancer marks, but
only at concordant tissues. For example, B-cell-specific eCGIs
are highly enriched for strong enhancer chromatin marks in
B-lymphoblastoid cells (>32-fold, P < 0.001, high frequencies of
H3K4me1, H3K4me2, H3K4me3, H3K27ac and H3K9ac), but not
at lung fibroblasts (4-fold decrease, Fig. 5C). Accordingly, upon
studying all tissue-specific eCGIs (including tissue-specific
eCGIs in other cell types), the enhancer association is significantly
diluted (Fig. 5C). These are consistent with the high cell type
specificity of enhancer marks (45). In contrast, cCGIs that are
not validated in our experimental data set (putative false posi-
tives) do not show enrichment for promoter- or enhancer-like
chromatin marks (e.g. strong enhancer: 0.77-fold enrichment,
P = 0.9). Instead, these cCGIs are slightly associated with tran-
scription-related states (transcription elongation: >3- and >6-
fold in B-lymphoblastoid cells and lung fibroblasts, respectively,
P < 0.001), which can be explained by coding cCGIs’ proclivity for
false positives (discussed subsequently).

Distribution of eCGIs to annotated genomic regions

When annotated according to the TSSs of transcripts in the UCSC
database, the majority of eCGIs are located within genes or with-
in 3 kb of TSSs (63.6 or 59.3%, respectively), consistent with the
classical notion of an association between CGIs and gene promo-
ters (Fig. 6A). Gene expression and gene promoter methylation
are significantly negatively correlated, represented as a clear ‘L’
shape curve for all tissues (Supplementary Material, Fig. S8),
in line with previous studies (46). Heavy promoter methylation
is clearly repressive, whereas weak promoter methylation is
associated with highly variable gene expression patterns. As ex-
pected, genes that are differentially methylated between tissues
also tend to be differentially expressed in the expected negative
direction across tissue pairs in both microarray and RNAseq
data sets (Supplementary Material, Table S3).

It was previously shown that genes harboring cCGIs in pro-
moter regions are more broadly expressed than those without
cCGIs (8,47,48). Consequently, promoter CpG content was consid-
ered as a proxy for gene expression breadths (47–49). Given that
the underlying idea for the association between promoter CpG
content and gene expression breadth is DNAmethylation, wehy-
pothesized that DNA methylation characteristics of eCGIs in
promoters may provide a better indicator of gene expression
breadths than CpG content. Indeed, the correlation between DNA
methylation breadth and gene expression breadth was about
twice as stronger as that between promoter CpG contents and
gene expression breadths (Supplementary Material, Table S4). Fur-
thermore, genes with tissue-specific eCGIs in their promoters ex-
hibit more tissue-specific expression than those with constitutive
eCGIs (Supplementary Material, Fig. S9) and associate with tissue-
specific GO categories (Supplementary Material, Table S5), indicat-
ing co-regulation between eCGI methylation and gene expression
breadths.

A substantial number of eCGIs (n = 8527) are found in gene
bodies, where the proportion of novel eCGIs is high (Fig. 6A).
These eCGIs tend to exhibit higher tissue specificity of DNA
methylation than those at other locations (Fig. 6B). Together

with the pervasive presence of TSSs at eCGIs, this finding is
consistent with the putative role of gene body eCGIs in the tran-
scriptional initiation of alternative transcripts in a more tissue-
specific manner than eCGIs in canonical promoters (50,51). For
example, the well-known alternative promoters in the autism-
associated gene SHANK3 (50) are annotated as eCGIs. In contrast,
most exonic and intronic cCGIs could not be experimentally vali-
dated (58.6 and 56.7%, respectively, Supplementary Material, Fig.
S10). Computational algorithmsappear to particularly underperform
within gene bodies, possibly because coding sequences generally
have higher GC and CpG contents than the genomic background.
High false positive cCGIs in exons and introns also explain why
they exhibit transcription-related chromatin features (Fig. 5C).

