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Abstract

The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the b2
integrins LFA-1, Mac-1 and adb2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present
evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-
3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate
sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions
of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon
monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes
that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity,
and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether
these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which
contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage
differentiation and monocyte extravasation.
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Introduction

Intercellular Adhesion Molecule 3 (ICAM-3, CD50) is a cell

surface molecule which belongs to the immunoglobulin gene

superfamily, and whose extracellular region contains five immu-

noglobulin-like domains. Originally identified as a molecule

involved in lymphoblastoid cell adhesion to purified LFA-1

(CD11a/CD18) [1], numerous studies have now provided

evidence that ICAM-3 functions as a ligand for LFA-1, Mac-1

(CD11b/CD8) and adb2 integrins [2,3,4]. Moreover, ICAM-3 has

been also proposed as a ligand for the Dendritic Cell-Specific

ICAM-3-Grabbing Non Integrin (DC-SIGN) C-type lectin [5].

Whereas LFA-1 interacts with the most N-terminal immunoglob-

ulin domain of ICAM-3 (domain I) [6], the second domain of

recombinant ICAM-3 is responsible for the interaction with high

mannose-containing carbohydrates of DC-SIGN [7].

From the functional point of view, ICAM-3 mediates a plethora

of immunologically relevant homotypic and heterotypic intercel-

lular interactions [2,8], such as leukocyte recruitment during

migration [9], removal of apoptotic cells [10] and lymphocyte

interactions with antigen-presenting cells [11]. Importantly,

ICAM-3 is involved in the interactions that take place during

the early stages of the immunological synapse stablishment [12].

ICAM-3 engagement on the T cell surface increases the CD3-

mediated up-regulation of CD25 and CD69 [13] and initiates

intracellular signaling including calcium transients [14,15] and

tyrosine phosphorylation [16]. In addition to its role in leukocyte

adhesion, ICAM-3 also contributes to leukocyte migration by

virtue of its relocalization to the trailing edge upon leukocyte

polarization [9,17], an effect that takes place by its interaction with

cytoskeletal components such as ERM proteins [17]. Consequent-

ly, ICAM-3 is not only a cell surface adhesion molecule but

functions as a co-stimulatory molecule with intracellular signaling

capability.

In spite of the critical effector functions mediated by ICAM-3,

the molecular mechanisms underlying its expression have not yet

been characterized. ICAM-3 is structurally and functionally

homologous to the LFA-1 ligands ICAM-1 and ICAM-2, but

exhibits a different pattern of expression. While ICAM-1

expression is ubiquitous and activation-dependent [18] and

ICAM-2 is endothelial cell-specific [19], the expression of

ICAM-3 is restricted to cells of the hematopoietic lineage [6].

More specifically, ICAM-3 is found on the surface of most
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leukocytes and is highly expressed on peripheral blood granulo-

cytes, monocytes and lymphocytes [6]. Unlike ICAM-1, the cell

surface expression of ICAM-3 is not dependent on the state of

cellular activation, although higher ICAM-3 levels are seen in

memory than on naı̈ve T lymphocytes [15]. We now report that

ICAM-3 protein and mRNA levels are dramatically reduced upon

monocyte to macrophage differentiation and following monocyte

transendothelial migration. To identify the cis-acting elements and

transcription factors that control this regulation, we have

functionally dissected the proximal regulatory region of the

ICAM-3 gene. Our results indicate that the ICAM-3 gene

promoter exhibits a leukocyte-specific activity that is dependent

on the occupancy of RUNX and C/EBP cognate sequences both

in vitro and in vivo. Moreover, RUNX factors transactivate the

ICAM-3 promoter either alone or in collaboration with Ets-1 and

C/EBPa factors. Finally, we also demonstrate that RUNX3 exerts

a negative regulatory effect on ICAM-3 expression in myeloid

cells. These results constitute the first description of transcription

factors actively implicated in determining the leukocyte-specific

and differentiation-regulated expression of ICAM-3.

Results

Tissue specific activity of the ICAM-3 gene promoter
The adhesion molecule ICAM-3 is the major ICAM expressed

by resting leukocytes [6]. ICAM-3 is expressed by THP-1 myeloid

cells and Jurkat lymphoid cells but not by erythroleukemic or

melanoma cell lines like K-562 or BLM cells (Fig. 1A). The distinct

mobility of the ICAM-3 on THP-1 and Jurkat cells probably

reflects the cell type-specific glycosylation of the molecule, that

appear to have functional consequences [20]. To determine the

factors controlling ICAM-3 expression, we first sought to analyze

the DNA elements and transcription factors involved in the

leukocyte restricted-expression of ICAM-3. To that end, we

amplified by PCR a genomic region immediately upstream of the

structural region of the ICAM-3 gene (21080/+53, pCD50-

1000Luc) and generated two additional deletion constructs

spanning the regions 2505/+53 and 2164/+53 (pCD50-

500Luc and pCD50-200Luc). The three ICAM-3 promoter-based

constructs were analyzed in ICAM-3+ THP-1 and Jurkat cells and

the ICAM-32 K-562 and BLM cell lines (Fig. 1A). The three

constructs exhibited higher activity in Jurkat and THP-1 ICAM-

3+ cells than in K-562 or BLM cells (Fig. 1B). On average, the

activity of the pCD50-1000Luc, pCD50-500Luc and pCD50-

200Luc constructs was 25- fold higher in ICAM-3+ Jurkat cells

than in non-expressing cells, and 14-, 9- and 10- fold higher in

ICAM-3+ THP-1 cells than in non-expressing BLM cells.

