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Simple Summary: In this study, we comprehensively and synthetically analyzed mutations in lung
cancer based on the next generation sequencing data of lung tumors surgically removed from the
patients, and identified the mutation-related factors that can affect clinical outcomes. Detailed
understanding of the genomic landscape of lung cancers will establish the ideal model for best
surgical outcomes in the era of “precision medicine”.

Abstract: Findings on mutations, associated with lung cancer, have led to advancements in
mutation-based precision medicine. This study aimed to comprehensively and synthetically analyze
mutations in lung cancer, based on the next generation sequencing data of surgically removed
lung tumors, and identify the mutation-related factors that can affect clinical outcomes. Targeted
sequencing was performed on formalin-fixed paraffin-embedded surgical specimens obtained from
172 patients with lung cancer who underwent surgery in our hospital. The clinical and genomic
databases of the hospital were combined to determine correlations between clinical factors and
mutation profiles in lung cancer. Multivariate analyses of mutation-related factors that may affect the
prognosis were also performed. Based on histology, TP53 was the driver gene in 70.0% of the cases of
squamous cell carcinoma. In adenocarcinoma cases, driver mutations were detected in TP53 (26.0%),
KRAS (25.0%), and epidermal growth factor receptor (EGFR) (23.1%). According to multivariate
analysis, the number of pathogenic mutations (≥3), presence of a TP53 mutation, and TP53 allele
fraction >60 were poor prognostic mutational factors. The TP53 allele fraction tended to be high in
caudally and dorsally located tumors. Moreover, TP53-mutated lung cancers located in segments
9 and 10 were associated with significantly poorer prognosis than those located in segments 1–8.
This study has identified mutation-related factors that affect the postoperative prognosis of lung
cancer. To our knowledge, this is the first study to demonstrate that the TP53 mutation profile varies
with the site of lung tumor, and that postoperative prognosis varies accordingly.
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1. Introduction

Along with the technological advancement in next generation sequencing (NGS), accumulated
findings on mutations, associated with lung cancer, have led to the development of mutation-based
precision medicine [1]. In fact, novel therapies, based on information regarding cancer antigens and
cancer mutations, such as immune checkpoint blockade and molecular-targeted therapy, have recently
been developed, and treatment outcomes for lung cancer, have improved dramatically [2,3]. Therefore,
patient-based clinicogenomic datasets may significantly accelerate the advancement of clinical practice
and the development of novel therapeutics.

Although, the postoperative prognosis of lung cancer has been conventionally and stochastically
predicted, based on the histological classification and the tumor-node-metastasis (TNM) stage [4,5],
a prognostic model specifically applicable for each case has not been established. The criteria for
adjuvant chemotherapy are also not clear. Hence, accurate criteria for adjuvant chemotherapy based
on appropriate prognostic models in the future should be urgently established [6,7].

Our study group has continuously analyzed the NGS data of patients with lung cancer since
January 2014. Hence, this study aimed to synthetically analyze the correlation between mutation
profiles of patients with lung cancer and clinical factors, using the integrated results of this NGS
analysis, and identify mutational factors affecting clinical outcomes.

2. Results

2.1. Patient Characteristics

We studied surgical samples from 172 patients with lung cancer who underwent surgery at our
hospital between June 2014 and June 2019. The characteristics of the enrolled patients are summarized
in Table 1. Among the 172 patients, 116 were men and 56 were women, and 137 were smokers and
35 were non-smokers. The age of patients ranged between 44 and 90 (mean ± SD, 71.1 ± 10.8) years.
Histologically, there were 103 cases of adenocarcinoma, 40 cases of squamous cell carcinoma, 4 cases
of adenosquamous carcinoma, 10 cases of small cell carcinoma, and 15 cases with other histology.
In terms of pathological stage, there were 79 stage I, 21 stage II, 33 stage III, and 39 stage IV cases.
One patient received four cycles of preoperative cisplatin + vinorelbine chemotherapy. The median
(range) follow-up period for all censored cases was 973 (21–2056) days.

Table 1. Patient characteristics.

Parameters Variables Total Number Percentages

Total number 172

Age (years), median (range) 71 (44–90)

Sex
Male 116 67.4%

Female 56 32.6%

Histology
Adeno 103 59.9%

Squamous 40 23.3%
Adenosquamous 4 2.3%

Small 10 5.8%
other 15 8.7%
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Table 1. Cont.

