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ABSTRACT A novel peptide mapping approach has been used to map sites of charge modifi- 
cation to major structural domains of regulatory subunit (R) of type I cAMP-dependent protein 
kinase from $49 mouse lymphoma cells. Proteolytic fragments of crude, radiolabeled R were 
purified by cAMP affinity chromatography and displayed by two-dimensional polyacrylamide 
get electrophoresis. [3SS]methionine-labeled peptides containing sites of mutation or phos- 
phorylation exhibited charge heterogeneity attributable to the modification. Phosphate-con- 
taining fragments were also labeled with [32p]orthophosphate to confirm their phosphorylation. 
Major fragments from [35S]methionine-labeled $49 cell R corresponded in size to carboxyter- 
minal cAMP-binding fragments reported from proteolysis of purified type I Rs from various 
mammalian species; additional fragments were also visualized. End-specific markers in Rs from 
some mutant $49 sublines confirmed that cAMP-binding fragments extended to the carboxy- 
terminus of R. Aminoterminal endpoints of fragments could be deduced, therefore, from 
peptide molecular weights. Clustering of proteolytic cleavage sites within the "hinge-region" 
separating aminoterminal and carboxyterminal domains of R permitted high resolution map- 
ping in this region: the endogenous phosphate and a "phenotypically-silent" electrophoretic 
marker mutation fell within a 2.5-kdalton interval at its aminoterminal end. On the other hand, 
K~ mutations that increase the apparent constant for activation of kinase by cAMP mapped 
within the large cAMP-binding region of R. A map of charge density distribution within the 
hinge-region of R was constructed to facilitate structural comparisons between Rs from $49 
cells and from other mammalian sources. 

As the intraceUular transducers for hormones acting through 
elevation of cAMP, cAMP-dependent protein kinases play 
central roles in the regulation of animal cell metabolism. 
Accordingly, these enzymes have been subjected to intensive 
structural, functional, and metabolic study, cAMP-dependent 
protein kinases have tetrameric structures consisting of two 
catalytic subunits (Cs t) and a regulatory subunit (R) dimer ( 1, 
2). Two major classes of mammalian kinases, designated as 
types I and lI, appear to differ only in Rs (2-4). Kinase 
holoenzyme is inactive; activation proceeds by a concerted 
reaction in which cAMP binds to holoenzyme releasing active 

J Abbreviations used in this paper: C, catalytic subunit; R, regulatory 
subunit. 

Cs and an R dimer complexed with cAMP (2, 5, 6). R has 
two sites for binding cAMP (7-9) as well as sites for R dimer 
formation and for interaction with C. Furthermore, confor- 
mational interaction between cAMP-binding and C-binding 
regions of R is suggested by the concerted mode of kinase 
activation and by studies showing structural alterations in R 
that accompany binding of cAMP (5, 6, 10, 11). 

Native Rs purified from a variety of mammalian tissues 
exhibit similar structures with proteolytically-sensitive "hinge- 
regions" extending from ~25 to 30% of the way from ami- 
noterminal to carboxyterminal ends of the molecules (7, 8, 
12). The hinge-region divides R into an aminoterminal do- 
main involved in dimer association and a carboxyterminal 
domain containing cAMP-binding sites (7, 8, 12); the hinge- 
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region has  been  impl ica ted  in  b i nd i ng  a n d  inac t iva t ion  o f  C 
(7, 8, 13, 14). A n a u t o p h o s p h o r y l a t i o n  site in  R ,  m a p s  to the  
ca rboxy t e rmina l  e n d  o f  the  h inge- region  (13, 15), a n d  phos-  
phory la t ion  a t  th is  site reduces  b o t h  the  proteolyt ic  suscepti-  
bil i ty o f  R (13) a n d  the  affinity o f  R for C (16-18) .  A n  
h o m o l o g o u s  region in RI c an  be phospho ry l a t ed  wi th  pur i f ied  
c G M P - d e p e n d e n t  p ro te in  kinase caus ing  reduc t ions  in  b ind-  
ing o f  b o t h  c A M P  a n d  C ( l  9 - 2  l),  b u t  th is  phos pho ry l a t i on  
does no t  occur  u n d e r  physiological  cond i t ions  (21). Addi-  
t iona l  p h o s p h o r y l a t i o n  sites have  been  found  in the  a m i n o -  
t e rmina l  end  o f  b o v i n e  R , :  ser ines  74 a n d / o r  76 are phospho -  
ryla ted in v ivo to  a cons iderab le  ex ten t  a n d  can  be  nhost~ho- 
ryla ted in vi t ro  by  casein k inase  II (glycogen synthase  kinase 
5; 22, 23); ser ines  44 a n d  47 can  be  phospho ry l a t ed  in vi t ro 
by glycogen synthase  kinase 3 a n d  are phosphory la t ed  in vivo 
to a smal l  ex ten t  (23). R~ is no t  phosphory la t ed  in vi t ro  by  
glycogen synthase  kinases  3, 4, or  5 or  by  phosphory lase  
kinase (23), bu t  it is phospho ry l a t ed  to a s ignif icant  ex ten t  in  
vivo at a site t ha t  has  no t  yet been  repor ted  (21, 24, 25). 
E n d o g e n o u s  phosp ho r y l a t i on  does  no t  affect the  abil i ty o f  RI 
to  b i n d  e i ther  c A M P  or  C s ubun i t  (21). 

