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Abstract: Despite advances in pharmacology and neuroscience, the path to new medications for
psychiatric disorders largely remains stagnated. Drug repurposing offers a more efficient pathway
compared with de novo drug discovery with lower cost and less risk. Various computational
approaches have been applied to mine the vast amount of biomedical data generated over recent
decades. Among these methods, network-based drug repurposing stands out as a potent tool for
the comprehension of multiple domains of knowledge considering the interactions or associations
of various factors. Aligned well with the poly-pharmacology paradigm shift in drug discovery,
network-based approaches offer great opportunities to discover repurposing candidates for complex
psychiatric disorders. In this review, we present the potential of network-based drug repurposing in
psychiatry focusing on the incentives for using network-centric repurposing, major network-based
repurposing strategies and data resources, applications in psychiatry and challenges of network-
based drug repurposing. This review aims to provide readers with an update on network-based
drug repurposing in psychiatry. We expect the repurposing approach to become a pivotal tool in the
coming years to battle debilitating psychiatric disorders.

Keywords: network analysis; drug repurposing; psychiatric disorders; medications; psychiatry; drug
discovery; mental disorders

1. Challenges of Drug Research for Psychiatric Disorders

Psychiatric disorders are leading causes of disability, with an increasing burden and
significant repercussions for health, society and the economy [1,2]. Despite some pharma-
cological advances, drug discovery for psychiatric disorders is particularly challenging and
remains virtually stagnant. Out of 101 new drugs approved by the FDA in 2019 and 2020,
only two were indicated for psychiatric disorders [3,4]. Such an outcome suggests that,
compared with other diseases, drug development for psychiatric disorders has intrinsic
bottlenecks that hinder the roadmap to new medications. In particular, there is a lack of
understanding of the pathological mechanisms of neuropsychiatric disorders, largely due
to their complex and ambiguous aetiology (genetics, environment, brain structure and
function) [5,6]. Therefore, these disorders pose great challenges to the identification and
characterization of biomarkers and molecular targets, as well as utilizing animal models
adequately representing the disease.

Drug development is an inherently laborious, expensive, and time-consuming pro-
cess, which becomes even more difficult for psychiatric disorders subserved by poorly
understood mechanisms. Conventional drug discovery has long been considered a costly
and risky journey (Figure 1a). The whole process usually takes approximately 13–15 years
from initial discovery to final regulatory approval, and costs USD 2–3 billion [7]. The
expenditure is predominated by failed candidates which are common given the low success
rate of <10% [8].
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Figure 1. The comparison between (a) conventional drug discovery and (b) drug repurposing. (a) 
De novo drug discovery usually requires 13–15 years and may cost up to USD 3 billion from initial 
experiments to final marketing approval. Moreover, the overall success rate is only ~10%. (b) Drug 
repurposing typically bypasses several steps of the conventional approach, including not only early 
discovery and preclinical stages but also Phase I clinical trials. Hence, time and cost can be opti-
mized to 5–11 years and USD 0.35 billion respectively, with an improved success rate of 30%. 

In the field of neuropharmacology, there have been a substantial number of repur-
posed drugs approved or in development. A review by Caban et al. in 2017 reported a 
total of 118 repurposed drugs for 203 cases in neurology and psychiatry (some drugs have 
been repurposed for more than one neuropsychiatric disease) [18]. Although most ap-
proved drug cases originated from the same discipline (i.e., neuropharmacology), the ma-
jority of developing cases are from outside the field [18]. For example, there are recent 
investigational candidates with positive results, such as tamoxifen repurposed from on-
cology for use as an antimanic agent (completed phase 3 clinical trials) [19], and quinidine 
which was repositioned from an anti-arrhythmia drug to an antipsychotic (currently en-
tering phase 3 clinical trials) [20]. The early success of these candidates may be a glimpse 
of the vast untapped potential of recycling drugs from beyond the scope of neuropharma-
cology.  

3. Why Networks Matter for Psychiatric Drug Research 
Across the entire process of drug repurposing (Figure 1b), the first step of compound 

identification is critical. Such repurposing compounds could be recognized from empiri-
cal or even serendipitous observations, with the prominent examples of valproic acid for 
bipolar disorder and ketamine for major depression [21,22]. While these empirical find-
ings have earned great success in psychiatric drug research, the advent of computational 

Figure 1. The comparison between (a) conventional drug discovery and (b) drug repurposing.
(a) De novo drug discovery usually requires 13–15 years and may cost up to USD 3 billion from initial
experiments to final marketing approval. Moreover, the overall success rate is only ~10%. (b) Drug
repurposing typically bypasses several steps of the conventional approach, including not only early
discovery and preclinical stages but also Phase I clinical trials. Hence, time and cost can be optimized
to 5–11 years and USD 0.35 billion respectively, with an improved success rate of 30%.