Parameters Variables Total Number Percentages

Pathological stage
I 79 45.9%
II 21 12.2%
III 33 19.2%
IV 39 22.7%

Smoking status
Smoker 137 79.7%

Non-smoker 35 20.3%

Adeno, adenocarcinoma; Squamous, squamous cell carcinoma; Adenosquamous, adenosquamous carcinoma; Small,
small cell carcinoma.

2.2. Clinicogenomic Features and Associations

In total, 2372 mutations were detected at an allele fraction (AF) of >1%, and the mean number of
mutations per cancer lesion was 13.8 ± 2.9. Of these, 447 mutations were annotated as pathogenic
(or oncogenic) mutation (Table S1), and the mean number of pathogenic mutations per cancer lesion
was 2.6 ± 0.4. The frequency of short variant mutations is shown in Figure 1. The most common
mutation was in the gene encoding tumor protein p53 (TP53), which was detected in approximately
60% of patients with lung cancer. When only pathological mutations at an AF of >20% were examined,
common mutations were detected in genes encoding TP53, KRAS, and EGFR in adenocarcinoma and
in the TP53 gene in squamous cell carcinoma (Figure 2A,B). Pathogenic mutations with AF of >20 were
regarded as driver mutations, and 89.5% of patients with lung cancer were found to harbor driver
mutations in EGFR, KRAS, or TP53, which were found to be the three major mutations in lung cancer.
Fusion gene screening through transcriptome sequencing revealed that ROS1, ALK, and RET fusion
genes were not detected in any of the 172 patients who enrolled in this study.

2.3. Pathogenic vs. Nonpathogenic Mutations in EGFR, KRAS, and TP53

For EGFR and TP53, the number of pathogenic mutations was 1.24 and 1.38 times higher than
the number of nonpathogenic mutations, respectively, whereas, for KRAS, the former was 7.40 times
higher and significantly higher than the latter (Figure S1). In other words, most mutations detected in
KRAS were pathogenic mutations.

2.4. Multivariate Analysis of Progression-Free Survival (PFS) after Surgery

When multivariate analysis was performed with age, gender, histology, stage, number of
pathogenic mutations, presence of EGFR, KRAS, and TP53 mutations, and AF of EGFR, KRAS, and
TP53 mutations to identify factors affecting PFS, the stage, number of pathogenic mutations, presence
of TP53 mutations, and AF of TP53 mutations were found to be significant prognostic factors (p < 0.05).

2.5. Number of Oncogenic Mutations in Lung Cancer and Patient Prognosis

The largest proportion of patients (67/172 patients) harbored one oncogenic mutation. The mean
number of oncogenic mutations per tumor was 2.6 ± 0.4 (Figure 3A). The prognosis was significantly
poorer in tumors with three or more oncogenic mutations than in tumors with two or less mutations
(Figure 3B).
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Figure 1. Frequency of detection of gene mutations. Analysis of all 172 patients. All mutations with 
allele fraction (AF) of >1% are presented in the order of frequency. Mutations in the tumor protein 
p53 (TP53) was the most common kind of mutation, present in approximately 60% of lung cancers. 

Figure 1. Frequency of detection of gene mutations. Analysis of all 172 patients. All mutations with
allele fraction (AF) of >1% are presented in the order of frequency. Mutations in the tumor protein p53
(TP53) was the most common kind of mutation, present in approximately 60% of lung cancers.
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Figure 2. Frequency of detection of pathogenic mutations in adenocarcinomas and squamous cell 
carcinomas. (A) Pathogenic mutations with AF of >20 in adenocarcinomas are presented. The 
frequencies of TP53, KRAS, and epidermal growth factor receptor (EGFR) mutations were remarkably 
high, and hence they can be considered the three major mutations. (B) Pathogenic mutations with AF 
of >20 in squamous cell carcinomas are presented. The frequency of TP53 mutation was remarkably 
high. 

