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Maria Feofilovaa , Silvan Schüeppa , Roman Schmida, Florian Hackera, Hendrik T. Spankea, Nicolas Baina , Katharine E. Jensenb, and Eric R. Dufresnea,1

Edited by Joanna Aizenberg, Harvard University, Cambridge, MA; received January 19, 2022; accepted May 23, 2022

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule.
Even though their elaborate patterns have fascinated scientists for years, little is known
about the biological and physical mechanisms underlying their organization. In this
work, we take a top-down approach and examine the micrometer-scale organization
of diatoms from the Coscinodiscus family. We find two competing tendencies of
organization, which appear to be controlled by distinct biological pathways. On one
hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand,
lattice vectors tend to point globally toward a center of symmetry. This competition
results in a frustrated triangular lattice, populated with geometrically necessary defects
whose density increases near the center.
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Phase separation is widely appreciated as an important mechanism used by cells to
control biochemical pathways (1, 2). However, cells also exploit phase separation to form
functional structures with remarkable order and symmetry. For example, such structures
can be found in the keratinaceous color-producing nanostructures of bird feathers (3, 4),
the topography of pollen’s cellulosic cell wall (5), and the porosity of silicaceous diatom
frustules (6–8). Some remarkable ordered porous structures can be found at a larger scale
in sea urchin spines (9) and knobby starfish (10).

Diatoms are single-celled organisms with a beautifully structured cell wall made of
silica, called the frustule. Their elaborate patterns have fascinated scientists and artists for
hundreds of years (11). The diatom builds its wall by precipitating silica in a specialized
organelle called the silica deposition vesicle (SDV) (12), templated by the phase separation
of biopolymers, such as long-chain polyamines (LCPAs) (7, 13). The resulting structure
is multiscale (7) and displays a remarkably high specific strength (14). The intricately
patterned frustule is thought to offer protection from predators (15) and to control the
transport of mass (16) and possibly, light (17). While much progress has been made in
understanding the chemical processes underlying silica deposition, little is known about
the frustule’s organization at larger length scales. Experiments in vitro have shown that
appropriate mixtures of LCPAs, silaffins, and other proteins can spontaneously form a
porous silica structure (18, 19). However, these structures are highly disorganized and
show none of the long-range organization that characterizes frustules. The organization
of these structures has been hypothesized to emerge spontaneously either through the
self-assembly of phase-separated LCPA-rich domains (7) or through templating by the
cytoskeleton (20, 21).

Here, we quantify the structural arrangement of micrometer-scale pores in valves of
the diatom Coscinodiscus granii. We find that the pores locally form a triangular lattice.
Globally, however, the structure is radially aligned. Other diatoms from the Coscinodiscus
family also tend to form a local triangular lattice but with varying degrees of radial
alignment. Valves of C. granii grown in the presence of germanium maintain radial
alignment in the absence of significant hexagonal order. Local hexagonal order is consistent
with the self-assembly of mobile uniformly sized domains with steric repulsions. The
mechanism underlying radial alignment is unknown, but it is apparently modulated
across species. Using a minimal Brownian dynamics simulation with hard disks and
bond rotation, we created triangular lattices with various degrees of radial alignment.
The simulated patterns span the range of morphologies observed in the Coscinodiscus
family. While the competing tendencies of alignment and crystallization can readily be
accommodated at the periphery of the frustule, geometric frustration leads to a highly
disorganized core near the center.