The functional role of intergenic eCGIs is of particular inter-
est, as almost 40% of the novel eCGIs are located ≥3 kb from
the closest annotated gene, far outnumbering the currently an-
notated cCGIs in intergenic regions (4975 predicted versus
12 816 experimentally validated, Fig. 6A). The hypomethylation
breadth of intergenic eCGIs decreases with the distance to the
nearest gene (Supplementary Material, Fig. S11), indicating
that eCGI hypomethylation is more tissue-specific in gene de-
serts. Chromatin states of distal intergenic eCGIs (>10 kb from
any gene, n = 9353) associate with promoter and enhancer fea-
tures (Fig. 5C). Notably, even novel distal intergenic eCGIs asso-
ciate with promoter- and enhancer/insulator-related chromatin
states (∼48 and ∼13% of eCGIs, respectively, active promoter:
>28-fold enrichment, P < 0.001 in B-lymphoblastoid cells, Sup-
plementary Material, Table S6). These features of intergenic
eCGIs indicate their potential to enhance or initiate transcrip-
tion in a more tissue-specific fashion than promoter eCGIs. In-
deed, we find that 27.5% of the intergenic eCGIs overlap with
non-coding RNAs (ncRNAs) in the NONCODE V4 database (52)
and 43.1% of the intergenic eCGIs have an ncRNA within 3 kb.
Among these, the most common type of ncRNA is long inter-
genic ncRNA (lincRNA) (Fig. 6C). Considering the global presence
of TSS at eCGIs and the fact that non-coding transcripts are gen-
erally more tissue-specific than coding genes [78 versus 19% in
the case of lincRNAs (53)], additional associations between
eCGIs and ncRNAs are likely to be identified as more tissues
are included in the eCGI discovery. These features of intergenic
eCGIs are consistent with the role of ncRNAs in transcriptional
regulation (54,55).

Some eCGIs exhibit patterns consistent with genomic
imprinting

Comparison of DNAmethylation patterns of sperm versus other
tissues is consistentwith genomic imprinting at some eCGIs. For
example, the humanmiRNA cluster C19MC comprises dozens of
primate-specific ncRNAs (56) that are silenced in normal adult
tissues, but are expressed in the placenta, sperm and in many
tumor cells (56,57). The eCGIs upstream of C19MC (Fig. 7A) ex-
hibit sperm-specific hypomethylation (black dots) and a hemi-
methylated pattern unique to the placenta (blue dots). These
are consistent with the maternal imprinting of this region in
the placenta (57). Thus, the eCGI catalogmay include yet uniden-
tified imprinted CGIs. For instance, we find several novel eCGIs in
the MAGEL2 gene, which associates with the Prader–Willi syn-
drome and shows a paternal-specific expression in placenta
(58), in line with the methylation patterns of these eCGIs
(Fig. 7B). These examples illustrate that germ-line-specific
eCGIs could be useful to localize novel candidates for imprinting
and/or to identify tissues at which parent-of-origin expression
might occur.
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Discussion
Variation of DNAmethylation patterns at CGIs is critical inmany
aspects of biological processes, particularly in development and
disease (1,3,17,21). Even though originally proposed as ‘epigenet-
ic’ regulatory marks of the genome (1), most widely used list of
CGIs is predicted from computational algorithms. Such cCGIs
have been widely employed in epigenetic studies during the
last two decades. However, recent analyses indicate that cCGIs

harbor very low epigenetic variability, with only a small portion
of CGIs presenting tissue-specific hypomethylation (5,23,59).
Here,wedemonstrate thatanexperimentalapproachcanbeadopted
to successfully account for the variation in DNAmethylation at CGIs
and to overcome the limitations of bioinformatic methods.

We identified numerous hypomethylated CGIs that are ex-
perimentally validated (eCGIs). Many of these eCGIs are not in-
cluded in the current CGI annotation in UCSC. Further analyses

Figure 6. (A) Distribution of CGIs in relation to the UCSC annotation of genes. The promoter region was defined as 3 kb upstream of the TSS, downstream region as

immediate downstream genes within 3 kb and intergenic regions for distances >3 kb from genes in both directions. (B) Hypomethylation breadths (number of tissues

with eCGIs) of different regions. (C) Proportion of ncRNA classes found within 3 kb of intergenic eCGIs.
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Figure 7. (A) Imprinted CGI in the upstreamof C19MCmiRNAcluster is annotated as eCGIs. (B) Cluster of four novel eCGIs in the imprinted geneMAGEL2. The color scheme for DNAmethylation values (dots) is identical to that in Figure 3.
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support the idea that the arbitrary GC content and CpG O/E ratio
thresholds used by computational methods compromise their
power to predict more tissue-specific CGIs (5,22,23). In contrast,
computational algorithms tend to misidentify coding sequences
with high GC and CpG contents as CGIs, even though they are
constitutively hypermethylated (false positives).