Figure 2. Frequency of detection of pathogenic mutations in adenocarcinomas and squamous
cell carcinomas. (A) Pathogenic mutations with AF of >20 in adenocarcinomas are presented.
The frequencies of TP53, KRAS, and epidermal growth factor receptor (EGFR) mutations were
remarkably high, and hence they can be considered the three major mutations. (B) Pathogenic
mutations with AF of >20 in squamous cell carcinomas are presented. The frequency of TP53 mutation
was remarkably high.
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2.6. Presence of TP 53 Mutation and Patient Prognosis 

Irrespective of oncogenic and non-oncogenic mutations, patients with TP53 mutations had 
significantly poorer prognosis than those without TP53 mutations (Figure 4A). Next, we compared 
the prognosis among patients with different numbers of TP53 mutations, including oncogenic and 
non-oncogenic mutations. Prognosis was significantly poorer in patients with tumors harboring 0, 1, 
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Figure 3. Number of pathogenic mutations in lung cancer. (A) The number of mutations harbored
by each tumor is shown. Tumors harboring one mutation were most common. On average, tumors
harbored 2.6 mutations. (B) The postoperative prognosis was significantly poorer in lung cancer,
harboring three or more oncogenic mutations, than harboring 2 or less oncogenic mutations. Blue and
red lines denote lung cancer harboring three or more oncogenic mutations (n = 46) and that harboring
2 or less oncogenic mutations (n = 126), respectively.

2.6. Presence of TP 53 Mutation and Patient Prognosis

Irrespective of oncogenic and non-oncogenic mutations, patients with TP53 mutations had
significantly poorer prognosis than those without TP53 mutations (Figure 4A). Next, we compared
the prognosis among patients with different numbers of TP53 mutations, including oncogenic and
non-oncogenic mutations. Prognosis was significantly poorer in patients with tumors harboring 0, 1,
and 2 or more mutations (in this order) (Figure 4B).

2.7. Allele Fraction of TP 53 Mutation and Patient Prognosis

According to AF, TP53 mutations, including oncogenic and non-oncogenic mutations, were
classified into three groups: AF = 0, 0 < AF < 60, and AF > 60. The TP53 mutation with AF = 0
represented cancer without any TP53 mutations. In tumors with multiple TP53 mutations, the highest
AF was used to classify each tumor. PFS was significantly shorter in the group of TP53 mutations with
AF > 60 than in the two other groups (hazard ratio (HR) 2.84, 95% confidence interval (CI) 1.48–5.48,
compared to AF = 0; HR 2.19, 95% CI 1.05–4.78, compared to 0 < AF < 60) (Figure 4C).

2.8. Mutation Profiles According to Cancer Location

We investigated whether the mutation profiles differed with tumor sites. Between tumors located
at the cranial side (segments 1, 2, 3, and 1 + 2, n = 84) and the caudal side (segments 7, 8, 9, and 10,
n = 56), no correlation was observed in the presence or absence of EGFR, KRAS, or TP53 mutations
(Table S2). No correlation was also observed in the presence or absence of EGFR, KRAS, or TP53
mutations between tumors located at the ventral side (segments 3, 4, and 5, n = 29) and the dorsal
side (segments 2, 6, 9, and 10, n = 59) (Table S2). These findings revealed that tumor sites were not
associated with the presence or absence of specific gene mutations.

No significant differences were observed in the AFs of EGFR or KRAS mutations when the AFs of
TP53, EGFR, and KRAS mutations were compared between tumor sites. However, the AFs of TP53
mutations were significantly higher in tumors located at the caudal and dorsal sides (Figure 5A,B).
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104 and 68), respectively. (B) The prognosis deteriorated significantly as the number of TP53 
mutations increased, i.e., in the ascending order of tumors with 0, 1, and 2 or more mutations. Red, 
green and blue lines denote cancers with 0, 1, and 2 or more mutations (n = 68, 85 and 19), respectively. 
* p = 0.014. (C) According to allele fractions (AFs) of TP53 mutations, the prognosis of lung cancer was 
significantly poorer in the AF > 60 group than in the other two groups with AF = 0 and 0 < AF < 60. 
Blue, green and red lines denote cancers with the AF > 60, 0 < AF < 60, and AF = 0 (n = 35, 69 and 68), 
respectively. * p < 0.0001. 
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Figure 4. TP53 mutation as a prognostic factor after surgery. (A) Postoperative prognosis was
significantly poorer in lung cancer with tumor protein p53 (TP53) mutations than in lung cancer
without TP53 mutations. Blue and red lines denote cancers with, and without TP53 mutations (n = 104
and 68), respectively. (B) The prognosis deteriorated significantly as the number of TP53 mutations
increased, i.e., in the ascending order of tumors with 0, 1, and 2 or more mutations. Red, green and
blue lines denote cancers with 0, 1, and 2 or more mutations (n = 68, 85 and 19), respectively. * p = 0.014.
(C) According to allele fractions (AFs) of TP53 mutations, the prognosis of lung cancer was significantly
poorer in the AF > 60 group than in the other two groups with AF = 0 and 0 < AF < 60. Blue, green and
red lines denote cancers with the AF > 60, 0 < AF < 60, and AF = 0 (n = 35, 69 and 68), respectively.
* p < 0.0001.
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Figure 5. Allele fraction (AF) of TP53, EGFR and KRAS mutations according to the cancer location.
(A) Comparison of AFs between tumors located at the ventral and dorsal sides showed significantly
higher AFs only in tumor protein p53 (TP53)-mutated tumors located at the dorsal side. Blue and
red lines denote anteriorly-, and posteriorly-located cancers, respectively. * p < 0.05. (B) Comparison
of AFs between tumors located at the cranial and caudal sides showed significantly higher AFs
only in TP53-mutated tumors located at the caudal side. Blue and red lines denote superiorly- and
inferiorly-located cancers, respectively. * p < 0.05.