Results and Discussion

We chose C. granii because its relatively large size and microscale pores enable optical
microscopy for quantitative image analysis. In addition, it is one of the more established
model diatoms (22–24). To characterize the structure of valves, the flat regions on
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Fig. 1. C. granii shows an evenly spaced pattern of micropores. (A) An average intensity projection of a confocal image stack for a representative valve. (Scale
bar, 10 μm). (B) Reconstructed micropore structure. (Upper) Side view. (Lower) Top view. Color represents the absolute value of the radial Ψ6 parameter. Pores
were located in 3D using an automated procedure, and areas of high slope (shown in gray) were filtered out. (C) Distribution of 3D nearest-neighbor distance.
(D) A weak dependence of pore-to-pore distance on diatom size is observed (slope 0.003, significant at P < 10−8). Each value is obtained by finding the peak of
the distribution of interpore distance by fitting a Gaussian curve. (E) Top view of a reconstructed micropore structure, with color representing the phase of the
radial Ψ6 parameter. (F) Histogram of the absolute value of Ψ6. (G) Histogram of the phase of Ψ6.

either end of the frustule, we imaged their micrometer-scale fea-
tures using spinning-disk confocal microscopy (100× numerical
aperture 1.45). Starting with three-dimensional (3D) image stacks
of the extracted rhodamine-labeled diatom valves (Fig. 1A), we
calculated the 3D centroids of the micrometer-scale pores in the
valve (Fig. 1B). From the side view, it is clear that the valve is
mostly flat, with some curvature near the edge. As locating pores
was less reliable in these areas (shown in gray), we excluded them
from further analysis.

For a given valve, the spacing between pores was very regular.
The distribution of nearest-neighbor pore spacings from a repre-
sentative valve is shown in Fig. 1C. In this example, the average
spacing obtained is 1.4 μm.

While the overall size of valves varies by a factor of two (from 50
to 110 μm in diameter), the interpore spacing is very consistent,
ranging from about 1.2 to 1.4 μm (Fig. 1D). We observe a small
but significant dependence of the pore spacing with the size of
the valve (Fig. 1D) (slope 0.003, significant at P < 10−8). This
suggests that pore size and spacing are predominantly determined
by local processes (e.g., phase separation), mostly independent of
those that control the overall valve dimensions.

Micropores show an intricate arrangement in the valve. In
the vicinity of a single pore, the structure closely resembles a
triangular lattice. However, a straight line drawn in any direction
from the center to the edge of the valve will tend to follow the
lattice.

To quantify this unusual structure, we adapted a geometrical
tool developed for studies of two-dimensional (2D) crystals (e.g.,
ref. 25). The hexatic order parameter, Ψ6, is defined with the
complex expression

Ψ6(l) =
1

n

n∑
m

e6iθlm , [1]

where l is a point on the lattice and m is one of its n nearest
neighbors (determined by Delaunay triangulation). θlm is the
angle between the line connecting the l th and mth points and a
reference axis. The amplitude of Ψ6 is 1.0 for a perfect triangular
lattice, but for a random arrangement of points, we observe a
distribution peaked at 0.3. Therefore, we can use |Ψ6| to locally
assess crystalline order around each pore. This is visualized for one
valve in Fig. 1B, where each pore is colored according to |Ψ6|. A
histogram of these values is shown in Fig. 1F.

Most of the |Ψ6| values for this valve are close to one, but there
is a very broad tail of low |Ψ6| values. These more disordered areas
are more frequent near the center of the valve (Fig. 1B).

On the other hand, the phase of the hexatic order parameter,
arg(Ψ6), shows the local orientation of the lattice relative to
a selected axis. Usually, a fixed axis is selected as a reference.
Since our structure appears to be radially aligned, we found it
more useful to select r̂ , the unit vector connecting the center
of the valve to the pore, as the reference axis for each point. By
construction, this unusual choice of reference axis has no effect
on |Ψ6|. However, it clearly shows how the local orientation of
the crystal compares with r̂ . These orientations are shown point
wise for a typical valve in Fig. 1E. The distribution of arg(Ψ6),
shown in Fig. 1G, is sharply peaked at zero. This demonstrates
that the nearest neighbors of each micropore tend to be arranged
in a hexagon that is oriented with one vertex pointing toward the
center of the valve.

Thus, the pattern of holes in the valve can be thought of as
a lattice constantly turning around the center of the valve. We
define the overall crystallinity of a valve, C =median(|Ψ6|). This
will equal one for a perfect crystal. We define the overall radial
alignment of a valve, A= 1/variance(arg(Ψ6)). A well-aligned
valve has narrow distribution of angles, and therefore, a relatively
large value of A.