In de novo drug discovery, a hypothesis related to the inhibition or activation of a
protein/pathway would form the basis for the first step (target discovery—as shown in
Figure 1a) [9]. However, psychiatric disorders are multi-faceted conditions, and it is still
unknown whether targeting a key factor/pathway could lead to successful treatments [10].
The lack of experimental models not only poses further hurdles to answering that key
mechanistic question but also prevents the next step of de novo drug discovery, i.e., lead
discovery and optimisation (Figure 1a). This step is generally based on high-throughput
compound screening or/and structure-based design but such approaches would require
credible models to measure expected phenotypic traits [9]. Furthermore, novel compounds
would undergo pharmacokinetics and pharmacodynamics testing including blood–brain
barrier (BBB) penetration—another unique challenge of drugs targeting central nervous
system (CNS) diseases such as psychiatric disorders [11].

2. Drug Repurposing—An Accelerated Framework for Psychiatric Drug Development

In recent years, drug repurposing or repositioning, i.e., finding new indications for
drugs previously developed and/or marketed for a different disease, has become an
attractive alternative to conventional drug discovery. Considering the high attrition rate
of de novo drug discovery, a plethora of abandoned candidate drugs, including some
that have passed safety assessment but failed due to lack of efficacy, can be recycled and
utilized for new therapeutic purposes. Given the known safety profiles and bioavailability,
as well as established manufacturing processes, drug repurposing can bypass some steps
of conventional drug discovery and hence shorten the timeline from bench to bedside with
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lower cost and less risk (Figure 1b) [12–14]. Drug repurposing is playing an increasingly
important role in the pharmaceutical industry. Out of 64 new drugs and biologics approved
by the FDA in 2018, only 8 were first-in-class agents (i.e., novel drugs with a unique
mechanism of action) [15]. As a shortcut to drug development, drug repurposing provides
more feasible paradigms for organizations and institutions with limited resources, and
potentially better financial incentives for companies to invest in rare, orphan diseases [16].
Importantly, governments and regulatory bodies are giving rigorous support including
funding programs and drug repurposing public databases [17].

In the field of neuropharmacology, there have been a substantial number of repur-
posed drugs approved or in development. A review by Caban et al. in 2017 reported a total
of 118 repurposed drugs for 203 cases in neurology and psychiatry (some drugs have been
repurposed for more than one neuropsychiatric disease) [18]. Although most approved
drug cases originated from the same discipline (i.e., neuropharmacology), the majority of
developing cases are from outside the field [18]. For example, there are recent investiga-
tional candidates with positive results, such as tamoxifen repurposed from oncology for
use as an antimanic agent (completed phase 3 clinical trials) [19], and quinidine which was
repositioned from an anti-arrhythmia drug to an antipsychotic (currently entering phase
3 clinical trials) [20]. The early success of these candidates may be a glimpse of the vast
untapped potential of recycling drugs from beyond the scope of neuropharmacology.

3. Why Networks Matter for Psychiatric Drug Research

Across the entire process of drug repurposing (Figure 1b), the first step of compound
identification is critical. Such repurposing compounds could be recognized from empirical
or even serendipitous observations, with the prominent examples of valproic acid for
bipolar disorder and ketamine for major depression [21,22]. While these empirical find-
ings have earned great success in psychiatric drug research, the advent of computational
techniques as well as high-throughput data from “omics” technologies have enabled us to
adopt a more systematic approach to discover new therapeutic agents. These approaches
also require the design of methodologies that integrate the high-dimensional but noisy
data efficiently to acquire useful insights for drug discovery, leading to the application
of network science in medical research. Network science is the use of multiple layers of
information to identify connections among biological components that are inherently and
physiologically relevant [23].