Therefore, the ICAM-3 proximal promoter displays tissue-

restricted activity and exhibits a higher activity in cells with a

constitutive expression of ICAM-3.

The sequence analysis of the region 2164/+53 revealed that

the ICAM-3 gene promoter lacks TATA and CCAAT boxes.

59RACE allowed us to identify three major transcriptional start

sites within the ICAM-3 gene in lymphoid cells, two of them

conserved in myeloid cells. The major transcription initiation site

(74% of the transcripts in Jurkat and 90% of the transcripts in

THP-1 cells) was found 54 bp upstream from the translational start

site, and coincides with the initial nucleotide of the predicted exon

1 (adscribed the +1 position, Fig. 1C). The sequence around the +1

position showed homology to the Initiator promoter element as it

conforms to the consensus YYANWYY [21]. In Jurkat cells, two

other transcriptional start sites were found 10 bp and 29 bp

upstream from the first ATG and each one of them was used in

13% of the mRNA transcripts while in THP-1 cells 10% of the

transcripts begin 10 pb upstream from the first ATG (Fig. 1C).

RUNX1 and RUNX3 recognizes the ICAM-3 promoter in
vitro and in vivo

Most of the tissue-specific activity of the ICAM-3 gene was

retained in the region of the promoter 2164/+53 (Fig. 1B). To

find the transcription factors involved in the restricted-expression

of ICAM-3, gel shift assays were performed with oligonucleotides

spanning the region 2157/214 (Fig. 2A). Comparison of the

pattern of retarded complexes among distinct hematopoietic cells

lines indicated that recognition of the region 293/214 was cell

type-specific (Fig. 2A, C, D). The pattern of binding on ICAM3.3

and ICAM3.5 probes was similar in nuclear extracts from THP-1

and Jurkat cell lines whereas a THP-1-specific retarded complex

was observed in ICAM3.4 probe. The pattern of retarded

complexes, their absence in K-562 cells, and the presence of

putative RUNX-binding sites led us to hypothesize that ICAM3.3

and ICAM3.5 DNA elements were recognized by RUNX factors.

Therefore, RUNX1, RUNX3 and CBF-b were overexpressed in

COS-7 cells, and the resulting extracts were assayed for binding

to ICAM3.3 and ICAM3.5 probes. As shown in Figure 2B,

RUNX1/CBF-b and RUNX3/CBF-b recognized the RUNX-

binding elements within the ICAM-3 promoter. Moreover, the

retarded complexes were inhibited in the presence of the

AMLcons oligonucleotide, which contains a consensus binding

site for members of the RUNX transcription factor family, and by

the anti-RUNX1 antibody R3034 (Fig. 2C) and were not

competed in the presence of ICAM3.3 and ICAM3.5 oligonu-

cleotides with mutated RUNX elements (Fig. 2C, E). Altogether,

these results demonstrate that RUNX1/CBF-b and RUNX3/

CBF-b interact with two sequences located at 280 (R1 element)

and 229 (R2 element) within the regulatory region of the ICAM-

3 gene (Fig. 2B, C). The ICAM3.4 oligonucleotide contains the

sequence TTCTGCAA which matches the consensus C/EBP

binding sequence (TTGCGCAA) (Fig. 2E). To determine

whether this particular sequence was involved in formation of

the myeloid retarded complexes (Fig. 2A), ICAM3.4, ICAM3.4-

mutCEBP and CEBPcons, an oligonucleotide containing the C/

EBP consensus sequence, were used as cold competitors in EMSA

experiments with THP-1 nuclear extracts (Fig. 2D). Competition

with ICAM3.4mutCEBP oligonucleotide left the pattern of

complexes unaffected whereas ICAM3.4 and CEBPcons elimi-

nated the retarded complexes. The specific interaction of C/EBP

factors with ICAM3.4 was finally evidenced by the capacity of

polyclonal antisera against C/EBPa to inhibit the complexes

observed in THP-1 cells (Fig. 2D), thus indicating that in myeloid

cells C/EBPa recognizes the TTCTGCAA element at 247 of the

ICAM-3 gene regulatory region.

To confirm the in vivo occupancy of RUNX factors on the

ICAM-3 promoter, chromatin immunoprecipitation assays were

performed with Jurkat cells, which exhibit a high level of

expression of ICAM-3 (Fig. 1A). The proximal ICAM-3

promoter region, containing both RUNX-binding elements,

could be amplified from anti-RUNX1 immunoprecipitated

chromatin, whereas no amplification was obtained in the

presence of control rabbit immunoglobulins (Fig. 2F). Attempts

to perform RUNX3 ChIP were unsuccesfull due to the lack of

ChIP-grade RUNX3 antibodies. Therefore, RUNX and C/EBP

factors recognize the proximal promoter of ICAM-3 in vitro and

RUNX recognition can be detected in vivo by means of chromatin

immunoprecipitation.