A scatterplot showing the crystallinity and alignment parame-
ters of N = 86 valves is shown in Fig. 2A. Note that the values of
A and C are correlated. This is counterintuitive, as crystallinity and
radial alignment are incompatible. A closer look at the data shows
that more highly organized valves tend to be larger, as indicated
by the color coding in Fig. 2A.

To further clarify the competition between alignment and
crystallinity, we identified defect sites in the lattice. Using Voronoi
tessellations, we determined the number of nearest neighbors
for each pore. In a triangular lattice, each point has six nearest
neighbors. In a real 2D crystal, there can be a significant number
of defect sites with five or seven neighbors. The defect pattern of an
exemplary valve is shown in Fig. 2C (defect patterns for additional
valves are found in SI Appendix, Fig. S7). There, points with six
neighbors are shown in light gray, while five- and sevenfold defects
are highlighted in red and blue, respectively. Most defects are
found in five–seven (red–blue) defect pairs. These pairs are mostly
isolated, only occasionally forming higher-order structures. This
is in contrast to 2D crystals near equilibrium, where defect pairs
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Fig. 2. C. granii valves display a range of alignment, crystallinity, and defect patterns. (A) Scatterplot of alignment (A) and crystallinity (C) derived from Ψ6, with
a gray oval to guide the eye. Data point color shows diatom size in micrometers. Larger diatoms tend to be both more aligned and more crystalline. (B) Example
of a confocal stack projection of the diatom labeled in A. (Scale bar: 10μm.) (C) Reconstructed pores of the same diatom, showing points with six neighbors in
gray, five neighbors in red, and seven neighbors in blue. Pairs of five to seven (red–blue) defects are scattered across the structure, with five (red) mostly located
closer to the edge and seven (blue) toward the center. (D) Crystal lines traced over a section of a confocal frustule image. Defects are shown in red (five) and
blue (seven). The radial direction is indicated in green. (E) Cumulative number of defects (sevenfold is shown in blue, and fivefold is in red) plotted against their
radial position. The dashed line shows a slope of 7.3. (F) A histogram of slopes for all observed diatoms, with same color scheme. The vertical dashed line is
showing 4π/

√
3. (G) Photograph of a crochet circle, with double stitches shown in white.

tend to condense into chains, forming boundaries between crystal
grains.

Intriguingly, defect pairs are polarized, with the sevenfold
defect closer to the center than the fivefold one. Note that five–
seven defect pairs correspond to the termination of a crystal line,
known as an edge dislocation, illustrated in Fig. 2D (26). To avoid
overlapping pores, crystal lines must terminate as they converge
on the center of symmetry. The fivefold defect sits at an end of the
terminated crystal line, and the sevenfold defect is found just be-
yond it. The observed polarization of the defect pairs is, therefore,
a direct consequence of radial alignment of the lattice vectors.

Defects are more frequent near the center of the valve. To
quantify this, we plot the cumulative number of defects within
a distance, r , from the center for an exemplary valve in Fig. 2E.
For a conventional 2D crystal, the defects are distributed homo-
geneously, and their cumulative number would increase as r2.
However, for diatom valves, the cumulative number increases with
linearly with r . The mean slopes are 6.8± 0.1 and 6.3± 0.1
defects per lattice spacing for five- and sevenfold defects, respec-
tively (Fig. 2F ). Note that a linear scaling of the cumulative
number of defects is indicative of a defect density scaling like 1/r .

While radially aligned crystal structures are, to our knowledge,
unknown in materials, they are common in the traditional craft of

crochet, as shown in Fig. 2G. In a circular crochet, the square cro-
chet lattice grows radially because each new stitch is inserted, by
default, in a stitch on the previous row. However, every crocheter
knows that each new row must be expanded by approximately
six stitches for the circle to lay flat (27). This is geometrically
necessary, as the circumference of each layer increases by 2πa for
each row, where a is the spacing of the stitches.