The fusion of network science and drug research was first conceptualized by Andrew
L. Hopkins based on the premise of poly-pharmacology—one drug, multiple targets [24].
This holistic view has been appreciated in psychiatry, in which many psychotropic drugs
have been shown to exhibit promiscuity as an intrinsic feature of their therapeutic ef-
fects [25]. Antipsychotics are prominent examples. Each antipsychotic drug typically
targets multiple receptors and they possess distinct pharmacological profiles [5]. Hence,
poly-pharmacological profiles demand consideration of multiple factors (e.g., interactions
with molecular targets, downstream affected pathways) to elucidate the mechanism(s)
of action of known drugs as well as to discover new therapeutic agents for psychiatric
disorders [6]. Network science enables the integration of various biological elements and
simultaneous consideration of their relationships in complex systems, making it a powerful
system for the poly-pharmacological paradigm.

Despite their pathological heterogeneity, psychiatric disorders have been suggested
to share overlapping molecular mechanisms especially at the genetics level [26–29]. Co-
morbidity is the norm rather than the exception for psychiatric disorders [30–33]. While
such commonality has posed challenges to the characterisation of distinct disorders, it also
offers opportunities for the utilisation of existing drugs in multiple mechanistic-related
disorders [34]. Therefore, network-based approaches can leverage the interconnection
between different disorders to find potential latent connections suggesting the recycling of
known targets of a disorder in another disorder.
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4. Network-Based Drug Repurposing in Psychiatry

Previous publications have offered comprehensive reviews on network science the-
ory [35] and capabilities in the context of medicine [36,37]. Herein, we will present major
terminologies, repurposing strategies, main data resources and applications in psychiatric
drug research.

Network-based interpretation comprises three major steps from understanding to
predicting and possible manipulating biological systems: (1) network inference (reconstruc-
tion of network relationships from biomedical data, mostly from high-throughput assays),
(2) network analysis (harnessing the topological relationships of networks), (3) network
modelling (dynamic representations of time-course perturbations of network elements
under different conditions) [38,39]. Most studies so far have utilised the first two steps for
static networks, but very few have advanced to dynamic network modelling [36].

A network inference approach involves “simplifying” complex systems by describing
them as a map of nodes connected by edges denoting their relationships or interactions [40]
(Figure 2). While networks can represent a wide range of biological processes, in the context
of drug discovery research, nodes are generally molecular targets (genes, proteins), com-
pounds (drugs) or diseases, with their relationships inferred from structural interactions
(e.g., protein–protein interactions), correlation (e.g., co-expression networks) or conditional
dependences (e.g., Bayesian networks) [41]. Many real-world networks including biological
networks, tend to exhibit scale-free properties, which means only a minority of nodes have
a greater number of neighbours than average (“hubs”), while most nodes only have a few
connections [42–44]. Selective targeting of hubs can therefore cause much greater impact
on the function of the networks than those modulations on peripheral nodes, making hubs
ideal drug targets [45].
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Figure 2. Main elements of a network. In the network, nodes (circles) are connected via edges (lines).
For biological networks, nodes are usually biological entities (genes, proteins) and edges denote
their relationships (interaction, association, similarity). From the networks, modules are clusters
of closely connected nodes. Degree is the number of direct connections a node has to other nodes.
Hubs are nodes with the highest degrees in the networks, meaning they have the highest number of
connections. The shortest distance between node A and B is the path with the minimum number of
edges from A to B. Created with BioRender.com (accessed on 2 June 2022).
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Network-based drug repurposing efforts are generally based on Swanson’s ABC
model to retrieve unknown latent knowledge from multiple sources of data incorporated
in the networks [46]. An assumption of this approach is that when term A is connected
to term B, and term B is connected to term C, we can assume that terms A and C are also
connected. For example, an indirect link between drug and disease can be inferred from a
direct drug-target connection and a direct target-disease connection. In the ABC model, A
and C must originate from different domains to yield new knowledge, and B can include
multiple steps to abridge from A to C (A → B1 → B2 . . . Bn → C) [47,48] (Figure 3).
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tions of GBA: (1) if two diseases share a significant number of characteristics (e.g., indica-
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Figure 3. ABC model for network-based drug repurposing. Latent repurposing relationships can
be inferred from multiple layers of network-based knowledge such as disease-target (diseasome),
target–target (e.g., protein interactome), and drug–target interactions. As an example, disease A has
target B1 exhibiting direct interaction with target B2 which in turn is targeted by drug C, suggesting
drug C might be relevant for disease A (A → B1 → B2 → C). Created with BioRender.com (accessed
on 2 June 2022).