2.9. Characteristics of TP53-Mutated Lung Cancer in Segments 9 and 10

Among TP53-mutated lung cancers, AFs of TP53 mutations, including oncogenic and
non-oncogenic mutations, were significantly higher in lung cancers located in segments 9 and
10, the dorsal inferior lobes, than in those located in the other segments (1 to 8) (Figure 6A, Figure S2).
In addition, among TP53-mutated lung cancers, PFS was significantly shorter in patients with lung
cancers located in segments 9 and 10 than in those where tumors were located in the other segments
(1 to 8) (Figure 6B). In contrast, among lung cancers without TP53 mutations, no significant difference
was observed in postoperative prognosis between lung cancers located in segments 9 and 10 and those
located in segments 1 to 8 (Figure S3). Among patients with TP53-mutated lung cancer, no significant
differences in either the proportion of smokers (segments 1–8: 86.8%, segments 9–10: 82.1%, p = 0.55)
or the smoking index, defined as number of cigarettes smoked per day multiplied by years smoked
(segments 1–8: 280 ± 54, segments 9–10: 234 ± 62, p = 0.83), were observed between those with lung
cancers located in segments 9 and 10 and those with lung cancers located in segments 1 to 8.

2.10. Correlation between Smoking and TP53 Mutations

To further investigate the correlation between smoking and TP53 mutations, we compared the
prevalence of TP53 mutations between smokers (n = 137) and non-smokers (n = 35) with lung cancer.
The results showed a significantly higher prevalence of TP53 mutations in smokers with lung cancer
(smokers: 65.0% versus non-smokers: 42.9%, p = 0.018). Comparison of the AFs of TP53 mutations
between smokers and non-smokers with lung cancer revealed that the AFs were significantly higher in
smokers with lung cancer (smokers: 32.1 ± 3.1 versus non-smokers: 12.5 ± 5.6, p = 0.003).
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Figure 6. Locational variation in prognosis in lung cancers with TP53 mutations. (A) Allele fractions of
tumor protein p53 (TP53) mutations were significantly higher in TP53-mutated lung cancers located
in segments 9 and 10 than in those located in segments 1 to 8. * p < 0.05. (B) The prognosis was
significantly poorer in TP53-mutated lung cancers located in segments 9 and 10 than in those located
in segments 1 to 8. Blue and red lines denote tumors located in segments 9–10 and 1–8 (n = 28 and
76), respectively.