The same argument applies to the diatom lattice, but the
increase in the number of lattice sites per row is slightly different
because the underlying lattice is triangular (SI Appendix). When
the triangular lattice is aligned with the radial direction, the defect
insertion rate is 4π/

√
3≈ 7.3 defects per lattice spacing. This

value is comparable with the range of values we observe, as shown
in Fig. 2F.

So far, we have focused on structural analysis of a single
species, C. granii. The morphology of diatom frustules, however, is
tremendously diverse. Within the Coscinodiscus family, frustules
are generally barrel shaped with flat round valves featuring
organized patterns of microscopic pores. We collected 2D images
of the valves of other Coscinodiscus diatoms from a variety of
sources, shown in Fig. 3A. We located pore positions using
a semiautomated procedure (Fig. 3B) and analyzed them the
same way as our C. granii data. The crystallinity and alignment
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Fig. 3. Structural diversity of Coscinodiscus family diatoms. (A) Images of diatoms. C. angustelineatus and C. eccentricus (SI Appendix, Fig. S3) are from ref. 28,
Coscinodiscus curvatulus is from ref. 29, and C. wailesii and C. radiatus were provided by Johannes Goessling, Centre for Environmental and Marine Studies,
University of Aveiro, Aveiro, Portugal. (Scale bars: 10μm.) Reprinted with permission from refs. 28 and 29. (B) Corresponding points obtained using the pore
locating procedure. (C) Scatterplot of alignment (A) and crystallinity (C) derived from Ψ6, with the gray oval representing the observed range of C. granii values.
(D) Confocal stack average projection of a C. granii diatom grown in the presence of germanium. (Scale bar: 10μm.) (E) Corresponding points obtained using the
pore-locating procedure.
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parameters for these diatoms are shown in Fig. 3C. While samples
from Coscinodiscus radiatus and Coscinodiscus wailesii fall into the
range of morphological parameters we observed in C. granii,
samples from Coscinodiscus angustelineatus and Coscinodiscus
eccentricus are completely different. They show excellent hexagonal
order, with no indication of radial alignment.

For C. granii, alignment of pores is very robust, even when
crystallinity is destroyed by elemental substitution. The structure
of the silica frustule can be altered by growing diatoms in the
presence of germanium (30, 31). Since germanium and silicon
belong to the same group of the periodic table, they have similar
chemistries. When germanium is introduced into the cell-culture
medium, it is taken up by the cell and incorporated into the
frustule. Over a range of germanium concentrations, diatoms con-
tinue to grow and divide at a normal rates (SI Appendix, Fig. S4).
However, the morphology of the frustule can change dramatically,
as shown in Fig. 3D and SI Appendix, Fig. S5. Laser ablation
inductively coupled plasma time-of-flight mass spectrometry (LA-
ICP-TOFMS) indicated insertion of germanium at a uniform rate
across the frustule (SI Appendix, Fig. S6). While the morphology
of germanium-perturbed valves changes significantly from cell to
cell, the pores tend to have a wider range of sizes and shapes,
which include crack-like gaps in the frustule. In these conditions,
crystalline order has essentially disappeared. Nevertheless, strong
alignment of pores along the radial direction is evident in the
micrographs (e.g., Fig. 3D).

We have found that the organization of pores in diverse natural
and perturbed valves is characterized by a blend of crystallinity
and radial alignment. On one hand, natural variations across the
Coscinodiscus family maintain crystallinity but feature varying
degrees of radial alignment. On the other hand, perturbation of
C. granii with germanium appears to maintain radial alignment
while destroying crystallinity. This suggests that crystallinity and
alignment are driven by different mechanisms.