RUNX3 Regulates ICAM-3 Expression
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Functional relevance of RUNX binding to the ICAM-3
promoter

RUNX functional activity is well known to be context- and cell

type-dependent and their effect on a given regulatory region varies

with the cell lineage and the cellular activation state [22]. Since

erythroleukemic K-562 cells are a useful cellular system to

illustrate the RUNX-dependent activity of gene regulatory regions

(CD36, CD11a) [23,24], we tested the effect of RUNX protein

overexpression on the ICAM-3 promoter activity in this cell line,

which is devoid of RUNX1 and RUNX3 [25]. As shown in

Figure 3A, overexpression of RUNX1/CBF-b produced a 160

fold increase in the activity of the ICAM-3 promoter construct

pCD50-1000Luc. The ICAM-3 promoter transactivation was

observed at distinct reporter:vector ratios (data not shown) and

with all the deletions containing the RUNX-binding elements R1

and R2. Transfection of RUNX3/CBF-b also led to a great

increase in the activity of the ICAM-3 promoter (47-fold for

pCD50-1000Luc) although in all cases the transactivation effect

was lower than with RUNX1/CBF-b (Fig. 3A). Then, the effect of

mutation of the RUNX-binding sites, either separately or

combined, was evaluated within the pCD50-200Luc context. As

shown in Figure 3B, mutation of R2 element reduced the

transactivation to 30% of the level observed on the wild type

promoter, while mutation of R1 element reduced RUNX

transactivation twice thus implying that the R2 element plays a

more relevant role in RUNX1- and RUNX3-dependent transac-

tivation. Moreover, mutation of both RUNX-binding elements

considerably reduced (83% and 85%, p,0.05) the transactivation

capacity of RUNX1 and RUNX3 (Fig. 3B, C). Altogether, these

results indicate that RUNX factors regulate the activity of the

ICAM-3 promoter through interaction with both R1 and R2

RUNX-binding elements.

C/EBPa and Ets-1 collaborates with RUNX in ICAM-3
transactivation

Sequence analysis and EMSA experiments in the ICAM-3 gene

regulatory region suggested that C/EBPa and Ets factors could be

implicated in ICAM-3 promoter regulation (Fig. 1C, 2D). Since

both factors have been previously reported to collaborate with

RUNX [26,27], we evaluated the influence of Ets-1 and C/EBPa

Figure 1. Restricted expression of ICAM-3 and cell-specific activity of the ICAM-3 promoter. A. Determination of ICAM-3 expression in
BLM, Jurkat, K-562 and THP-1 cell lines by Western blot. As a control, b-actin expression levels were also determined. The experiment was performed
twice and one of the experiments is shown. B. The ICAM-3 promoter-based constructs pCD50-1000, pCD50-500 and pCD50-200 were transfected in
Jurkat (ICAM-3+), THP-1 (ICAM-3+), BLM (ICAM-32) and K-562 (ICAM-32) cell lines. After 48 hours cells were lysed and luciferase activity determined.
For each reporter construct, promoter activity is expressed relative to the activity produced by the reporter plasmid in BLM cells, arbitrarily set to 1,
after normalization for transfection efficiency. Data represent mean 6 SD of 4 independent experiments using two different DNA preparations.
(*p,0,05 for pCD50-1000Luc in THP-1 and Jurkat and p = 0.8 for K-562 when compared with the activity of pCD50-1000Luc in BLM cells; **p,0.005
for pCD50-500Luc in THP-1 and Jurkat and p = 0.5 for K-562 when compared with the activity of pCD50-500Luc in BLM cells; and * p,0.05 for pCD50-
200Luc in THP-1 and Jurkat cells and p = 0.2 for K-562 cells when compared with the activity of pCD50-200Luc in BLM cells). C. Nucleotide sequence
of the 59-regulatory region of the ICAM-3 gene. The transcriptional initiation sites are identified by * and the major transcription initiation site is
denoted by +1. First exon nucleotides are shown in boldface type and are underlined. The derived amino acid sequence is shown under the coding
region of the first exon. Underlined areas correspond to consensus sequences for RUNX, C/EBP and Ets transcription factors.
doi:10.1371/journal.pone.0033313.g001
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in transactivation experiment (Fig. 3D–E). RUNX1 and Ets-1

transactivated ICAM-3 promoter and mutation of R1 and R2

elements considerably reduced the transactivating capacity of both

factors. Co-expression of RUNX1 and Ets-1 produced a

considerable increase in the activity of the ICAM-3 promoter

(on average 78-fold), and mutation of both R1 and R2 RUNX-

binding elements resulted in a complete loss of the collaborative

effect. Similar results were obtained in K-562 cells, where the

activity of the ICAM-3 promoter in the presence of RUNX1 and

C/EBPa was higher than the activity exhibited in the presence of

each individual factor, and mutation of RUNX and C/EBP-

binding elements abrogated the collaborative effect (Fig. 3E).

Altogether, these results demonstrate that the transactivation

ability of RUNX1 on the ICAM-3 promoter is enhanced in the

presence of either Ets-1 or C/EBPa and indicates that RUNX1

synergizes with Ets-1 in transactivation of the ICAM-3 promoter.