In addition, we find significant impacts of transposable ele-
ments on the distribution of eCGIs. Recent reports suggest
tissue-specific enhancer activity of hypomethylated transpos-
able elements (60). However, repetitive sequences are typically
masked for cCGI prediction to avoid false positives (21). The
eCGIs fromwhole-genome bisulfite sequencing data affirm a per-
vasive presence of repetitive elements on eCGIs, revealing a large
number of repeat-derived hypomethylated regions. Many of
them harbor enhancer and/or promoter features, highlighting
the significant and dynamic role of repetitive elements in con-
structing the epigenetic landscapes of the human genome
(61,62).

Comparative analyses of eCGIs and cCGIs provide insights
into their complementary functional nature. eCGIs that are hypo-
methylated in all samples, or ‘constitutive’ eCGIs, generally over-
lap with cCGIs. In contrast, many novel eCGIs exhibit highly
tissue-specific patterns of hypomethylation and show little over-
lap with cCGIs. Analyses of TSS and TF binding potentials sub-
stantiate the link between hypomethylation and the initiation
of transcription. Nearly, all eCGIs harbor experimentally anno-
tated TSSs, and their tissue-wise hypomethylation patterns mir-
ror the patterns of TSS distribution. For instance, many novel
eCGIs harbor TSSs that are active in a limited number of tissues,
consistent with the idea that they are involved in tissue-specific
transcription. Moreover, tissue-specific eCGIs are enriched with
regions binding highly specialized TFs, whereas constitutive
eCGIs bind to a slew of general TFs. These characteristics,
and comparisons to cCGIs, demonstrate that eCGIs excel at
identifying loci associated with tissue-specific regulation of
transcription.

Thus, whole-genome methylation maps provide a compre-
hensive and experimentally validated list of hypomethylated
CGIs that are complementary to the widely used cCGI sets. In
particular, we substantially update the list of CGIs within gene
bodies, in which computational algorithms particularly under-
performdue to the confounding effects of sequence composition.
We also list numerous hypomethylated CGIs in intergenic re-
gions, which often harbor chromatin marks that are consistent
with promoter and enhancer features. An eCGI catalog ascer-
tained from a wide range of cell types including germ lines can
additionally shed light on the genomic regions involved in al-
lele-specific epigenetic processes such as genomic imprinting.

Previous efforts to define CGIs using experimental methods
relied onCXXC binding (22,24). Genome-wide differences in chro-
matography affinity and CpG density, however, might affect the
efficiency of CGI discoveries (63). Indeed, we observe distinctive
sequence features at these previous eCGI catalogs (Supplemen-
tary Material, Table S7 and Fig. S12). In contrast to affinity-
based methods, whole-genome bisulfite sequencing technique
provides DNA methylation values of nearly all CpG dinucleo-
tides, independently of its methylation status and (largely) of se-
quence content, allowing an unbiased and reproducible CGI
identification. eCGIs also provide improved annotations of func-
tional elements compared with previous methods (Supplemen-
tary Material, Table S8). For instance, promoter and enhancer/
insulator chromatin marks occupy 68 and 39% of the eCGI
lengths, respectively, highlighting the benefits of nucleotide-
resolution maps for delimiting hotspots of epigenetic regulation.