Another common approach is “guilt-by-association” (GBA), which uses similarity mea-
sures to suggest new disease indications for drugs [49]. There are two main assumptions of
GBA: (1) if two diseases share a significant number of characteristics (e.g., indications, med-
ical descriptions, mechanisms), a drug known to treat one of them may also treat the other
(Figure 4A); and (2) if a drug with unknown indications and another drug with known
indications share similar properties (e.g., chemical structures, transcriptional effects), they
may have the same indication profile (Figure 4B). The major challenge of this approach
would be how to define the robust similarity metric between drugs or diseases that concurs
with similarity in mechanisms of action.

BioRender.com
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transcriptional profiles. Using the similarity metric as the weight of edges for network construction, 
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Figure 4. Guilt-by-association for network-based drug repurposing using (A) disease–disease or
(B) drug–drug similarity. (A) Disease–disease similarity is generally inferred from one or several
disease-related properties such as overlapping disease genes, symptoms or comorbidities. A weighted
disease network (diseasome) can be built based on the similarity metric; herein, modules of similar
nodes (diseases) can be identified. The module containing the disease of interest (highlighted in the
brown dashed circle) might suggest potential shared mechanism(s) for repurposing drugs. Within
this module, if multiple connected diseases have known drugs with similar mechanism X, such
drugs might be repurposed for the disease of interest. (B) Drug–drug similarity can be calculated
based on one or several properties such as chemical structures, targets, side effects or transcriptional
profiles. Using the similarity metric as the weight of edges for network construction, ones can identify
modules of highly similar nodes (drugs) suggesting similar mechanisms of action. When considering
in the context of a certain disease A, it would be of interest to focus on the module containing multiple
known drugs for disease A (highlighted as brown dashed square). Within such a module, a drug that
has yet to be used for disease A might be a potential repurposing candidate due to its high similarity
with other drugs used for disease A. Created with BioRender.com (accessed on 2 June 2022).
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Data for network construction can be sourced from experimental data (e.g., high
throughput screening), text mining or databases (e.g., phenotypic profiles, protein in-
teractions). Text mining is also the main strategy of literature-based drug repurposing,
which shares many integrative opportunities with network-centric approaches. Hence,
readers can refer to previous reviews in this domain for an in-depth methodological pre-
sentation [50,51]. The advantage of network-based approaches is the possible integration
of multiple data layers to complement the incompleteness of each domain’s knowledge.
Therefore, studies using network-based drug repurposing tend to utilise multiple data
sources rather than one. There are various ways of data incorporation to find repurposing
insights as shown in Figure 5. However, one should consider the relevance to the disease of
interest (e.g., data yielded from brain tissue versus muscle tissue) and the robustness of the
evidence supporting such a relationship (e.g., experimental evidence versus co-expression).
Multi-omics integration has been playing a major role in the current biological interpreta-
tion and readers can refer to previous reviews of specific updates and recommendations
for this approach [52]. Herein, we will focus on different types of biomedical database re-
sources and their utility in the context of psychiatric drug discovery research (summarised
in Table 1). A summary of studies using network-based drug repurposing in psychiatry is
given in Table 2.
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Figure 5. Different data sources for network-based drug repurposing. Curved arrows represent
the associations of entities within one type (e.g., drug–drug). Multiple data sources (coloured corre-
spondingly to their main domains such as transcriptome) can be applied to infer these associations,
usually for the creation of similarity or interacting networks. Straight arrows represent the relation-
ships between entities of different types (e.g., drug–target). For drug repurposing, the aim generally
is to find a latent drug–disease connection, which can be achieved by taking the inference route from
Drugs–Targets–Diseases (and vice- versa) as in the ABC model, or via Diseases–Diseases–Drugs
(or Drugs–Drugs–Diseases) as in the GBA model. Created with BioRender.com (accessed on 2
June 2022).
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Table 1. Summary of major data sources and their usage examples in psychiatry.