M u t a n t s  wi th  lesions affect ing c A M P - d e p e n d e n t  p ro te in  
kinase have  been  isolated f rom cul tures  o f  $49 m o u s e  lym- 
p h o m a  cells by  c lonal  g rowth  in the  presence  o f  d ibutyryl  
c A M P  (26-28) ;  wild- type cells are killed by  this  ana log  (29). 
In some  such  m u t a n t s  the  a p p a r e n t  c o n s t a n t  for ac t iva t ion  o f  
kinase by  c A M P  is increased to  5 to  20 t imes  t ha t  for wild- 
type k inase  (27, 28). c A M P - d e p e n d e n t  p ro te in  kinase f rom 
$49 ceils is mos t ly  o f  the  type  I isozyme,  a n d  these  "Ka" 
m u t a n t s  carry s t ruc tura l  m u t a t i o n s  in  R~ (24, 30, 31). M a n y  
Ka m u t a t i o n s  cause  changes  in R~ charge  t ha t  p rovide  electro- 
phore t i c  ma rke r s  for the  m u t a t i o n a l  change  a n d  reveal  $49 
cells to  be  d ip lo id  for Rm genes (24). A cAMP-sens i t ive  $49 
subl ine  t ha t  carr ies  a n  e lec t rophore t ic  m a r k e r  m u t a t i o n  in 
one  R allele has  also been  descr ibed (32). In $49 cells, R 
phospho ry l a t i on  is a t  a single ser ine residue a n d  is m o d u l a t e d  
in v ivo by  b o t h  c A M P  a n d  m u t a t i o n s  affect ing kinase  act ivi ty 
(24, 32, 33). 

In the  present  report ,  sites o f  phos pho r y l a t i on  a n d  m u t a t i o n  
in $49 cell R are m a p p e d  to s t ruc tura l  d o m a i n s  o f  the  p ro te in  
by s tudy ing  c A M P - b i n d i n g  f ragments  f rom wild-type a n d  
m u t a n t  cells. P rocedures  used for analysis  o f  pur i f ied Rs  (7, 
8, 12-14)  have  been  modi f ied  for use wi th  c rude  p repa ra t ions  
f rom radio labe led  cells, cAMP-af f in i ty  c o l u m n s  (34) were 
used to puri fy  c A M P - b i n d i n g  f ragments ,  a n d  two-d imen-  
s ional  po lyacry lamide  gel e lec t rophores is  (35) was used b o t h  
to resolve R f ragments  f rom c o n t a m i n a t i n g  pept ides  a n d  to 
reveal  charge  he terogenei ty  a t t r ibu tab le  to  e i ther  phosphory l -  
a t ion  or  muta t ions .  Sites o f  e n d o g e n o u s  phos pho r y l a t i on  a n d  
o f a  phenotypica l ly-s i len t  m a r k e r  allele m u t a t i o n  (above)  were 
m a p p e d  to a smal l  region at  the  a m i n o t e r m i n a l  end  o f  the  
h inge-region o f  R. Several  K~ m u t a t i o n s  fell wi th in  the  c A M P -  
b ind ing  region o f  R. Subsequen t  repor ts  will p resent  m e t h o d s  
for m a p p i n g  m u t a t i o n s  wi th in  the  ca rboxy te rmina l  d o m a i n  
o f  R wi th  greater  precis ion (R. A. Steinberg,  s u b m i t t e d  m a n -  
uscripts).  

MATERIALS AND METHODS 

Chemicals and Radiochemicals: Ovalbumin (albumin, egg, 5 x 
crystalline) and thermolysin were obtained from Calbiocbem-Behring Corp. 
(San Diego, CA), and a-chymotrypsin was obtained from Miles Laboratories, 
Inc. (Elkhart, IN). N*-(2-aminoethyl)-cAMP Scpharose (34) and control Scph- 
arose were prepared using CNBr-activated Scpharose 4B from Pharmacia Fine 
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Chemicals (Piscataway, NJ), as described previously (33). [35S]methionine 
(>900 Ci/mmol) and ACS scintillation mixture were obtained from Amersham 
Corp. (Arlington Heights, IL), and [32P]orthopbosphate (carrier-free in water) 
was from New England Nuclear (Boston, MA). X-ray film and photographic 
chemicals were from Eastman Kodak (Rochester, NY), and intensifying screens 
were from E. I. Du Pont de Nemours & Co. (Wilmington, DE). Chemicals for 
solutions used in extraction and purification of R and for two-dimensional gel 
electrophoresis were obtained as reported previously (33). 

Cell Culture: Clonal sublines of $49.1 mouse lymphoma cells (36) 
were grown in suspension culture as described previously (37). The wild-type 
subline 24.3.2 was obtained by serial subeloning of $49.1 under nonselective 
conditions (26); the allelically-marked cAMP-sensitive subline U36 was derived 
from a thymidine kinase-negative subline of $49.1 that was mutagenized with 
ethyl methanesulfonate and selected for resistance to 10 mM ouabain (32). K~ 
mutant subline U200.65 was selected from a population of 24.3.2 mutagenized 
with N-methyI-N'-nitro-N-nitrosoguanidine (24, 28); K. mutants U36.B1.R5 
and U36.B2.R1 were selected from freshly subcloned populations of U36 
without mutagenesis. 2 