Since the biochemical mechanisms that regulate these patterns
are unknown, we developed a minimal physical model to in-
vestigate the competition of radial alignment and crystallinity
during morphogenesis of the frustule. Following Sumper (7),
we modeled the rearrangement of phase-separated domains that
template the silica. Crystallinity naturally emerges due to repulsive
interactions of the domains. To favor alignment, we introduced an
ad hoc torque on interacting pairs of domains. The mechanism
of alignment in the frustule is unknown. We suggest a few
possibilities in the conclusions. Specifically, we considered 2D
systems of N Brownian disks with radius σ, placed randomly
within a circular confining potential. The disks repel each other
with a force proportional to their overlap, quantified with a spring
constant kr . An alignment force tends to rotate the bond between
neighboring particles to align with the local radial direction. The
magnitude of the alignment force also depends on the degree of
overlap and is proportional to a spring-like constant, ka . More
details are in Materials and Methods.

We performed a series of Brownian dynamics simulations with
a varying strength of alignment, ka , and fixed repulsion, kr .
Particles were randomly distributed within the circular simulation
domain with an effective area fraction φ= N (σ/R)2 = 1.1 and
evolved in time until reaching steady state. Two system sizes were
considered, with N = 1,760 and N = 7,948, roughly matching
the smallest and largest numbers of pores observed for the valves of
C. granii. The resulting steady structures are shown in Fig. 4 A–C,
and additional structures can be found in SI Appendix, Fig. S8.

The crystallinity and alignment parameters of the resulting
structures are shown in Fig. 4D. As ka increases, the crystallinity
parameter drops, and the alignment parameter increases. While
alignment increases only modestly for the smaller system size
(triangles), it increases much more strongly for the larger system
size (circles). At large values of ka , the simulated systems achieve
values of crystallinity and alignment typical of C. granii valves.
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Fig. 4. A minimal numerical model yields diatom-like structures. (A–C) Pore locations from simulations. In Left, Center, and Right, ka = 0 and N = 1,760, ka = 0.8
and N = 1,760, and ka = 0.8 and N = 7,948, respectively. (A) Color represents the amplitude of Ψ6. (B) Color represents the phase of Ψ6. (C) Color represents
the numbers of nearest neighbors. (D) Scatterplot of alignment (A) and crystallinity (C) derived from Ψ6, with the gray oval representing C. granii data. Triangle
color represents the value of ka used in the simulation. For each value, the simulation was run five times, and for each run, the initial distribution of points was
randomized. (E) The cumulative number of defects plotted against the distance from center for ka = 0 and 0.8 with N = 7,948. Fivefold defects are plotted in
red, and sevenfold defects are in blue. The dashed line shows a slope of 7.3.
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For a fixed value of ka , the larger valves show better crystallinity
and alignment parameters, echoing the size dependence of real
valves, shown in Fig. 2A. The cumulative counts of defects as a
function of the distance from the center for ka = 0 and 0.8 are
shown in Fig. 4E. Like in real diatoms, the simulated structures
at ka = 0.8 accumulate defects linearly with increasing distance
from the center. Here, the slope is very close to the expected value
of 4π

√
3, indicated by the dashed line in Fig. 4E. Defect pairs

in the simulation tend to organize into higher-order structures
separating regions with homogeneous alignment. These grain
boundaries are not observed in the real C. granii valves, suggesting
that the pore structure may have kinetically arrested before finding
its energetically preferred configuration (5). Earlier time points in
the simulation more closely resemble the structure of the valve,
with similar levels of crystallinity and alignment, but no clear grain
boundaries (Movie S1).

Conclusion

We have found that micropores of C. granii diatom valves are
arranged on radially aligned triangular lattices. These beautiful
structures feature a geometrically necessary increase of defect
density near the center of the valve. While triangular lattices are
observed across the Coscinodiscus family, the degree of radial
alignment varies from species to species. When the crystallinity
of C. granii is perturbed by the introduction of germanium, the
valve structure remains radially aligned. These observations sug-
gest that these two structural features have independent physical
origins. The range of structures observed across the Coscinodiscus
family can be recapitulated with a minimal model that includes
conventional steric repulsions as well as a torque aligning their
separation vectors with the local radial direction.