Type of Data Description and Resource Examples in Psychiatry

Structome Chemical structures:
ChemBL [53]
ChemSpider [54]
DrugBank [55]
PubChem [56]
Macromolecular structures:
Protein Data Bank [57]
AlphaFold Protein Structure Database [58]

Schizophrenia, sleep disorder [59]

Genome/Transcriptome GWAS (general):
GWAS ATLAS [60]
NCBI Database of Genotypes and Phenotypes (dbGaP) [61]
GWAS (psychiatry):
NIMH Repository and Genomics Resource (NRGR) [62]
Psychiatric Genomics Consortium (PGC) [63]
Autism Sequencing Consortium (ASC) [64]
Whole-Genome Sequencing Consortium for Psychiatric Disorders
(WGSPD) [65]
Human brain resources:
PsychENCODE [66]
Brain Somatic Mosaicism Network [67]
CommonMind Consortium [68]
Allen Brain Atlas [69]
Drug response:
Connectivity Map (CMap) [70]
Library of Integrated Network-Based Cellular Signatures (LINCS)
[71]
Drug Gene Budger (DGB) [72]

Depression [73]
Schizophrenia [74]
Substance use disorder [75]
Autism spectrum disorder [76]

Interactome Protein–protein interaction:
Search tool for retrieval of interacting genes/proteins (STRING)
[77]
Human Protein Reference Database (HPRD) [78]
Pathways:
Reactome [79]
Kyoto Encyclopedia of Genes and Genomes (KEGG) [80]
Regulome:
The Human Transcription Factors [81]
RegulomeDB [82]
Catalog of inferred sequence binding preferences [83]
JASPAR [84]
UniPROBE [85]
TRANSFAC [86]
Multiple collections:
OmniPath [87]

Schizophrenia [88,89]
Bipolar disorder [90,91]

Phenome Side effects:
SIDER [92]
Drug targets:
DrugBank [55]
PharmGKB [93]
Drug–Gene Interaction Database (DGIdb) [94]
DrugCentral [95]
canSARblack [96]
KEGG DRUG [97]
IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb) [98]
Search Tool for Interacting Chemicals (STITCH) [99,100]
Therapeutic Target Database (TTD) [101]
Drug Signatures Database (DSigDB) [102]
Pharos [103]
Binding assay profiles:
Psychoactive Drug Screening Program (PDSP) [104]
BindingDB [105]
Disease-associated targets:
Online Mendelian Inheritance in Man (OMIM) [106]
ClinVar [107]
MalaCards [108]
DisGeNET [109]
Human Phenotype Ontology (HPO) [110]
Monarch [111]
GPCards [112]
Disease symptoms:
Human symptoms–disease network [113]
Human Phenotype Ontology (HPO) [110]
DMPatternUMLS [114]
Clinical trials:
ClinicalTrials.gov [115]

Opioid use disorders [116]
Schizophrenia [117]
Schizophrenia, bipolar disorder, autism
spectrum disorder [118]

Network-based drug
discovery platforms

GRAND [119]
PharmOmics [100]
NeDRex [120]
IBM Watson for Drug Discovery [121]

ClinicalTrials.gov
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Table 2. Summary of studies using network-based drug repurposing for psychiatric disorders. Abbreviations: ABC: ABC model; ASD: autism spectrum disorder;
ADHD: attention-deficit/hyperactivity disorder; BD: bipolar disorder; GBA: guilt-by-association model; MDD: major depressive disorder; SCZ: schizophrenia;
SUD: substance use disorder; TWAS: transcriptome-wide association study; ?: unclear mechanism.

Studies Diseases Databases Used Inference Model and
Network Type

Key Finding (Original Indication/
Mechanism–Repurposed Indications) Validation

[59] Schizophrenia
Sleep disorder

DrugBank
PubChem

GBA: Drug–drug similarity Raloxifene (estrogen receptor modulator → SCZ)
Cyclobenzaprine (muscle relaxant → sleep disorder)

Literature-based (clinical trials,
research articles), expert consultation

[73] Depression DGIdb
ChEMBL
PDSP
Pharos
PubChem
DSigDB

ABC: Phenotype-informed drug-target
network (http://drugtargetor.com/, accessed
on 2 June 2022), i.e., an integration of
drug-disease associations (GWAS pathway
analysis p-values), target-disease associations
(GWAS gene-wise analysis p-values,
genetically predicted expression z-scores), and
drug-target connections

Verapamil (calcium channel blocker → MDD)
Pregabalin, Gabapentin and Nitrendipine (calcium channel
modulators → MDD)
Brompheniramine and Chlorphenamine
(antihistamines → MDD)
Lasofoxifene (estrogen receptor modulator → MDD)
Levonorgestrel (sex hormones → MDD)
Alizapride and Mesoridazine (D2 antagonists → MDD)
Quinagolide (D2 agonist → MDD)

Literature-based (clinical trials,
research articles)