Radiolabeling and Preparation of Cell Extracts: Concentrated 
suspensions of cells in low methionine or low phosphate media were labeled 
with [3SS]methionine or [32p]orthophospbate as described elsewhere (38, 39) 
except that, for the experiments of Figs. 5 and 6, cells were concentrated to 
5 x 106 per ml instead of 2.5 x 106 per ml, and preincubation times were 
reduced from 2 to 1 h. [3SS]methionine labeling was for 3 h at 100 #Ci per ml 
(Figs. 1 and 3), 5 h at 60 ~Ci per ml (Figs. 2 and 4), or 4 h at 75 uCi per ml 
(Figs. 6 and 7); 32Pi labeling was for 6 h at 100 uCi per ml. After labeling, cells 
were harvested by centrifugation and washed once with ice-cold PBS (containing 
2 mM L-methionine for aSS-labeled cells); saline was aspirated; and cells were 
frozen in dry ice and stored at -70°C. Extracts were prepared by dissolving cell 
samples at a concentration of 1.67 × 106 cells per ml in extraction buffer 
containing 10 mM Tris-HC1, pH 7.5, 2 mM dithiothreitol, 2 mM EDTA 
(ethylenediamine tetraacetate), 2 mM L-methionine, and 0.5 % wt/vol Nonidet 
P-40 to give protein concentrations of ~5 mg per ml. Extracts were clarified 
by centrifugation for 5 min at 8 to 10,000 g in a Fisher microcentrifuge (Fisher 
Scientific Co., Pittsburgh, PA). (For Figs. 5 and 6 centrifugation was for 10 min 
at about 160,000 g in a Beckman airfuge centrifuge [Beckman Instruments, 
Inc., Fullerton, CA], but this modified procedure did not appreciably affect R 
purification.) 

Affinity and Control Sepharose Purifications: Undigested or 
proteolyzed cell extracts were loaded onto 20-ul columns of N~-(2-aminoethyl) - 
cAMP Sepharose or control Sepharose at room temperature as described 
elsewhere (33, 39). After loading, columns were washed successively with 
portions of "starting buffer" containing l0 mM 4-morpholineethanesulfonate, 
pI4 6.6, l mM dithiothreitol, 2 mM EDTA, 1 mM L-methionine, 0.3 mg per 
ml ovalbumin, 0.5% wt/vol Nonidet P-40; starting buffer with the addition of 
l M sodium chloride; starting buffer; and starting buffer lacking methionine 
and ovalbumin (24, 33, 39). Bound radioactivity was eluted with gel sample 
buffer; 2-5-~1 portions were subjected to scintillation counting in 6 ml ACS 
scintillation mixture; and samples were stored frozen at -70°C as described 
elsewhere (24, 39). 

Thermolysin and Chymotrypsin Proteolysis: l mg/ml-stock 
solutions ofthermolysin in water and chymotrypsin in 1 mM hydrochloric acid 
were stored in small portions at -70"C. For proteolysis in cell extracts, proteases 
were diluted with a 5 mg/ml-solution ofovaibumin in water, then 10-~1 portions 
of the diluted proteases were added to mixtures of 10-td cell extracts and 5 ~tl 
0.2 M sodium bicarbonate. Mixtures were incubated for 1 h at 30"C, then 
subjected to affinity or control Scpharose purification as above. Concentrations 
of proteases in incubation mixtmxs were 8 ~g per ml (Figs. 3 and 4) or 20 #g 
per ml (Fig. 2, a and b) to give ratios of protease to protein of ~ 1:500 or 1:200. 
For column proteolysis, extracts were loaded onto affinity or control Sepharose 
columns, and columns washed as above through the second set of starting 
buffer washes. Columns were then washed twice with 0.2 ml of "digestion 
solution" containing 50 mM sodium bicarbonate, 1 mM dithiothreitol, 1 mg 
per ml ovalbumin, and 0.5% wt/vol Nonidet P-40; washed twice with 0.2 ml 
of digestion solution containing, in addition, thermolysin at 2 ug per ml (Fig. 
2, c and d) or chymotrypsin at 2.5 #g per ml (Fig. 6); and incubated with a 
third portion of protease-containing solutions for 1 h at room temperature. 
Columns were then washed twice with 0.2 ml starting buffer and twice with 
0.2 ml starting buffer lacking methionine and ovalbumin before eluting as 
above. Eluted samples were counted and stored as above. 

Two-dimensional Polyacrylamide Gel Electrophoresis: The 
O'Farrell two-dimensional gel procedure (35) was used with modifications 

2 Details of the isolation and characterization of these mutants will 
be presented in a subsequent report. 
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described previously (38). Second dimension SDS gels were 12.5% in polyacryl- 
amide. To calibrate peptide molecular weights in the two-dimensional gel 
patterns, samples of ~4C-labeled proteins from bacteriophage T4-infected Esch- 
erichia coli (40) were loaded on selected second dimension gels in wells adjacent 
to first dimension gels; calibration curves from the bacteriophage T4 proteins 
were adjusted for cellular actin (Mr 43,000) to give an apparent subunit 
molecular weight of 49,000 for R. All gel patterns are shown with the acidic 

FIGURE 1 Two-dimensional gel electro- 
phoresis patterns of affinity-purified R 
from wild-type and mutant $49 cells. 
Cells were labeled with [~SS]methionine, 
extracts prepared, and portions purified 
on N6-(2-aminoethyl)-cAMP Sepharose 
as described in Materials and Methods. 
2 x 104 cpm of the purified samples 
were subjected to two-dimensional gel 
electrophoresis, and autoradiograms of 
dried gels were exposed for 29 d. (a) R 
from wild-type subline 24.3.2; (b) R from 

the allelically-marked subline U36; (c) R from K~ mutant subline 
U200.65. Arrowheads indicate positions of the various forms of R 
as described in the text. 

end of the isoelectric focusing dimension at the fight and the low molecular 
weight region of the SDS gel dimension at the bottom. 