Modulation of ICAM-3 expression: ICAM-3 is
downregulated during monocyte to macrophage
differentiation, monocyte transendothelial migration and
DC maturation

The cytokines GM-CSF and M-CSF contribute to macrophage

differentiation and polarization [28], and we next analyzed the

expression of ICAM-3 in monocytes and fully polarized macro-

phages differentiated by either M-CSF (M2 macrophages) or GM-

CSF (M1 macrophages). In the presence of either cytokine ICAM-

3 cell surface expression was greatly diminished, although ICAM-3

levels were lower in M2 (M-CSF) macrophages, which exhibited

higher CD163 expression (Fig. 4A) [29]. The scavenger receptor

CD163 is a macrophage marker preferentially found on M2 (M-

CSF) macrophages [30]. In agreement with the cell surface

expression data, ICAM-3 mRNA levels were also reduced in both

Figure 2. Identification and characterization of RUNX and C/EBP-binding elements within the ICAM-3 gene proximal regulatory
region. A. EMSA was performed on the indicated oligonucleotides spanning the 2157/214 region of the ICAM-3 promoter using nuclear extracts
from THP-1, K-562 and Jurkat cells. The position of the major retarded species is indicated. B. EMSA was performed on the ICAM3.3 and ICAM3.5
oligonucleotides using nuclear extracts from the indicated COS-7 cells transfected with an empty expression vector (pCDNA3) or with either RUNX1
or RUNX3 together with CBF-b expression vector. The position of the RUNX1- and RUNX3-containing complex is shown. C. EMSA was performed on
the ICAM3.5 and ICAM3.3 oligonucleotides using nuclear extracts from Jurkat cells in the absence (2) or presence of unlabeled competitor
oligonucleotides (ICAM3.5, ICAM3.5mutRUNX, ICAM3.3, ICAM3.3mutRUNX, AMLcons) or polyclonal antisera against CD209 (Control antibody, Cnt Ab)
or RUNX1 proteins (R-3034). The position of RUNX1-containing complexes are shown. Unlabeled competitor oligonucleotides were added at a 100-
fold molar excess. D. EMSA was performed on the ICAM3.4 oligonucleotide using nuclear extracts from THP-1 cells in the absence (2) or presence of
unlabeled competitor oligonucleotides (ICAM3.4, ICAM3.4mutCEBP, C/EBPcons) or polyclonal antibody against CD209 (Control antibody, Cnt Ab) or
C/EBPa proteins (a-C/EBPa). The position of C/EBPa-containing complexes are shown. Unlabeled competitor oligonucleotides were added at a 100-
fold molar excess. In A–D, EMSA’s were performed twice with similar result and a representative experiment is shown. E. ICAM-3 promoter-based
oligonucleotides with mutated nucleotides in lowercase and their relative positions. F. In vivo occupancy of the ICAM-3 promoter by RUNX1.
Chromatin immunoprecipitation on Jurkat cells was performed with an affinity-purified polyclonal antisera specific for RUNX1 or purified rabbit IgG.
Immunoprecipitated chromatin was analyzed by PCR using a pair of ICAM-3 promoter-specific primers that amplify a 234-bp fragment flanking the
RUNX-binding sites at 280 and 229. ChIP experiment was performed twice with similar results, and a representative experiment is shown.
doi:10.1371/journal.pone.0033313.g002
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M1 (GM-CSF) and M2 (M-CSF) fully polarized macrophages

(Fig. 4B), indicating that ICAM-3 downregulation is linked to

monocyte-to-macrophage differentiation. Kinetic analysis revealed

that ICAM-3 mRNA downregulation was initially detected 24 h

after M-CSF addition and was maintained thereafter (Fig. 5A),

while the M2 (M-CSF) macrophage specific marker FOLR2

mRNA increased 48 to 72 hours after M-CSF addition [31]. Since

M-CSF downregulates monocyte-ICAM-3 expression, RUNX

proteins were examined in parallel. While RUNX1 protein

expression levels were kept constant, the RUNX3/p44 and

RUNX3/p46 isoforms increased 24 h–48 h after M-CSF addi-

tion, indicating that the expression of RUNX3 and ICAM-3 are

inversely correlated. Evaluation of monocytes during transmigra-

tion across an endothelial monolayer was also used to measure the

link between RUNX factors and ICAM-3 expression. Migrated

monocytes exhibited lower levels of ICAM-3 mRNA and protein

than non-migrated monocytes. By contrast, RUNX3 expression

increased after monocytes transmigrate through the endothelium

(Fig. 5B). Finally, we extended these findings to the DC maturation

process and examined ICAM-3 and RUNX protein levels during

LPS-induced DC maturation (Fig. 5C). LPS maturation dimin-

ished mRNA and protein expression of ICAM-3 (Fig. 5C) while

increased the maturation marker CD83 (data not shown). In

agreement with previous reports [32], RUNX3p44 and p46

expression increased during the 24 h LPS-treatment, while

RUNX1 levels were undetected (data not shown). These results

confirmed that, like in the case of M-CSF-macrophage differen-

tiation and monocyte transendothelial migration, the expression of

RUNX3 and ICAM-3 are inversely correlated.

RUNX3 inhibits ICAM-3 expression in myeloid cells
The opposed regulation of RUNX3 and ICAM-3 expression