3. Discussion

In lung cancer treatment, gene sequencing has been performed mainly as a companion diagnostic
approach for identifying mutations in genes such as EGFR and anaplastic lymphoma kinase (ALK)
and subsequent selection of molecular target drugs [8–10]. Currently, targeted sequencing using
NGS is being increasingly performed at clinical facilities worldwide [1,11]. The advancement in NGS
technology has realized comprehensive detection of many gene mutations in lung cancer. However,
the correlation between the detected mutation profiles and the pathology of lung cancer has not
been sufficiently analyzed. The availability of NGS is still limited, due to its cost, cumbersome
device operations and its supposedly limited clinical benefits. Furthermore, even in clinical facilities
performing NGS, the amount of data generated at each facility is not sufficient for scientific analysis.
In this study, we aimed to analyze the effect of gene mutation profiles on the prognosis of lung cancer.
Toward this objective, examination of many surgical samples collected from a large patient cohort with
similar clinical characteristics was required for effective analysis of prognosis. As gene sequencing
on surgical samples is being aggressively performed at our hospital since July 2014, we had access
to sufficient number of sequenced samples [12–19]. In this context, association between clinical and
genomic characteristics was analyzed in this study. Among the mutational factors, the number of
pathogenic mutations, presence of TP53 mutation, and AF of TP53 mutation were found to be the
prognostic factors.

Our study revealed that, on average, one cancer lesion harbors 2.6 pathogenic mutations, which can
be explained by branched evolution model [20]. Furthermore, several studies have suggested that even
if one mutation pathway is inhibited, the presence of other functional pathways of driver mutations can
drive proliferation of tumor cells and render the cancer aggressive [9,21–23]. Therefore, when multiple
driver mutations are incorporated into cancer during the course of tumor evolution, the proliferation
drive is activated at multiple stages, which enhances the aggressiveness of cancer. Our study also
showed that PFS was shorter in tumors with a large number of pathogenic mutations, validating the
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above-mentioned hypothesis from another perspective. For lung cancer harboring multiple pathogenic
mutations, radical treatment may be recommended considering tumor aggressiveness. Meanwhile,
cases of lung cancer harboring no oncogenic mutation include, (i) those harboring mutations that
cannot be sequenced via NGS for reasons, such as presence of fusion genes, DNA amplification,
DNA methylation, and histone modification; (ii) those harboring mutations located at gene sites other
than the targeted regions, which can be sequenced on our cancer panel.

The correlation between the presence of TP53 mutations and poor postoperative prognosis has
been suggested by previous studies involving immunostaining [24–26]. Our study validated this
observation. However, owing to low specificity, immunostaining can only detect the presence or
absence of abnormal TP53 proteins, but does not directly detect TP53 mutations [27]. Furthermore,
it does not reflect the details of TP53 mutations (e.g., mutational pattern and AF) [28]. In relation to
the prognostic effects of TP53 mutations on non-small cell lung cancer (NSCLC) detected via direct
sequencing, inconsistent results have been reported previously. Aisner et al. [29] reported that TP53
mutations are associated with shorter survival. Whereas, Devarakonda et al. [30] and Ma et al. [31]
reported that TP53 mutations exhibited no such prognostic effect. Meanwhile, some other studies have
revealed that TP53 mutations frequently exhibit intra-tumor heterogeneity (ITH) in NSCLC [32,33].
Based on this finding, Lee et al. [34] reported that TP53 mutations with ITH exhibit worse survival
when compared to wild-type TP53, whereas TP53 mutations without ITH did not exhibit such an
extreme phenotype. Our study, in which TP53 mutations were directly detected by deep targeted
sequencing, revealed that not only the number, but also the AF of TP53 mutations correlated with
prognosis. Therefore, we clearly demonstrated that TP53 mutations are additively involved in tumor
aggressive behavior. In our study, tumor cells were selected using laser capture microdissection (LCM)
before DNA extraction. Although, measurement bias is inevitable for AF measurement because of the
effect of contamination with normal cells, a single technician (Kenji Amemiya) has performed LCM as
uniformly as possible at our institute. The result of this analysis, showing that AF of TP53 mutations
affects prognosis, is an interesting and novel finding in oncology.

The hypothesis that aggressiveness of lung cancer may vary with tumor sites has not been verified
scientifically till date. In our study, AFs of TP53 mutations were significantly high in tumors located at
the dorsal and caudal sides, and the prognosis of TP53-mutated lung cancer located in segments 9 and
10 was poor. To date, there has been no reports on the effect of the sites of lung cancer on prognosis.
This is possibly the first report providing scientific verification of this effect. Interestingly, the common
sites of lung cancer with poor prognosis, the dorsal and caudal regions of the lung, corresponded to
the common sites of idiopathic pulmonary fibrosis. The dorsal and caudal regions of the lung may be
vulnerable to smoke. Owing to the lack of significant difference in the smoking status and the smoking
index between patients with TP53-mutated lung cancer located in segments 9 and 10 and that located
in segments 1 to 8, we concluded that even a comparable amount of smoking may exert a strong
effect on cancer initiation and progression in segments 9 and 10 in the dorsal inferior lobe. Detailed
investigation regarding the association between tumor sites and carcinogenesis associated with TP53
mutations is warranted. In the future, survival after surgery may be improved by changing treatment
strategies and the extent of resection based on the mutations harbored and the location of the tumors.