Autoradiography and Fluorography: For Figs. 1, 3, and 4, 35S- 
labeled peptides were detected by direct autoradiography of dried gels; autora- 
diography of 32p-labeled peptides (Fig. 4, b and c) was enhanced by using 
Lightning-Plus intensifying screens as described previously (33). For the gels of 
Figs. 2, 5, and 6, 35S-labeled species were detected by the fluorographic proce- 
dure of Bonner and Laskey (4 l), 

RESULTS 

Fig. 1 shows port ions of  two-dimensional  gel patterns of 
affinity-purified R from [3SS]methionine-labeled $49 cells to 
illustrate the charge heterogeneity in R~ caused by phospho- 
rylation and  mutat ion.  The positions of  nonphosphorylated 
(left) and  phosphorylated (right) forms of  wild-type R are 
indicated by downward-point ing arrowheads; corresponding 
forms of  m u t a n t  Rs are indicated by upward-point ing arrow- 
heads. Under  the labeling condi t ions  used for this experiment  
and for the other experiments  described in this report, ~ 9 0 %  
of labeled R in wild-type ceils (Fig. I a)  was in the phospho- 
rylated form (33). In subline U36 (Fig. 1 b), which has a wild- 
type phenotype (32), recoveries and  phosphorylations of  wild- 
type and  mu tan t  Rs were approximately equal. In subline 

FIGURE 2 Two-dimensional gel patterns of 
affinity or control Sepharose-bound ther- 
molytic peptides from [35S]methionine-la- 
beled wild-type cells. Wild-type $49 cells 
were labeled with [3SS]methionine, extracts 
prepared, and portions digested with ther- 
molysin directly or after binding to columns 
as described in Materials and Methods. 
5 x 104 cpm of column-purified samples for 
a and b and 2 x 104 cpm for c and d were 
subjected to two-dimensional electropho- 
resis; fluorographic exposures were for 6 d. 
(a) Affinity Sepharose-bound, and (b) con- 
trol Sepharose-bound, peptides from a cell 
extract proteolyzed with thermolysin; (c) 
thermolytic peptides from affinity Sepha- 
rose-bound proteins; and (d) thermolytic 
peptides from control Sepharose-bound 
proteins. Arrowheads indicate positions of 
cAMP-binding fragments. A contaminating 
protein common to all patterns is enriched 
for reference. Values (K) indicate approxi- 
mate molecular weights of fragments. 
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U200.65 (Fig. I c), which has a Ka phenotype (24, 28), recov- 
ery and phosphorylation of wild-type R were less than for 
mutant R. 

Since two-dimensional gel electrophoresis resolved forms 
of R modified in charge by phosphorylation or mutation, it 
was adopted as a method for identifying fragments of R 
bearing modified residues. For the studies presented in this 
report, fragments were generated by proteolysis of native R 
with thermolysin or chymotrypsin and purified by cAMP- 
affinity chromatography. Two experimental protocols were 
used: in the first, R was digested in crude extracts of radiola- 
beled cells; and, in the second, radiolabeled R was digested 
after binding to an affinity column. The experiment of Fig. 2 
shows that specific R-derived fragments were generated by 
both of these protocols. Fig 2, a and c shows two-dimensional 
gel patterns of thermolytic peptides bound by N~-(2-amino - 
ethyl)-cAMP Sepharose from extracts of [35S]methionine-la- 
beled wild-type $49 cells; Fig. 2, b and d shows corresponding 
patterns of peptides bound by control Sepharose. For Fig. 2, 
a and b thermolysin was incubated with crude cell extracts, 
and then fragments were purified by chromatography on 
affinity or control Sepharose columns. For Fig. 2, c and d 
column-binding species from a crude cell extract were im- 
mobilized on affinity or control Sepharose, washed free of 
most contaminating cell proteins, and proteolyzed in place 
with thermolysin; columns were eluted after washing to re- 
move protease and unbound fragments. Thermolysin yielded 
a major cAMP-binding fragment of ~ 37 kdaltons and minor 
fragments of ~40.5, 33, 32.5, 30.2, and 16-18 kdaltons; when 
digestion was on column-bound R, almost all label was in the 
major 37-kdalton peptide. Patterns of cAMP-binding chy- 
motryptic peptides from wild-type cell preparations are shown 
in Figs. 3 a, 4a, and 6 a; specifically-bound fragments (indi- 
cated by arrowheads) were identified with reference to control 
Sepharose-bound material as for Fig. 2 (data not shown). The 
major chymotryptic cAMP-binding fragment was a 33-kdal- 
ton species, and minor species of ~41.5, 32, and 28.5 kdaltons 
were also observed. When digestion was on column-bound R, 
chymotrypsin yielded, in addition, a prominent fragment of 
~38 kdaltons and several minor fragments between 28.5 and 
38 kdaltons (Fig. 6 a). Many of the larger fragments generated 
in crude cell extracts with either thermolysin or chymotrypsin 
formed doublets in the SDS gel dimension; the corresponding 
fragments from column-bound R were single species that 
migrated with the larger forms generated in extracts. This 
difference in fragment patterns from proteolyzed extracts and 
from column-bound R suggested that many of the large 
fragments shared an end sensitive to a protease endogenous 
to $49 cell extracts. This suggestion was confirmed (below, 
experiment of Fig. 6) by using structural mutations that 
sensitized this end to proteolysis in the absence of exogenous 
proteases. 