One caveat of our analyses is that we included tissues from
different individuals that might harbor single nucleotide poly-
morphisms (SNPs) (C to T mutations), compared with the refer-
ence genome. Because CpG sites are particularly prone to point
mutations (64,65), SNPs can affect the inference of DNAmethyla-
tion. Ideally, to circumvent this issue, genomic and epigenetic
profiles from same individuals should be used (27) or in case of
deeper sequencing coverage data, use mapping tools that will
take into account SNPs and DNA methylation in parallel (66).
Given the uncertainty about the samples and due to limited
coverage, we discarded sites known to harbor such SNPs based
on the 1000 Genomes Project data, to partially circumvent this
problem (26,67). Nevertheless, the resulting eCGI set exhibits sig-
natures of functional and regulatory elements from several inde-
pendent data sets, indicating that our strategy successfully
identified epigenetically consistent profiles.

In summary, we describe a novel, extensive catalog of eCGIs
that curates the currently used CGI sets and adds the critical tis-
sue dimensionality that is inherent to any epigenetic study. This
CGI catalog maintains a total length of 20.9 MB, which is equiva-
lent to that of the currently annotated CGIs in the UCSC Genome
Browser. Our comparison to USCS CGIsmight be conservative be-
cause other prediction algorithms have higher false-positive
rates (2). Being based on bisulfite sequencing (the gold standard
technique for the study of DNA methylation), the present CGI
set provides the highest resolution, improving the annotation
of regulatory elements within CGIs. We expect this CGI catalog
to be a valuable resource for epigenetic studies and therefore rec-
ommend its use in DNAmethylation-reduced representation as-
says and methylation arrays targeting tissue-specific regulation.

Materials and Methods
Bisulfite sequencing data

We downloaded whole-genome bisulfite sequencing reads for 10
different tissues (Supplementary Material, Table S9). The tissues
were selected to have the highest cell type diversity with regard
to global gene expression (68), and we avoided heterogeneous
cell types and in vitro cultured cells whenever possible (the ESC
sample is the only cultured sample included). The selected tis-
sues also included different early embryonic primary cell layers
(endoderm, mesoderm and ectoderm). We followed the quality
control steps recommended for bisulfite sequencing data (69) to
ascertain the accuracy of themethylation calls. We applied qual-
ity control and mapping procedures to all samples to obtain a
homogeneous, high-quality data set (Supplementary Material,
Table S10). The reads were aligned to the Human Reference Gen-
ome (hg38) using Bismark (70). We considered 18 889 743 CpG
sites that were covered by at least five reads in all 10 tissues.
Themedian read depth coverage of these sites was >12× (Supple-
mentary Material, Table S11). Fractional methylation levels were
computed as the ratio of the counts of methyl-C to the total
counts of C for the genomic region of interest (12,13,15).

CGI detection

To avoid the confounding effects of DNA methylation and sex
chromosomes (13), only autosomes were considered for CGI de-
tection. Given the uncertainty about the samples and due to lim-
ited coverage, we discarded polymorphic CpG sites overlapping
with SNPs at >1% minor allele frequency in the 1000 Genomes
Project data (71). To avoid genomic regions that cannot be unam-
biguously mapped, CpGs with GenomeMappability Scores below
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50 were also discarded (72). A total of 18 009 699 CpG sites
remained.

We identified eCGIs in each of the 10methylomes using a slid-
ing window approach with in-house PERL scripts. We used a
200 bp sliding window with a 50 bp step size and extended the
window until it contained <80% of sparse (<0.2) methylation.
The windows also had to include at least 10 CpG sites (we also
considered other densities, see CpG density and CGI definition).
The length criterion of 200 bp was chosen for a fair comparison
to the cCGIs in UCSC. Under these conditions, the CpG O/Es of
each window ranged between 0.2 and 20. Following these proce-
dures, we detected approximately 30 000 eCGIs per tissue, ran-
ging between 200 bps and 3.6 kbps in length (Supplementary
Material, Fig. S13). To generate the final eCGI set, the eCGIs that
overlapped across tissuesweremerged (345 475 CGIs in 10 tissues
were merged to 51 572 CGIs).