A limitation of this study is that it is a single-institution study with a small sample size. Furthermore,
unlike whole exome sequencing, panel sequencing does not provide information regarding all exons,
and thus, it is possible that each tumor may actually possess much more pathogenic mutations.
However, the lung cancer panel that we developed covers the main hot spots of gene mutations
in lung cancer, and we assume that almost all significantly mutated genes associated with lung
cancer can be detected. In addition, as the objective was to investigate the postoperative prognosis,
we did not investigate the correlation between mutations and responses to medical treatment (drug
therapy). Currently, the development of novel therapeutic strategies for lung cancer is rapidly
progressing. In the future, various therapeutics, in addition to EGFR-tyrosine kinase inhibitors,
ALK-inhibitors, programmed cell death 1 antibody, and cytotoxic T lymphocyte antigen-4 antibody,
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will be developed [2,35–37]. The correlation between these novel therapies and presence of mutations
should be determined to develop precision medicine. Moreover, the treatment for postoperative
recurrence has to be substantially changed to improve both PFS and overall survival. The establishment
of a large-scale clinicogenome database at the international level, and the promotion of large-scale
clinical studies using such a database, are warranted.

4. Methods

4.1. Patients and Sample Preparation

The study involved 172 patients who underwent surgery in our Department between June 2014
and June 2019. These patients provided written informed consent for the genetic research studies,
which were performed in accordance with protocols approved by the Institutional Review Board of
Yamanashi Central Hospital (approval date is 21 May 2014, although no number or any ethics code
was allocated). Patient data were collected from our institutional cancer registry database and from
patient follow-up visits to our outpatient office. The information collected from the records included
preoperative patient characteristics, disease status, operative procedure, pathological diagnosis, and
follow-up data. Histological typing was performed according to the World Health Organization
classification [38], and cancer staging was based on the TNM classification of the International Union
Against Cancer, 8th edition [39].

The serial section of formalin-fixed, paraffin-embedded (FFPE) tissue was stained with
hematoxylin-eosin and then micro-dissected using an ArcturusXT laser capture microdissection
system (Thermo Fisher Scientific, Tokyo, Japan). Tumor DNA was extracted using the QIAamp DNA
FFPE tissue kit (Qiagen, Tokyo, Japan). DNA fragmentation in FFPE DNA was assessed using The
TaqMan RNase P Detection Reagents Kit and the FFPE DNA QC Assay on ViiA7 Real-Time PCR
instrument (Thermo Fisher Scientific). Human control genomic DNA (included with TaqMan RNase P
Detection Reagents Kit) was serially diluted 4 times for a 5-point for a standard curve and the absolute
DNA concentrations were determined. Assessment of DNA fragmentation was estimated with the
ratio of DNA (relative quantification, RQ) obtained for the long amplicon (256 bp) to the short amplicon
(87 bp). RQ value was an indicator of the degradation level of genomic DNA. A peripheral blood
sample was drawn from each patient immediately prior to surgery and was collected into EDTA-2Na
tubes. The buffy coats were isolated following centrifugation of these samples at 820× g at 25 ◦C for
10 min. DNA was extracted from the buffy coats using the QIAamp DNA blood mini kit (Qiagen,
Tokyo, Japan).