Fig. 3 shows patterns of cAMP-binding fragments generated 
from the three sublines of $49 cells whose R patterns are 
shown in Fig. l; digestions were performed in cell extracts 
with either chymotrypsin (Fig. 3, a-c) or thermolysin (Fig. 3, 
d-f). Mutant forms of R or its peptides are indicated with 
upward-pointing arrowheads. Patterns from the allelically- 
marked "wild-type" subline U36 (Fig. 3, b and e) were vir- 
tually identical to those from the wild-type subline 24.3.2 
(Fig. 3, a and d) except for several minor high molecular 
weight peptides that had counterparts more basic by ~2  
charge units (U) in the patterns from U36. The U36 electro- 

phoretic marker appeared to be within the 40.5- and 41.5- 
kdalton fragments generated, respectively, by thermolysin and 
chymotrypsin but outside the major 37-kdalton thermolytic 
fragment. In contrast to results with U36, all of the cAMP- 
binding fragments in wild-type cells had more basic counter- 
parts in peptide patterns from the Ka mutant subline U200.65 
(Fig. 3, c and f) .  

Since the wild-type R used for the experiments of Figs. 2 
and 3 was phosphorylated to an extent of ~90%, R fragments 
containing the phosphorylation site should have appeared in 
two forms differing in charge by 1 to 2 U with the more basic 
forms labeled to ~ 10% the intensities of their more acidic 
counterparts. The major cAMP-binding fragments generated 
with thermolysin or chymotrypsin did not exhibit such charge 
heterogeneity (Figs. 2, a and c, 3, a and d), but the minor 
41.5-kdalton chymotryptic fragment did (Fig. 3 a). In several 
experiments putative nonphosphorylated and phosphorylated 
forms of the 40.5-kdalton thermolytic fragment also could be 
distinguished (e.g., Fig. 2a). 3 Peptide patterns from U200.65 
(Fig. 3, c and f )  provided further support for the presence of 
the phosphorylation site in the 41.5- and 40.5-kdalton frag- 
ments; reduced labeling of the phosphorylated form of wild- 
type R in this Ka mutant strain resulted in reduced labeling 
of the more acidic forms of wild-type 41.5- and 40.5-kdalton 
fragments (compare with patterns from U36 in Fig. 3, b and 
c). 

Fig. 4 compares patterns of cAMP-binding chymotryptic 
fragments from extracts of 32pi-labeled cells with those from 
extracts of [35S]methionine-labeled cells to determine directly 
which peptides contain the phosphorylation site. Fig. 4a 
shows [35S]methionine-labeled peptides, Fig. 4b shows 32pi- 
labeled peptides, and Fig. 4c shows a mixture of the two 
preparations. The ratio of 32p tO 35S cpm loaded onto gels was 
such that from undigested material 32pi-labeled R gave a 
stronger autoradiographic response than did [35S]methionine- 
labeled R (33). In the chymotryptic peptide patterns 32p~. 
labeling was restricted to undigested R and minor 48.5- and 
41.5-kdalton species that also labeled with [35S]methionine; 
the major 33-kdalton fragment from [35S]methionine-labeled 
R was not detected among peptides from 32pi-labeled R. A 
parallel experiment confirmed the absence of phosphate from 
the major 37-kdalton cAMP-binding fragment generated from 
R by proteolysis with thermolysin (not shown). 

To map sites of mutation and phosphorylation using the 
data of Figs. 3 and 4, it is necessary to know the positions of 
fragment endpoints in the R polypeptide chain. Published 
reports have localized cAMP-binding regions of R to the 
carboxyterminal portion of the molecule (12, 42). If cAMP- 
binding fragments actually contained the carboxyterminus of 
R, their molecular weights would estimate the positions of 
their aminoterminal ends. Fig. 5 shows gel patterns of Rs 
from U36 (Fig. 5 a) and from two Ka mutant sublines of U36 
that carry charge-shift mutations in the wild-type allele of 
U36. In U36.B1.R5 (Fig. 5 b) the mutation caused an acidic 
shift of 1 U in R, and in U36.B2.RI (Fig. 5c) the mutation 
caused an acidic shift of about 2 U in R. In addition to 

3 Relative labeling of the putative nonphosphorylated form of the 
40.5-kdalton thermolytic peptide was less than expected from the R 
subunit pattern; this disproportion appears to reflect preferential 
production of the 40.5-kdalton peptide from kinase holoenzyme and 
partitioning of most nonphosphorylated R in a "free" compartment 
(unpublished observations). 
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FIGURE 3 Gel patterns of cAMP-binding chymotryptic and thermolytic peptides from extracts of wild-type and mutant $49 cells. 
Cells were labeled with [3SS]methionine, extracts digested with chymotrypsin or thermolysin, and cAMP-binding fragments 
purified by affinity chromatography as described in Materials and Methods. 5 x 104 cpm from the peptide preparations were 
subjected to two-dimensional gel electrophoresis, and autoradiograms were exposed for 29 d. (a) Chymotryptic peptides from 
subline 24.3.2; (b) chymotryptic peptides from subline U36; (c) chymotryptic peptides from subline U200.65; (d) thermolytic 
peptides from subline 24.3.2; (e) thermolytic peptides from subline U36; and (f) thermolytic peptides from subline U200.65. 
Arrowheads indicate positions of cAMP-binding peptides, with upward-pointing arrowheads specific for mutant forms. Molecular 
weights of some of the fragments are indicated as in Fig. 2. Contaminating proteins common to the patterns are enclosed in 
circles and diamonds. R indicates the position of undigested R. 