While steric repulsions are consistent with the self-assembly
of stable phase-separated domains, the origin of the torques
producing alignment is unknown. At a minimum, this requires
the imposition of a center of symmetry, which may be achieved
by actin and microtubules, whose filaments have been shown to
be radially aligned in close association with the outer surface of
the SDV (20). Alternatively, radial alignment could be imposed
from the edge of the circular domain (32) or by organization along
radially aligned creases of the SDV due to confinement within the
curved boundary of the cell (33, 34). Direct live-cell observations
of frustule development will be essential to identify the mecha-
nisms driving alignment and more generally, to understand the
phase separation process that produces micropores.

Whatever its origin, radial alignment imposes geometrically
necessary defects in a flat 2D lattice. Specifically, pairs of five- and
sevenfold defects need to be inserted with a frequency inversely
proportional to the distance from the center of symmetry. This
is in stark contrast with 2D crystals conforming to a curved
surface in the absence of a center of symmetry. There, five- and
sevenfold defects are introduced in an imbalanced manner, with
a topological charge density proportional to the local Gaussian
curvature (35, 36).

Traditional knowledge of crochet demonstrates that radial
alignment in the absence of defects imposes curvature (37).
Indeed, a defect-free radially symmetric crochet lattice deforms to
produce a tube. Furthermore, an appropriate insertion of defects
produces fascinating structures, including hyperbolic planes (38)
and Lorentz surfaces (39). More generally, insertion of defects
could provide a route to control the embedding of a 2D object in
3D space by specifying the local curvature (40–42).

Diatoms are master builders of inorganic structures at the
microscale. We expect that a deeper understanding of the processes

they use to sculpt biomineralization could inspire approaches to
sustainable micro- and nanomanufacturing.

Materials and Methods

C. granii Cells. C. granii (strain K-1834) diatoms were purchased from The
Norwegian Culture Collection of Algae (Oslo, Norway) and cultured in L1 media
(43). The cells were cultured in filter-top flasks in a temperature- and light-
controlled incubator (Tritech Research, Inc.) at 15 ◦C under a red and blue light-
emitting diode grow light. The light was cycled 14/8 h on/off, and light flux when
on was 200 to 400 μmol. photons

m2s .
Fluorescent cell walls were obtained by metabolic insertion of Rhodamine

B (Sigma-Aldrich). The Rhodamine dye was added to the culture medium at a
concentration of 1μM, and the culture then was grown for at least 24 h (44).
Diatom cell walls were extracted using a “soft-cleaning” method based on ref.
44. Cells were collected by centrifugation at 2,400 × g, resuspended in 0.1M
Na–ethylenediaminetetraacetic acid (EDTA) and 2% sodium dodecyl sulfate so-
lution, and heated at 90 ◦C for 5 min.

Imaging. Imaging was performed with a Nikon eclips-Ti microscope (Nikon
Corporation) equipped with a spinning disk confocal attachment (Intelligent
Imaging Innovations, Inc.). Imaging was performed with a Nikon PLANAPO 100×
NA 1.45 lambda oil immersion objective or Nikon PLANAPO 100× NA 1.45
lambda oil immersion objective (Nikon Corporation) for germanium diatoms.

Image Analysis. Image analysis of C. granii diatoms was performed in MATLAB
(MathWorks) using an automated procedure. The image z stacks were contrast
adjusted, inverted, preprocessed with a band-pass filter, and binarized using the
MATLAB function imbinarize. For each object, area and solidity were determined
using regionprops, and both were used for filtering. Z positions were determined
by first finding the track of each object through the z stack following the method in
ref. 45 implemented for MATLAB in ref. 46. Then, for each object, the z plane with
the largest area was selected as the final z coordinate. The center of the structure
was determined manually.