that we had observed during macrophage differentiation and DC

maturation led us to hypothesize that RUNX3 negatively regulates

ICAM-3 expression. To test this hypothesis, we selected the

myeloid THP-1 cell line because its transfectability allowed us to

analyze the influence of mutations of the RUNX-binding sites on

the ICAM-3 promoter activity and the effect of knocking-down

Figure 3. RUNX factors regulate the activity of the ICAM-3 promoter through the recognition of both RUNX-binding sites. A. K-562
cells were transfected with 1 mg of the indicated reporter plasmid in the presence of CMV-0 (empty expression vector), pCMV-RUNX1 or pCDNA3-
RUNX3, and luciferase activity determined after 24 h. For each individual reporter construct, fold induction represents the luciferase activity yielded
by an expression vector relative to the activity produced by a similar amount of CMV-0 plasmid. Data represent mean 6 SD of 4 independent
experiments using distinct DNA preparations. (*P,0.005 compared with the activity of pCMV-0–transfected cells). B. K-562 cells were transfected
with 1 mg of the indicated reporter plasmids in the presence of CMV-0, RUNX1/CBF-b or RUNX3/CBF-b expression plasmids, and luciferase activity
determined after 24 h. (*P,0.05 compared with the activity of pCD50-200Luc–in the presence of RUNX1/CBF-b or RUNX3/CBF-b, respectively). C.
Schematic representation of the proximal regulatory region of the ICAM-3 gene and reporter plasmids used for its functional dissection. D. COS-7
cells were transfected with the indicated reporter plasmids in the presence of CMV-0, RUNX1/CBF-b or Ets-1 expression plasmids, and luciferase
activity determined after 24 h. E. K-562 cells were transfected with 1 mg of the indicated reporter plasmids in the presence of CMV-0, RUNX1/CBF-b or
C/EBPa42 expression plasmids, and luciferase activity determined after 24 h. In B, D, E, for each individual reporter construct, fold induction
represents the luciferase activity yielded by an expression vector relative to the activity produced by a similar amount of CMV-0 plasmid. Data
represent mean 6 SD of 3 independent experiments.
doi:10.1371/journal.pone.0033313.g003
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RUNX3 on ICAM-3 expression. Disruption of R2 element

produced a significant (90%, p,1023) increase in the activity of

the ICAM-3 promoter, demonstrating that preventing RUNX

binding to the R2 element increases the activity of the ICAM-3

promoter in ICAM-3-expressing myeloid cells. The effect of

disrupting the R1 element was lower (60% increase), while the

simultaneous mutation of R1 and R2 RUNX-binding elements

increased promoter activity twice (p,1025), thus demonstrating

that RUNX negatively regulates ICAM-3 promoter activity in

myeloid cells (Figure 6A). To definitively prove the direct influence

of RUNX3 on ICAM-3 expression, ICAM-3 mRNA expression

level was assessed by a knockdown approach on ICAM-3-

expressing THP-1 cells. Nucleofection of two distinct RUNX3-

specific siRNA in THP-1 cells, which reduced RUNX3 levels by

more than 50% (Fig. 6B), led to an increase of the ICAM-3 mRNA

levels as determined by quantitative RT-PCR (Fig. 6B). Therefore,

decreasing RUNX3 expression had a direct impact on the ICAM-3

RNA levels in THP-1 cells, thus confirming the negative

involvement of RUNX3 in ICAM-3 gene expression.

Discussion

The ICAM-3 adhesion receptor mediates leukocyte-leukocyte

interactions and its expression is restricted to hematopoietic

lineage cells. The basis for the leukocyte restricted and regulated

expression of ICAM-3 has remained so far unknown. We now

report that the ICAM-3 leukocyte restricted expression reflects the

tissue-specific activity of the ICAM-3 gene promoter. Besides, we

show that Ets, C/EBP and RUNX factors control the activity of

the ICAM3 gene regulation region, where they bind in a tissue-

specific manner, thus suggesting that these factors might

contribute to its tissue-restricted activity. In fact RUNX1, RUNX3

and C/EBP bind in vitro to the ICAM-3 gene promoter, which is

occupied in vivo by RUNX1 in lymphoid Jurkat T cells. Moreover,

we have observed that ICAM-3 expression is dramatically

downregulated at the early stages of the in vitro monocyte to

macrophage differentiation process and upon monocyte transmi-

gration across endothelial monolayers. In both circumstances,

ICAM-3 downregulation correlates with an enhanced expression

of RUNX3, suggesting a negative regulatory action of RUNX

factors on ICAM-3 expression. This suggestion was confirmed by

the enhanced ICAM-3 gene promoter activity observed after

mutation of two proximal RUNX-binding sites and by the

enhanced ICAM-3 mRNA levels in siRNA-RUNX3-transfected

THP-1 macrophages. Like in the case of the CD36 gene [23],

RUNX factors negatively regulate ICAM- 3 gene promoter

activity in THP-1 myeloid cells, while they potentiate the

promoter activity in erythroleukemic K-562 cells, thus adding

the ICAM-3 gene promoter to the list of gene regulatory regions

where RUNX factors exert a context-dependent function

(activation versus repression). As a whole, the present report

constitutes the first description of the processes where ICAM-3

expression is dramatically modulated and the identification of the

transcription factors that regulate ICAM-3 expression.