FIGURE 4 cAMP-binding chymotryptic fragments of wild-type R 
labeled with [3SS]methionine or 32p~. Chymotryptic fragments were 
prepared and purified from extracts of cells labeled with [35S]- 
methionine or 3zp~ as described in Materials and Methods. 2 x 104 
cpm of 3SS-labeled peptides and/or 103 cpm of 32P-labeled peptides 
were subjected to two-dimensional gel electrophoresis, and auto- 
radiograms were exposed for 14 d using intensifying screens for 
gels with 32P-labeled samples. (a) [35S]methionine~labe~ed frag- 
ments; (b) 32P~-Iabeled fragments; and (c) mixture of [~SS]methio- 
nine- and ~2P~-Iabeled fragments. Arrowheads indicate positions of 
R and its fragments; diamonds enclose a contaminating protein in 
3SS-labeled samples. R and 33K indicate species corresponding to 
undigested R and its major cAMP-binding chymotryptic fragment. 

altering the electrostatic charge of R, the mutations of 
U36.B1.R5 and U36.B2.R1 caused heterogeneity in the size 
of the K~ mutant Rs. The proportion of Ka mutant R in 
smaller forms varied between R preparations from the same 
strain, suggesting that the heterogeneity resulted from limited 
proteolysis during extraction and purification. This size het- 
erogeneity marks an end (or ends) of the mutant Rs and, as 
shown below, can be used to demonstrate that large cAMP- 
binding fragments of R contain its carboxyterminus. 

Fig. 6 shows two-dimensional gel patterns of chymotryptic 
fragments from column-bound R from sublines 24.3.2 (Fig. 
6a), U36 (Fig. 6b), U36.B1.R5 (Fig. 6c), or U36.B2.RI (Fig. 
6d). Filled arrowheads indicate positions of wild-type pep- 
tides, upward-pointing open arrowheads indicate positions of 
peptides specific to the U36 marker allele product, and down- 
ward-pointing arrowheads indicate positions of peptides spe- 
cific to the Ka mutant Rs. Consistent with the results of the 
experiment of Fig. 3., charge heterogeneity attributable to the 
U36 marker allele mutation was observed in 41.5-kdalton 
fragments, but not in 38-kdalton or smaller fragments. Acidic 
charge shifts attributable to the K~ mutations in U36.Bl.R5 
and U36.B2.R1 were found in the major 33-kdalton fragment 
and all larger fragments. Ka mutant forms of the 38- and 41.5- 
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FIGURE 5 Gel patterns of Rs from 
$49 subline U36 and two of its Ka 
mutant derivatives. Rs were puri- 
fied from [35S]methionine-labeled 
cells as described in Materials 
and Methods, and 9,500 cpm 
from each sample were subjected 
to two-dimensional gel electro- 
phoresis. Fluorographic expo- 
sures were for 2 d. (a) R from sub- 
line U36; (b) R from subline 

U36.B1 .R5; and (c) R from subline U36.B2.R1. Arrowheads indicate 
positions of Rs. 

kdalton fragments exhibited size heterogeneity similar to that 
seen in the positions of their "undigested" R counterparts, 
confirming that wild-type forms of these two fragments con- 
tained the same (carboxyterminal) end of R. (Fluorographic 
exposures longer than those shown in Fig. 6 clearly revealed 
mutant forms of the 41.5-kdalton fragments.) The 33-kdalton 
fragments from the Ka mutant Rs were also heterogeneous in 
size, although relative labeling among the different forms was 
somewhat different from that of undigested mutant R. Since 
the U36 marker allele mutation fell within the 40.5-kdalton 
thermolytic fragment (Fig. 3) but outside the 38-kdalton 
chymotryptic fragment (Fig. 6), carboxyterminal localization 
of the 38-kdalton fragment placed the mutation within an 
interval from ~8.5 to 11 kdaltons from the aminoterminus 
of R (assuming that undigested R is 49 kdaltons). Patterns 
from the two Ka derivatives of U36, by resolving 38-kdalton 
fragments from the two R allele products, also proved that 
the 38-kdalton fragment from the U36 marker allele product 
had wild-type charge. Without this control, it remained pos- 
sible that the absence of charge heterogeneity in the 38- 
kdalton fragment from U36 reflected aberrant proteolysis of 
the mutant R. From the experiments of Figs. 2, 3, and 4, the 
endogenous phosphorylation site fell in the same fragments 
as did the U36 mutation. This result was also confirmed in 
the experiment of Figs. 5 and 6 by noting the effects of the Ka 
mutations in U36.B 1.R5 and U36.B2.R 1 on labeling patterns 
of the U36 marker allele product and its 38- and 41.5-kdalton 
peptides. 