[118] Schizophrenia
Bipolar Disorder
Autism Spectrum Disorder

PubMed
DrugBank
Open Targets

ABC: Literature-mined disease–gene–
drug association

AC-480, Mubritinib, CP724714, Trastuzumab, Ertumaxomab,
and MM-302 (Target ERBB2 gene → SZ)
SLC6A9 (glycine transporter → SZ)
Bitopertin and PF-03463275 (? → SZ)
Levetiracetan and Brivaracetam (anticonvulsant → SZ)
CEACAM5 (? → BD)
Lebrikizumab and Tralokinumab (act on IL3 →ASD)

Literature-based (clinical trials and
research articles)

[74] Schizophrenia DGIdb ABC: Brain co-expression network + TWAS
predicted expression polygenic risk scores +
drug-target interactions

Zonisamide (antiepileptic/ antiparkinsonian → SZ)
Bevacizumab (antineoplastic agent → SZ)
Fluticasone (cortisone analogue → SZ)

Literature-based (research articles)

[75] Substance Use Disorder DGIdb ABC: Disease-related co-expression networks +
drug-target interactions

MAOA inhibitors (antidepressants → SUD)
Dextromethorphan (cough suppressant → SUB with suicide)
Eglumegad and loxapine (? → non-suicidal SUD)
Clozapine and olanzapine (antypsychotics SZ →
non-suicidal SUD)
Modafinil (sleep disorder → SUD)

Literature-based (research articles)

[76] Autism Spectrum Disorder STRING
DrugBank
Drug Targetor
CMap

ABC: Disease-related co-expression networks +
drug–gene interactome
Mental disease and compounds knowledge
graph (MCKG) based on literature mining
for validation

Baclofen (GABA agonist for pain and muscle spasms
→ ASD)
Sulpiride (D2 receptor antagonist,
for SZ and ASD, confirmatory)
Estradiol (steroid sex hormone → ASD)
Entinostat (HDAC inhibitor → ASD)
Everolimus (seizures → ASD)
Fluvoxamine, Curcumin, Calcitriol, Metronidazole, and zinc
(diverse mechanisms and uses → ASD)

Literature-based (research articles)

http://drugtargetor.com/
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Table 2. Cont.

Studies Diseases Databases Used Inference Model and
Network Type

Key Finding (Original Indication/
Mechanism–Repurposed Indications) Validation

[116] Opioid Use Disorders STITCH
SIDER
STRING
DrugBank

ABC: Drug side effect + protein interactome Tramadol (pain → OUD)
Olanzapine (SZ → OUD)
Mirtazapine and Bupropion (MDD→OUD)
Atomoxetine (ADHD → OUD)

Literature-based (clinical trials and
research articles), clinical
corroboration (retrospective
case-control study of top candidates
in population-level EHR data)

[117] Schizophrenia DrugBank
MATADOR
PDSP Ki Database
BindingDB

GBA:
SZ drug target–non-SZ drug interactome

264 SZ related drugs, 39 being investigated in clinical trials
(Listed in Figure 3 of the corresponding publication)

Literature-based (clinical trials and
research articles)

[122] repurposing
based on network
built by [88]

Schizophrenia Psychiatric Genomics
Consortium (PGC)
HPRD
Ensembl
DrugBank

ABC: Disease risk gene–drug interactome Sargramostin, Regorafenib, Theophylline (cancer and
respiratory drugs → SZ)
Cromoglicic acid (asthma prophylaxis → SZ)
Acetazolamide (glaucoma, mountain sickness → SZ)
Cinnarizine (Motion sickness, vertigo → SZ)
Alfacalcidol (targets the VDR protein → SZ)
Amiloride (on clinical trial for ADHD → SZ)
Antazoline (targets ubiquitination and proteasome
degradation → SZ)
Danazol and Miconazole (target ESR1 and NOS3 associated
with Alzheimer’s Disease → SZ)

Literature-based (clinical trials and
research articles)

[89] Schizophrenia Psychiatric Genomics
Consortium (PGC)
STRING
DGIdb

ABC: Disease risk gene–untargeted neighbor
gene interactome

19 drugs to repurpose, one major example:
Galantamine (Alzheimer’s disease → SZ)

Literature-based (research articles)

[91] Bipolar Disorder GEO
CMap (via PharmacoGx
package)