Unlike ICAM-1, whose expression is highly induced by pro-

inflammatory cytokines and is sensitive to the cytokine environ-

ment [18], ICAM-3 expression has not been reported before to be

dependent on extracellular stimuli. The lack of a murine

orthologue for human ICAM-3 has precluded the definition of

its in vivo physiological role, and its functions during immune and

inflammatory responses have been deduced from in vitro

experiments. In this regard, and through its interaction with

LFA-1, ICAM-3 on lymphoid T cells mediates homotypic

aggregation [8], T cell co-stimulation [13] and the initial scanning

previous to immunological synapse formation [12]. Within the

myeloid lineage, ICAM-3 is the predominant co-stimulatory

ligand for LFA-1 on human blood DC [33], since blocking anti-

ICAM-3 antibodies are potent inhibitors of DC-stimulated

allogenic responses. This has led to the hypothesis that ICAM-3

is the most relevant LFA-1 ligand during the initial stages of the

DC-T lymphocyte interactions [12,33]. Accordingly, the higher

Figure 4. Expression of ICAM-3 during macrophage differentiation. A. ICAM-3 expression on monocytes and macrophages differentiated in
the presence of either GM-CSF (M1) or M-CSF (M2) during 7 days from two different donors, as determined by flow cytometry (empty histogram). As a
control (filled histogram), an FITC-labeled isotype antibody was used. The percentage of marker-positive cells and the mean fluorescence intensity (in
parenthesis) are indicated in each case. In donor 2 expression of CD163 is indicated as a control of differentiation. B. ICAM-3 mRNA expression levels
on monocytes, and fully differentiated (7 days) M1 (GM-CSF) and M2 (M-CSF) macrophages, as determined by qRT-PCR. Results are expressed as
Relative mRNA levels (relative to GAPDH mRNA levels and the ICAM-3 mRNA level on monocytes). Data represent mean 6 SD of 3 independent
donors.
doi:10.1371/journal.pone.0033313.g004
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levels of ICAM-3 on M1 (GM-CSF) macrophages compared to

M2 (M-CSF) macrophages is consistent with the enhanced ability

of M1 macrophages to induce antigen-specific and allogenic T cell

proliferation [28] (data not shown). Regarding DC, ICAM-3

mRNA levels are reduced during the LPS-induced maturation of

human DC [34], whereas RUNX3 is transiently upregulated [32]

(Fig. 5C), further supporting the inverse correlation observed

during monocyte to macrophage differentiation and monocyte

transendothelial migration.

ICAM-3 is highly expressed on peripheral blood monocytes and

very rapidly downregulated upon differentiation into macrophages

or following transendothelial migration (Fig. 4 and 5). Similar to

the role of ICAM-3 during lymphocyte recruitment [9], the high

expression of ICAM-3 on monocytes may contribute to foster the

entry of other leukocytes into tissues. During leukocyte transen-

dothelial migration ICAM-3 is highly polarized towards the

trailing uropod, where it interacts with LFA-1 of the following cell,

acting as a guide for new waves of leukocytes into the tissues [9].

The head to tail recruitment of chain migrating cells has also been

described during Dictyostelium discoideum chemotaxis and appears to

be a general mechanism that cells use to amplify chemotactic

responses [35]. Whereas the reason for ICAM-3 downregulation

Figure 5. Expression of ICAM-3, RUNX1 and RUNX3 during macrophage differentiation, monocyte transendothelial migration and
DC maturation. A. Left, ICAM-3 and FOLR2 mRNA expression levels along M-CSF monocyte-derived-macrophages, as determined by qRT-PCR at the
indicated time points. Results are expressed as Relative mRNA levels (relative to GAPDH mRNA levels and the ICAM-3 and FOLR2 mRNA level on
monocytes). Data represent mean 6 SD of 3 independent donors (*P,0.05 compared with ICAM-3 mRNA level of monocytes). Right, ICAM-3, RUNX1
and RUNX3 expression on monocytes and M-CSF-polarized macrophages, as determined by Western blot at the indicated time points. As a control,
GAPDH expression levels were also determined. The experiment was performed twice and one of the experiments is shown. B. Left, ICAM-3 mRNA
expression levels of monocytes (Mo.) and transendothelial migrated monocytes (Migrated Mo.), as determined by qRT-PCR. Results are expressed as
Relative mRNA levels (relative to GAPDH mRNA levels and the ICAM-3 mRNA level on monocytes). Data represent mean 6 SD of 3 independent
donors. Right, ICAM-3, RUNX1 and RUNX3 expression on monocytes (Mo. and transendothelial migrated monocytes (Migrated Mo.), as determined by
Western blot at the indicated time points. As a control, GAPDH expression levels were also determined. The experiment was performed twice and one
of the experiments is shown. C. Left, ICAM-3 mRNA expression levels of DC either untreated (2) or treated with 10 ng/ml of LPS during 24 h (+) as
determined by qRT-PCR. Results are expressed as Relative mRNA levels (relative to GAPDH mRNA levels and the ICAM-3 mRNA level on untreated DC).
Data represent mean 6 SD of 3 independent donors. Right, ICAM-3 and RUNX3 expression on DC either untreated (2) or treated with 10 ng/ml of
LPS during 24 h (+), as determined by Western blot. As a control, GAPDH expression levels were also determined. The experiment was performed
twice and one of the experiments is shown.
doi:10.1371/journal.pone.0033313.g005
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remains speculative, the guiding function of ICAM-3 would end

up once leukocytes complete the transendothelial migration, a

time at which we have observed ICAM-3 expression to be virtually

undetectable.

The loss of ICAM-3 in differentiating or transmigrating

monocytes/macrophages has other potentially alternative impli-

cations. It has been previously described that the identity of the

LFA-1 ligand mediating T lymphocyte co-stimulation determines

the resulting cytokine profile, with the Th1 cytokine TNF-a been

more highly produced upon LFA-1 recognition of ICAM-2 or

ICAM-3 and higher levels of IL-10 produced upon interaction

with ICAM-1 [36]. Consequently, monocytes/macrophages

expressing different levels of ICAM-3 would exhibit different T

cell polarization capabilities. Since RUNX factors control ICAM-

3 expression, RUNX could contribute to the T cell polarization

ability of monocytes/macrophages. In addition, it is well

established the role of RUNX3 in T cell polarization, as it

enhances T-bet dependent IFNc secretion from T lymphocytes

while silences IL-4 expression [37]. Therefore, RUNX factors

would modulate immune response polarization by regulating gene

expression in both T lymphocytes and antigen-presenting cells.