Fig. 7 summarizes in diagrammatic form the results of the 
experiments presented in this report. Major cleavage sites for 
thermolysin (Th) and chymotrypsin (Ch) are shown in heavy 
arrows, and minor cleavage sites are shown with lighter ar- 
rows. The region susceptible to endogenous proteolysis is also 
indicated (E). Sites of phosphorylation (ser-P) and mutation 
were localized to intervals delimited by the proteolytic cleav- 
age sites. For the marker allele mutation in U36 and the 
endogenous phosphorylation site, localization was to an in- 
terval comprising ~5% of the R polypeptide. For the K, 
mutations in U200.65, U36.B 1 .R5, and U36.B2.R 1, however, 
localization was only to the carboxyterminal 67% of the 
molecule. Since two-dimensional gel electrophoresis provided 
information on both charge and size of R fragments, it was 
possible to estimate net charge differences between fragments 
and, thereby, construct a map of charge density distribution 
for the protein. For the charge density histogram shown in 
Fig. 7, distances between fragments were calibrated for charge 
shifts using patterns from a variety of mutant sublines includ- 
ing, but not limited to, those shown in Figs. 3 and 6. Locations 
shown in Fig. 7 for structural domains implicated in R dimer 
formation (R~--~R), interaction between R and C (R~--~C), and 
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FIGURE 6 Chymotryptic fragments of affinity column-bound Rs 
from wild-type and mutant sublines of $49. Cyclic AMP-binding 
fragments were prepared by chymotrypsin proteolysis of affinity 
column-bound R from extracts of [35S]methionine-labeled cells as 
described in Materials and Methods. 3 x 104 cpm from the fragment 
preparations were subjected to two-dimensional gel electrophore- 
sis, and fluorograms were exposed for 8 d. (a) Fragments from wild- 
type subline 24.3.2; (b) fragments from subline U36; (c) fragments 
from Ka mutant subline U36.B1 .R5; and (d) fragments from Ka mutant 
subline U36.B2.R1. Filled arrowheads and carets indicate positions 
of wild-type R fragments; upward-pointing open arrowheads indi- 
cate positions of fragments specific to the U36 marker allele product 
and downward-pointing open arrowheads indicate positions of 
fragments specific to Ka mutant allele products. R and values (K) are 
used as in Figs. 2-4. 

cAMP-binding are based on published information (7, 8, 12- 
2 I). The allele marker mutation in U36 and the endogenous 
phosphorylation site fell at the aminoterminal end of the 
hinge-region between regions implicated in dimer formation 
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FIGURE 7 Map of chymotrypsin and thermolysin cleavage sites, sites of phosphorylation and mutations, and charge density 
distribution in $49 R. Arrows indicate the positions of chymotryptic cleavages (Ch) in column-bound R and thermolytic cleavages 
(Th) in R in crude cell extracts; major cleavage sites are indicated by the heavier arrows. Regions of R dimer interaction (R~,R) 
and of interaction of R with C (R<-*C) were inferred from published results as described in the text. The histogram of charge 
density distribution was constructed from data on charge differences between R peptides; mutations were used to calibrate 
distances between peptides in isoelectric focusing dimensions of two-dimensional gel patterns. 

and binding of C. Three Ka mutations fell within the cAMP- 
binding domain of R, but they were not localized with great 
precision. 

DISCUSSION 

Type I R from $49 mouse lymphoma cells, like the homolo- 
gous proteins from other mammalian sources, has a proteo- 
lytically-stable cAMP-binding domain adjacent to a proteo- 
lytically-sensitive hinge-region. The major cAMP-binding 
thermolytic and chymotryptic fragments from $49 R were 
similar in molecular weights to the corresponding fragments 
from purified porcine R~ (12, 14) except that the apparent 
values for $49 R and its fragments were ~6% greater than 
those reported for the porcine species; this small discrepancy 
is probably attributable to differences in gel calibrations. 
Partial amino acid sequences are available for the regions 
surrounding the major thermolysin cleavage sites in porcine 
and bovine RlS (14, 20); data is more extensive for the bovine 
protein (20), but, where they overlap, the sequences are in 
complete agreement. Among the eight residues aminoter- 
minal to the thermolysin cleavage site in bovine R~ are four 
arginines and a lysine; the next 10 aminoterminal residues 
are neutral amino acids. A similar very basic region to the 
aminoterminal side of the thermolysin cleavage site in $49 R 
can be deduced by the 5-charge unit-difference between the 
38-kdalton chymotryptic and 37-kdalton thermolytic cAMP- 
binding peptides (Fig. 7). Also in common with bovine and 
porcine R~s is that the region between endpoints of the 37- 
and 38-kdalton fragments from $49 cell R is susceptible to 
tryptic cleavage at several sites (R. A. Steinberg and M. 
Stroczkowski, unpublished results). Three lines of evidence 
implicate this basic region in interactions of R with C: the C- 
inhibitory activity of R is sensitive to the arginine-specific 
reagent 2,3-butanedione (15); phosphorylation at a serine four 
residues carboxyterminal to the four arginines abolishes the 
C-inhibitory activity of R (20, 21); and C protects this basic 

1078 THE JOURNAL OF CELL BIOLOGY ' VOLUME 97, 1983 

region from tryptic digestion in partially-purified kinase hol- 
oenzyme (14). C also appears to protect this region from 
proteolysis in $49 cell R. Chymotryptic digestion of affinity 
column-bound R yielded a prominent 38-kdalton cAMP- 
binding fragment (Fig. 6) that was absent from digests of cell 
extracts (Figs. 3 and 4). Thermolysin digestion of partially- 
purified kinase holoenzyme from $49 cells yielded the 37- 
kdalton fragment seen in the experiments of Figs. 2 and 3 
only when cAMP was present during digestion; in the absence 
of cAMP, the major product was the 40.5-kdalton fragment 
produced as a minor species in digests of crude extracts (Figs. 
2 and 3; R. A. Steinberg, unpublished results). It is not clear 
why purification was needed to reveal protection of the ther- 
molysin site but not that of the chymotrypsin site. 