Image analysis of other Coscinodiscus species was performed on 2D images
using MATLAB. The images were preprocessed by being inverted (when neces-
sary), filtered with a band-pass filter, thresholded, and binarized. The function
regionprops was used to locate features and remove noise by thresholding
feature size. The center of the structure was determined manually.

Elemental Analysis. LA-ICP-TOFMS element imaging (47) was performed us-
ing the single-pulse mode according to Neff et al. (48). A laser ablation system
(GeoLas C; Lambda Physik) employing a modified tube cell design (49, 50)
was coupled to an inductively coupled plasma time-of-flight mass spectrometry
instrument (icpTOF2R; Tofwerk AG). The piezo–electrically driven xyz translational
stage (1-nm scan resolution; SmarAct GmbH), the laser, and the time-of-flight
mass spectrometry data acquisition were triggered using a custom-built imaging
control system (48). The full mass spectrum from Na to U was acquired, and the
quantification of element mass fractions was performed for each pixel based
on 100% mass normalization (51) using National Institute of Standards and
Technology standard reference material (NIST SRM 610) as an external reference
material and assuming that all elements are present as oxides.

Numerical Model. Consider a set of N disks with radius σ, located at�ri, where
i = 1, . . . , N. The equation of motion of a single object is given by

1
b

d�ri

dt
=�Fth,i(t) +�Fext(�ri) +

∑
j �=i

�Fij(�ri,�rj), [2]

where b is the hydrodynamic mobility.
Disks interact with a thermal bath, which generates a random force,�Fth,i(t).

This force is uncorrelated in space and time and drives Brownian motion, char-
acterized by a diffusion coefficient D. The disks are confined to a circular domain
with radius R by an external force

�Fext =

{
−kwall(ri − R)̂ri, if |�ri|> R
0, if |�ri|< R. [3]

The center of this circular domain is taken to be the origin for all of the particle
locations.
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Overlapping disks interact in two ways:

�Fij =

{
0, if |�sij|> 2σ
�Frep +�Falign, if |�sij| ≤ 2σ,

[4]

where �Fij is the force exerted on the ith particle due to the jth particle and
�sij =�rj −�ri is the vector separating particles i and j. The first contribution to the
interaction is a conventional spring-like repulsion,

�Frep =−kr(2σ − |�sij|)̂sij, [5]

whose strength is determined by a spring constant, kr . With only this interaction
term, sufficiently concentrated particles will evolve into a crystalline steady state
with a triangular lattice. Therefore, we introduced a second interaction that works
to point the separation vector toward or away from the center of the structure,

�Falign =−ka(2σ − |�sij|)
(̂rij · ŝij)

|̂rij · ŝij|
(̂rij · ŝ⊥ij )̂s⊥ij , [6]

where�rij = (�ri +�rj)/2. This force is applied perpendicular to the separation
vector along ŝ⊥ij = ẑ × ŝij, where ẑ is the unit vector pointing out of the plane.
Like the repulsive force, it depends on a spring constant, ka, and is proportional
to the extent of overlap between the particles. However, instead of pushing the
particles away from each other, it rotates them around their center of mass,�rij.

The strength of�Falign increases as ŝij turns away from r̂ij. This specific form is not
motivated by a specific physical model but is simply meant to capture a generic
tendency for alignment.

Simulations were performed in MATLAB (MathWorks). We give the disks
σ = 1, b = 1, and D = 0.01. The filling fraction was kept constant at φ= 1.1.
Simulations were run with a time step of dt = 0.05 for a total number of time
steps Nt = 80,000. The radius of the confining wall was R = 40 or 85 for N =
1,760 or N = 7,948 particles, respectively. The stiffness of the particles and wall
was fixed at kr = kwall = 1. The alignment parameter ka was varied from 0 to
1.2. The simulations were run five times for each value of ka, with initial particle
positions randomized for each run.

Data Availability. Raw data have been deposited in the Eidgenössche Tech-
nische Hochschule Research Collection (https://www.research-collection.ethz.ch/
handle/20.500.11850/532190) (52).
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