In summary, we have presented evidences of a previously

unnoticed regulatable expression of ICAM-3 in human monocytes

and shown that RUNX and C/EBP factors are involved in

controlling the expression of this integrin ligand. Previous studies

have demonstrated that RUNX1/3 factors regulate the expression

of integrins like LFA-1, CD11c, CD49d [38,39], implying that

RUNX factors simultaneously control the expression of the

integrin LFA-1 and its ligand ICAM-3. Therefore, the ability of

RUNX factors to control immune response polarization can be

accounted for, at least partially, their ability to regulate the

expression of molecules that mediate critical adhesive interactions

during immune responses.

Materials and Methods

Cell culture and treatments
The human cell lines THP-1 (monocytic leukemia), K-562

(chronic myelogenous leukemia), Jurkat (T cell lymphoma),

EA.hy926 (umbilical vein), and the monkey kidney fibroblast-like

cell line COS-7 were obtained from the American Type Culture

Collection (ATCC, Rockville, MD) [23,24,39]. The melanoma

cell line BLM was provided by Goos Van Muijen (Radboud

University, Nijmegen, The Netherlands) [39]. THP-1, K-562,

Jurkat, BLM cells were cultured in RPMI supplemented with 10%

foetal calf serum (FCS), at 37uC in a humidified atmosphere with

5% CO2. EA.hy926 and COS-7 cells were maintained in DMEM

supplemented with 10% FCS. Human monocytes were purified

from peripheral blood mononuclear cells as described [31]. GM-

CSF (M1), M-CSF (M2) monocyte-derived macrophages and

monocyte-derived dendritic cells (DC) were generated as described

[23,30]. Phenotypic analysis was carried out by direct immuno-

fluorescence using FITC-labeled anti-ICAM-3 (BD Biosciences)

and FITC-labeled anti-CD163 monoclonal antibodies (MBL

International Corp, MA). For transendothelial migration assays,

thick collagen gels [40] were coated with EA.hy926 cells grown as

a monolayer. 26106 monocytes suspended in RPMI 10% FCS

with 10 ng/ml of M-CSF were plated and allowed to transmigrate

for 24 hours. Migrated cells were recovered after 30 min. of

collagenase treatment.

Transfections, plasmids, and site-directed mutagenesis
COS-7, K-562, BLM and Jurkat cells were transfected with

Superfect (Qiagen, Hilden, Germany), and THP-1 cells were

transfected using DEAE-dextran. In reporter gene experiments,

the amount of DNA in each transfection was normalized by using

the corresponding insertless expression vector (CMV-0) as carrier.

Figure 6. Functional relevance of RUNX-binding sites and influence of RUNX3 on ICAM-3 mRNA expression level in THP-1 cells. A.
Disruption of the RUNX-binding elements leads to increased ICAM-3 gene promoter activity in THP-1 cells. THP-1 cells were transfected with the
indicated reporter plasmids and luciferase activity was determined after 24 h. Promoter activity is expressed relative to the activity produced by the
wild-type CD50-200Luc, arbitrarily set to 1, after normalization for transfection efficiency. Data represent mean 6 SD of 6 independent experiments
using two different DNA preparations. B. Knockdown on RUNX3 results in increased ICAM-3 mRNA levels. THP-1 cells were nucleofected with either
siRNA for RUNX3 (two different RUNX3 specific-siRNA, siRNA RUNX3#1 and siRNA RUNX3#2) or a control siRNA (siRNA CNT). After 24 hours, total
RNA was isolated and ICAM-3 mRNA was measured via quantitative RT-PCR (left). Results are expressed as Relative mRNA levels (relative to GAPDH
mRNA levels and the ICAM-3 mRNA level in control siRNA-nucleofected cells). Data represent mean 6 SD of 3 independent experiments. To confirm
siRNA efficiency, one-fifth of the cells were lysed and underwent western blotting (right). The western blot was performed twice with similar results
and one of the experiments is shown.
doi:10.1371/journal.pone.0033313.g006
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Each transfection experiment was performed at least three times

with different DNA preparations. Transfection efficiencies were

normalized by cotransfection with the pCMV-bgal plasmid, and

b-galactosidase levels determined using the Galacto-Light kit

(Tropix, Bedford, Massachusetts).

The ICAM-3-based reporter gene constructs pCD50-1000Luc,

pCD50-500Luc and pCD50-200Luc were generated by PCR

amplification of the 21080/+53, 2505/+53 and 2164/+53

fragments of the CD50 promoter with oligonucleotides 59-

CCCAAGCTTCCTTGGAATGCAGTGACC-39, 59-CCCAAG-

CTTAGGTCAAGATGAGAGGAGGC-39, 59-CCCAAGCTT-

GGAGACTCAGCAGTGCTGG-39, 59-CCGCTCGAGGACA-

GAGGAAGGTGCCTTCC-39, and the resulting fragments were

cloned into HindIII/XhoI-digested pXP2 plasmid, which contains

the firefly luciferase cDNA [41].