GBA: Transcription factor-target association Chlorpromazine, Lavomepromazine, Perphenazine,
Zuclopenthixol, Haloperidol, Promazine
(antipsychotics → BD)
Maprotiline, Desipramine, Mianserin
(antidepressants → BD)
Diflorasone (corticosteroid → BD)
Meclofenamic acid, Ketorolac, Trolox c, and
Acetylsalicylsalicylic acid
(antiinflamatory/antirheumatic → BD)

Literature-based (research articles)
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4.1. Structural Data (Structome)

Structural data from compounds and biological entities such as proteins and RNAs
have been extensively utilized in structure-based drug repurposing [123]. The conventional
structure-based approach usually requires a few predefined specific target molecules, which
is not suitable for psychiatric disorders with complex pathology as mentioned in Section 3.
However, network-centric approaches can incorporate the structome as a layer of informa-
tion in a non-biased way to find new indications for drugs. Tan et al. used descriptions of
3D chemical structures from PubChem to calculate the similarity profiles of 965 drugs [59].
The Tanimoto-based 3D similarity scores were then combined with gene semantic similarity
information and drug–target interactions to construct a drug similarity network. From this
GBA approach, Tan et al. predicted new indications for 143 drugs and missing indications
for 42 drugs without Anatomical Therapeutic Chemical (ATC) codes (indications not yet
listed in ATC database) (Table 2). Psychotropic drugs suggested for repurposing from
this study included raloxifene (from postmenopausal osteoporosis to schizophrenia) and
cyclobenzaprine (from muscle spasms to sleep disorders) [59]. Raloxifene has passed a
phase 4 clinical trial in participants with schizophrenia [124,125] while a phase 2 clinical
trial of cyclobenzaprine was terminated prematurely due to inadequate recruitment [126].

4.2. Genome

Using the phenotype-to-genotype concept, multiple large-scale genome-wide asso-
ciation studies (GWAS) have identified thousands of genetic variants across the genome
associated with psychiatric disorders [127,128]. Disease-associated genes located in risk
loci can be inferred from GWAS data and are usually used in network analysis as a filtering
layer to prioritise targets relevant to the disease. Ganapathiraju et al. used schizophrenia-
associated genes in combination with protein–protein interactions to create a schizophrenia
interactome [88]. Such a disease-specific network can be harnessed for target identifica-
tion and testing of repurposed agents [122]. However, a major limitation of using GWAS
data is the lack of directionality, making it difficult to determine whether a risk gene is
up- or down-regulated in the disease phenotype. Gaspar et al. partially addressed this
shortcoming via the incorporation of the GWAS summary statistics with gene expression to
predict expression levels in different tissues, which were incorporated with drug–target in-
teractions to build a bipartite tissue-specific drug–target network for major depression [73]
(Table 2).

4.3. Transcriptome

Among the wealth of “omics” data, transcriptomic profiling has emerged as an efficient
source for computational drug repurposing due to its standardized data format, multiple
comprehensive public databases, and possible implementation with network biology
approaches for complex diseases [12,129,130]. The expression patterns of gene products
that are connected by signalling cascades or protein complexes are expected to be more
similar than those of random gene products [40,131]. With this premise, co-expression
networks built upon multi-dimensional data such as transcriptomics have aided in the
identification of latent mechanistic patterns of psychiatric disorders and their medications,
which could be missed by conventional differential expression analysis [131,132].

Psychiatric disease-related transcriptional profiles, generally from post-mortem brain
samples, can be readily obtained from experiments, public databases, or psychiatric-centric
consortiums such as PsychENCODE and CommonMind [66,68]. The transcriptomic data
can be used on its own (gene expression levels) or incorporated with GWAS data to predict
genetically regulated gene expression. As an example of the former, Cabrera-Mendoza et al.
used transcriptional profiles from post-mortem brain samples of substance-use disorder
individuals with and without suicidal behaviour to build gene co-expression networks
associated with each phenotype (Table 2). The hub genes from these networks were then
subjected to drug–gene interaction testing using the DGIdb database [94] to identify drug
repurposing candidates [75]. Integration of transcriptomic profiles with GWAS data was



Pharmaceutics 2022, 14, 1464 12 of 22

adopted by Rodriguez-López et al. for finding druggable targets in schizophrenia. The au-
thors estimated polygenic scores based on predicted expression and associated these scores
with co-expression modules to find relevant hub target genes for early intervention [74].
Gaspar et al. also applied the genetically predicted gene expression approach [73].