Immediately carboxyterminal to the basic region discussed 
above is a region delimited by the major cleavage sites for 
thermolysin and chymotrypsin that carries a net negative 
charge of 4 U (Fig. 7). In the hinge-region sequence from 
bovine R] (20), there are 14 residues between the site cleaved 
by thermolysin and a tyr-val bond that appears to be the 
major cleavage site for chymotrypsin (l 4); 4 this interval con- 
tains four acidic residues and no basic residues. This 14 amino 
acid interval is grossly overestimated in size by the differences 
in SDS mobilities of carboxyterminal thermolytic and chy- 
motryptic fragments from porcine R~, and, presumably, from 
$49 R as well. The acidic region extending from ~ 12 to 16 
kdaltons from the aminoterminus of R in the map of Fig. 7, 
therefore, actually comprises only ~ 1,500 daltons of protein. 
When sequence data is available for the entire protein, similar 
corrections may have to be applied to additional regions of 

4 The aminoterminal sequence of the carboxyterminal chymotryptic 
fragment from porcine R differed in two residues from the sequence 
carboxyterminal to the proposed chymotrypsin cleavage site in the 
bovine sequence; both changes could have resulted from single base 
substitutions in the gene sequence. 



the $49 R~ map. An acidic region occupies a position in the 
bovine Rn sequence equivalent to that of the acidic region in 
bovine and $49 R~s; it has been argued that, along with the 
arginine-rich region discussed above, this acidic region may 
be important for the interaction of R with C (40). 

In contrast to the autophosphorylation site in Rn (13, 15, 
42) and the site in RI phosphorylated by cGMP-dependent 
protein kinase (20), the endogenous phosphoserine in $49 R 
is aminoterminal to the major cleavage sites for both chy- 
motrypsin and thermolysin. The endogenous phosphorylation 
site in $49 cell R and the allele marker mutation in subline 
U36 map to the aminoterminal end of the hinge-region at 

10 kdaltons from the aminoterminus of R or in about the 
position of the site in Rn phosphorylated by casein kinase II 
(22, 23). The location of the endogenous phosphoserine near 
the region implicated in R-C interaction is consistent with a 
catalytic role of C in R~ phosphorylation; such a role, in turn, 
is consistent with the marked reduction in R phosphorylation 
observed in $49 cell mutants deficient in C activity (32, 33). 
Nevertheless, it has not been possible to demonstrate phos- 
phorylation of R by C in purified preparations of type I 
protein kinase (3, 19, 43). Despite its close proximity to the 
site of endogenous phosphorylation, the marker allele muta- 
tion in subline U36 has little or no effect on R phosphoryla- 
tion (Figs. 1 and 5). 

Although the charge changes caused by the U36 mutation 
or endogenous phosphorylation might be expected to alter 
the local configuration of R, neither modification has a dis- 
cernible effect on the activation parameters ofkinase (21, 32). 
This suggests that the aminoterminal portion of the hinge- 
region is not involved in binding or inhibition of C. On the 
other hand, three different Ka mutations that increase the 
apparent constant for activation of $49 kinase by cAMP map 
within the carboxyterminal cAMP-binding region of R; more 
refined mapping of these and 22 additional charge-shift/Ca 
mutations has localized them all to a few sites in a region 
from ~ 7  to 25 kdaltons from the carboxyterminus of R (R. 
A. Steinberg, submitted manuscripts; and R. A. Steinberg and 
E. F. McHugh, unpublished results). Thus, despite the sug- 
gestion that some/Ca mutations primarily affect interactions 
between R and C (31), none of those we have mapped falls 
near the region thought to be important in these interactions. 

/Ca mutants are heterozygous for expression of mutant and 
wild-type R alleles (24, 44, and this report), yet <25% of 
kinase from Ka mutant cells has wild-type activation param- 
eters (44, 45). This dominance of the mutant allele product 
appears to be explained in part by its modification of wild- 
type R properties through heterodimer formation (45). If R 
dimer interaction is limited to the aminoterminal domain 
implicated by proteolysis studies (14), the ability of/Ca muta- 
tions in the carboxyterminal half of R to affect properties of 
wild-type R through heterodimer formation suggests that 
there is significant conformational interaction between ami- 
noterminal and carboxyterminal domains and between mon- 
omers linked through dimer association. Alternatively, there 
may be additional dimer interaction regions in the carboxy- 
terminus of R. In this regard, it is interesting to note that 
considerable homology has been found between cAMP-bind- 
ing site sequences in bovine Rn and in the catabolite gene 
activator protein ofEscherichia coli (46); in the E. coli protein, 
cAMP-binding sites are formed by interactions of sequences 
from both monomers of the dimeric protein (47). 

Two-dimensional partial proteolysis peptide maps have the 

potential for providing a rapid and inexpensive method for 
mapping mutations in R~ and for comparing R~ structures 
from various animal species. In the studies presented in this 
report, cAMP-binding fragments from native R have been 
used to localize mutations to major structural domains of the 
protein. For high resolution mapping using partial proteolytic 
digests, it is important to introduce a large number of cleav- 
ages within relatively small regions of the protein. The frag- 
ments used in the present studies allow mapping of features 
within the hinge-region of R to intervals comprising 5% or 
less of the R polypeptide chain. To achieve comparable map- 
ping of mutations within the cAMP-binding carboxyterminus 
of the protein, it has been necessary to generate proteolytic 
fragments from denatured R. In subsequent reports I will 
present experiments that map endpoints of fragments gener- 
ated from denatured R and map mutations to intervals delim- 
ited by these fragment endpoints (R. A. Steinberg, submitted 
manuscripts). 
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