Site-directed mutagenesis was performed on the ICAM-3

promoter construct pCD50-200Luc using the QuikChange System

(Stratagene, La Jolla, CA). For mutation of the RUNX-80,

RUNX-29 elements, the oligonucleotides RUNX1-80mutS (59-

GCATCCCCTTCCACCTGTAGGCCTGGGCAAGG -39), RU-

NX1-80mutAS (59-CCTTGCCCAGGCCTACAGGTGGAAG-

GGGATGC-39), RUNX2-29mutS (59-GCAATCTTAACCGC-

TACACTTCCGTCGCAGTGGGAGG-39), RUNX2-29mutAS

(59-CCTCCCACTGCGACGGAAGTGTAGCGGTTAA-

GATTGC-39), were used, and the resulting plasmids were termed

pCD50-200R1mutLuc and pCD50-200R2mutLuc. Generation of

the pCD50-200R1R2mutLuc plasmid, where the RUNX-binding

sequence RUNX-80 and RUNX-29 are mutated, was accom-

plished by site-directed mutagenesis on the pCD50-200R1mutLuc

plasmid using the oligonucleotides RUNX2-29mutS and

RUNX2-29mutAS. Generation of the pCD50-200R1R2CmutLuc

plasmid, where the C/EBP-binding sequence C/EBP-47 is

mutated was accomplished by site-directed mutagenesis on the

pCD50-200R1R2mutLuc plasmid using the oligonucleotides

CEBP-47mutS (59- GCAGTCCCCAGACTTCTGGTCTCT-

TAACCGCTGTGC) and CEBP-47mutAS (59- GCACAG-

CGGTTAAGAGACCAGAAGTCTGGGGACTGC-39). DNA

constructs and mutations were confirmed by DNA sequencing.

59-Rapid amplification of cDNA ends (59-RACE)
The identification of transcriptional start sites of ICAM-3 was

performed by 59-RACE assays using FirstChoice RLM-RACE kit

(Ambion) with cDNA from Jurkat and THP-1 cells. The 59 end of

human CD50 was amplified by PCR using the forward 59RACE

outer primer (59-GCTGATGGCGATGAATGAACACTG- 39)

and the reverse gene specific primer CD50-SP4 (59-

CGACTGTTGCCAGTCACGTT -39) located at the ICAM-3

exon 2, and the PCR product was subjected to a nested PCR

amplification using 59RACE inner primer (59-CGCGGATCC-

GAACACTGCGTTTGCTGGCTTTGATGAAA-3) and the re-

verse gene specific primer CD50-SP3 (59-AGCAGAGAGCA-

CAGGGTTCT-39), located also at the ICAM-3 exon 2. The

nested PCR product was cloned into the pCR2.1TOPO

(Invitrogen) and sequenced.

Electrophoretic mobility shift assays (EMSA)
Nuclear extracts were prepared according to Schreiber et al.

[42] and EMSA was performed as described [38]. For antibody

inhibition experiments, R-3034 (polyclonal antiserum against

RUNX1, generously provided by Dr. N. A. Speck), a-C/EBPa
(sc-61X from Santa Cruz Biotechnology) or a-CD209 (DSG2,

polyclonal antiserum against DC-SIGN) [43] were incubated with

the nuclear extracts at 4uC for 30 minutes before the addition of

the probe.

Western blot
Total cell lysates were obtained in RIPA buffer containing

2 mg/ml aprotinin, antipain, leupeptin, and pepstatin. Ten mg of

cell lysate was subjected to SDS-PAGE and transferred onto a

PVDF membrane (Millipore, Bedford, MA). Protein detection was

carried out using antibodies against ICAM-3 (clone sc-8268, Santa

Cruz Biotechnologies, Santa Cruz, CA), RUNX1 (39000, Active

Motif, Carlsbad CA), RUNX3 (R3-5G4, MBL International

Corporation) and b-actin (Sigma-Aldrich, UK) or GAPDH (clone

sc-32233, Santa Cruz Biotechnologies, Santa Cruz, CA).

Quantitative real time RT-PCR
Oligonucleotides for ICAM-3, FOLR2, and GAPDH were

designed according to the Roche software for quantitative real

time PCR, and RNA was amplified using the Universal Human

Probe Roche library (Roche Diagnostics). Assays were made in

triplicates and results normalized according to the expression levels

of GAPDH. Results were obtained using the DDCT method for

quantitation.

Chromatin immunoprecipitation (ChIP) assays
ChIP was performed using the EZ ChIP assay kit (Upstate

Biotechnology, Lake Placid, NY) as described [44]. ICAM-3

promoter was detected by PCR using the oligonucleotides 59-

GGAGACTCAGCAGTGCTGG-39 and 59-GTACCATGGT-

GGCCATTCTG-39, which together amplify a 234 bp region

between positions 2164 and +70. Immunoprecipitating antibodies

included rabbit polyclonal antisera against human RUNX1

(39000, Active Motif, Carlsbad CA) and purified rabbit IgG as a

control (Serotec, Oxford UK).

Knockdown assays
THP-1 cells were nucleofected with siRNA for RUNX3 or a

negative control (s2467, s2469, #1, siRNA Silencer Select,

Ambion Applied Biosystems, Austin, TX), using the Cell Line

Nucleofector kit V (Amaxa, Cologne, Germany). After nucleofec-

tion, cells were kept in culture for 24 h, and one-fifth of the cells

were lysed and subjected to Western blot for protein detection.

Total RNA was isolated from the rest of nucleofected cells and

subjected to real time-PCR for detection of ICAM-3 and GAPDH

mRNA.
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