CpG density and CGI definition

We explored the impact of different criteria on eCGI discovery.
Changing the lengths and/or the hypomethylation criteria did
not substantially change the number or location of the CGIs
(Supplementary Material, Table S12). The most significant fac-
tor on the eCGI sets is the CpG density. As expected, a low
CpG density allowed for the inclusion of a higher number of hy-
pomethylated islands, ranging from almost 500 000 eCGIs
(spanning 173 MB), in contrast to the conservative set of 29 000
CGIs (9.7 MB, Supplementary Material, Table S13) on the other
extreme. The setting of at least 10 CpGs per window led to a
total of 20.89 MB of genomic eCGIs, which is comparable to
the UCSC cCGI set (20.92 MB), allowing for a fair comparison
for the purposes of this study. Lower CpG density allows the
discovery of additional tissue-specific eCGIs (Supplementary
Material, Table S13).

CGI genomic features

Statistical analyses were performed using R (73). Repetitive ele-
ments were downloaded from UCSC (rmsk table hg38). Overlaps
among the tissue-level eCGIs with cCGIs as well as with other
genomic features were computed using the GenomicRanges
(74) R Bioconductor package. All genomic coordinates fromprevi-
ous builds were converted to hg38 using the UCSC liftover tool in
rtracklayer R package. Venn diagrams were computed using the
venneuler package. The distribution of CGIs within 3 kb of the
TSS of the closest gene (the longest transcript of each gene) was
computedwith the ChIPseeker package and using the KnowGene
table in UCSC hg38. Intergenic eCGIs are defined as those that
are at least 3 kb away from any gene region. GO category enrich-
ment analyseswere performedwith the GOstats package (75). For
plotting, we used the Colorbrewer, Gviz and corrplot packages.
Shannon information was computed as −P × log2(P), in which
P is the ratio of the number of tissues showing hypomethylation
(<0.2) to the total number of tissues studied.

Gene expression and transcription initiation

Gene expression data were downloaded from the BioGpS data-
base (http://biogps.org/). The data set comprised GC Robust
Multi-array Average normalized Affymetrix microarray data
from 78 healthy tissues (HumanU133A/GNF1H Gene Atlas). The
44 775 probes were assigned to 12 494 Entrez genes using
the Bioconductor Affymetrix Human Genome U133A 2.0 Array
annotation library. The expression breadth of each gene was

computed as the number of tissues showing expression values
above the median across all tissues and genes. Using different
cutoffs (0.25 and 0.75 quantiles) provided similar results (Supple-
mentary Material, Fig. S9). RNAseq data sets were downloaded
from the RNAseq Atlas (http://medicalgenomics.org/rna_seq_
atlas), and the following tissues were included: colon, liver,
ovary and hypothalamus (matched with a neuron sample for
methylation). CAGE data from FANTOM5 (41) were downloaded
using the CAGE Bioconductor package. Different cutoffs for the
number of minimum tags supporting each TSS (from 1 to 5)
showed similar distribution of TSS breadths (Supplementary
Material, Fig. S7C and D).

TFs and chromatin states

We analyzed ENCODE ChIP-Seq data for 161 TFs in 91 cell types
(wgEncodeRegTfbsClusteredV3 table in UCSC).We used the chro-
matin states for B-lymphoblastoid cells (GM12878), ESCs (H1 ES)
and lung fibroblasts (NHLF) (wgEncodeBroadHmm table in
UCSC). These chromatin states were inferred from high-through-
put sequencing (ChIP-Seq) experiments on the following chro-
matin marks: H3K4me3, H3K4me2, H3K4me1, H3K9ac, H3K27ac,
H3K36me3, H4K20me1, H3K27me3 and CTCF (45). The enrich-
ment and P-values were obtained by bootstrapping. For each
CGI category, the same number and width of islands were ran-
domly sampled 1000 times from the genome-wide chromatin
states.

ncRNA databases

We downloaded the NONCODE V4 data set from http://www.
noncode.org (29 October 2015, date last accessed). To test the sig-
nificance of the overlap with intergenic eCGIs, we applied the χ2

test, considering only autosomal chromosomes and assuming
0.89 as the mappable fraction of the genome.

Data availability

The annotations (hg38) for the experimentally defined CGIs
(eCGIs) and their tissue-wise distribution (1: presence, 0: absence)
are shown in Supplementary Material, Table S1.

Supplementary Material
Supplementary Material is available at HMG online.
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