4.2. Targeted Deep Sequencing and Data Analysis

A panel targeting the exons of 53 lung cancer-associated genes (see Table S3) was selected to
perform targeted sequencing. We searched the literature and selected these genes based on the following
criteria: (a) Genes often involved in lung cancer reported in The Cancer Genome Atlas [40] and other
projects; or (b) genes frequently mutated in lung cancer in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database [41]. The primers for targeted sequencing were designed to cover the hot-spot
mutations present in the lung cancer-associated genes, using the Ion AmpliSeq designer software
(Thermo Fisher Scientific), as reported previously [42–48]. Sequencing libraries were prepared using
Ion AmpliSeq Library Kit Plus (Thermo Fisher Scientific), according to the manufacturer’s instruction.
Multiplex PCR was performed with two primer pools. After PCR reaction, primer sequences were
partially digested with 2 µL of FuPa reagent (Thermo Fisher Scientific), and then barcoded using
Ion Xpress Barcode Adapters (Thermo Fisher Scientific). The library samples were purified using
Agencourt AMPure XP reagent (Beckman Coulter, Brea, CA, USA) and subsequently quantified using
Ion Library Quantitation Kit (Thermo Fisher Scientific). Each library was diluted to 60 pM, and the
same amount of libraries was pooled for one sequence reaction. Emulsion PCR and chip loading were
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performed on the Ion Chef with the Ion PI Hi-Q Chef kit. Sequencing was performed using the Ion PI
Hi-Q Sequencing Kit on the Ion Proton Sequencer (Thermo Fisher Scientific).

The sequence data were processed using standard Ion Torrent suite software running on the
Torrent server version 4.4 (Thermo Fisher Scientific). Raw signal data were analyzed using Torrent
suite version 4.0. The pipeline included signal processing, base calling, quality score assignment,
read alignment to the human genome 19 reference (hg19), and quality control of mapping and coverage
analysis. Following data analysis, annotation of single nucleotide variants, insertions, and deletions
were performed using the Ion Reporter server system (Thermo Fisher Scientific), and lymphocytes
from peripheral blood DNA were used as controls for detecting any variants (tumor-normal pair
analysis). We used the following filtering parameters for variant calling on Ion Reporter Local Server:
(i) the minimum number of variant allele reads was ≥10, (ii) the coverage depth was ≥50, (iii) variant
allele fraction (AF) ≥ 0.01, (iv) UCSC Common SNPs = Not In, (v) Confident Somatic Variants = In.
Sequence data were visually confirmed using the Integrative Genomics viewer. The allele fractions
represent the number of mutant reads divided by the total number of reads (coverage) at a specific
genomic position. The Functional Analysis through Hidden Markov Models prediction in the COSMIC
database was used to estimate oncogenic function of single nucleotide variations [49]. In order to
estimate oncogenic function of indel mutations, OncoKB, a comprehensive and curated precision
oncology knowledge base, was utilized [50]. Thus, all detected mutations were annotated by either
COSMIC or OncoKB database [49].

4.3. Statistics

Continuous variables were presented as mean ± standard deviation (SD), and compared using
unpaired Student’s t tests. One-way analysis of variance and the Tukey-Kramer multiple comparison
test were used to detect significant differences between groups. Chi-square tests were used to compare
the categorical data between groups. Progression-free survival was defined as the period from the day
of operation to the day of recurrence or the day of final follow-up. Survival was assessed using the
Kaplan-Meier method, and comparisons among the survival curves were made using the log-rank
test. To determine the predictors of survival within the cohort, we constructed Cox proportional
hazards model including each variable of interest. Multivariate analyses were performed using the
JMP function of the SAS software (JMP 15.1.0, SAS Institute, Cary, NC, USA). p-values less than 0.05 in
the two-tailed analyses were considered to denote statistical significance.

5. Conclusions

The number of pathogenic mutations, presence of TP53 mutations, and AF of TP53 mutations
were identified as mutation factors affecting postoperative prognosis of lung cancer. Importantly,
the TP53 mutation profiles varied with the site of lung cancer, and the postoperative prognosis changed
accordingly. Developing a detailed understanding of the genomic landscape of lung cancers will
establish the ideal model for best surgical outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3472/s1,
Figure S1: Pathogenic versus nonpathogenic mutations. The distribution of pathogenic and nonpathogenic
mutations in epidermal growth factor receptor (EGFR), KRAS, and tumor protein p53 (TP53) is shown. KRAS
mutations were significantly more frequently pathogenic than EGFR and TP53, Figure S2: Explanatory schemes of
the anatomical lung segments. Segments 9 and 10, the dorsal inferior lobes, were highlighted in yellow, Figure S3:
Locational variation in prognosis of lung cancers without TP53 mutations. The prognosis was not significantly
different between lung cancers without TP53 mutations located in segments 9 and 10 and those located in segments
1 to 8, Table S1: Pathogenic variants identified in our assay, Table S2: Occurrence of mutations according to the
location of cancer, Table S3: The genes targeted in the cancer panel.
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