Major sources of drug-induced transcriptional profiles are generated from cell lines
after treatment exposure, utilising seminal reference databases for drug responses such
as Connectivity Map (CMap) [133] and the Library of Integrated Network-based Cellular
Signatures (LINCS) [134]. While transcriptional profiles have been used extensively in
signature-based drug repurposing for the generation and comparison of selective genes
representing the phenotype of interest [129,135], their network-centric drug repurposing
application is still very limited in psychiatry. An emerging systems-level approach con-
structing gene-regulatory networks associated with each drug treatment-cell line pair using
CMap expression data can offer a comprehensive characterisation of the mechanism of
action of drugs. Such a systems-level approach includes information on complex interac-
tions between multiple entities, beyond the reductionist consideration of several signature
genes [119,136].

The major challenge of using drug-induced gene expression in psychiatry is the lack
of biological and pathological representation of the treated model systems. Transcriptional
perturbations are highly context-dependent; hence, the cancerous cells used commonly in
CMap and LINCS might not recapitulate the tissue-specific effects in neuronal or glial cells.
The advancement in stem cell technology has propelled the generation of patient-derived
induced pluripotent stem cells (iPSC), leading to the genesis of the NeuroLINCS center
of omics data generation for human iPSC response in neurological diseases [137]. Since
iPSCs carry the genetic information of the patients, they recapitulate the disease-related
mutations that would be more representative for diseases with significant genetic factors
such as psychiatric disorders [138].

4.4. Interactome

Interactomes encompass the functional interactions of biological components, which
might include physical contact between proteins (protein–protein interaction networks),
metabolites (metabolic networks), transcription factors and putative regulatory elements
(gene regulatory networks) or functional relationships only such as phenotypic profiling
networks (phenome networks) [40]. The interactome might be placed in specific biological
contexts such as signalling pathways or disease-related pathways [139]. The functional
interactome based on phenotypic profiles have been broadly applied for drug discovery
and will be discussed separately in the context of phenome-based networks. Interactome
networks tend to possess small world property: nodes are well connected with only a
few paths required for the shortest distance (Figure 2). This holds highly relevant for
functionally associated nodes, ensuring a quick flow of regulatory information passing
between them [140]. With the premise that risk genes tend to be more connected in
the network than a set of random genes, Kauppi et al. utilised the protein interactome
to map drug targets of antipsychotic drugs with networks of schizophrenia risk genes
(Table 2). Using network topological analysis of shortest distance, they found risk genes
were significantly localised into a distinct module and overlapped with antipsychotic drug
targets. Kauppi et al. then evaluated druggable risk genes without direct links to known
antipsychotic drug targets to find potential novel targets for schizophrenia such as nicotinic
acetylcholine receptor genes [89].

Given the key contribution of transcription factors in the modulation of gene ex-
pression and driving phenotypic perturbations, the transcriptional regulome has been
employed by De Bastiani et al. for drug repurposing in bipolar disorders [91]. Their study
inferred transcription factors–targets interactions via a reverse-engineering prediction algo-
rithm applied on human prefrontal cortex microarray data. The transcription factor-centric
network comprised of modules of gene targeted by each transcription factor, called “regu-
lons”. Based on case-control transcriptomics data, gene set enrichment analysis (GSEA)
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was applied on the regulons to find enriched regulons in bipolar disorder. These regulons
were used as gene expression signatures to query connectivity map for potential drug
candidates reverting disease-related regulon signatures. Several compounds with known
clinical relevance in bipolar disorders were identified such as antipsychotics (chlorpro-
mazine, haloperidol) and antidepressants (maprotiline, mianserin, and desipramine). The
study also found novel repurposing candidates including non-steroidal anti-inflammatory
agents (meclofenamic acid, ketorolac, acetylsalicylsalicylic acid and diflorasone) and an
antioxidant agent (trolox C) (Table 2) [91].

4.5. Phenome

The collection of phenotypic data collected from drug-induced (indications, side-
effects) or disease-associated phenotypes (symptoms, disease genes) has been extensively
used for drug repurposing with the availability of comprehensive public sources such as
DrugBank and PharmGKB [55,93]. Zhou et al. built a drug side effect–gene system com-
prising two networks: drug phenotypic network of side effect profiles from SIDER [92] and
protein interactome network from STRING [141]. The two networks were interconnected
via drug-target associations from DrugBank [55]. Zhou et al. then applied this phenome-
driven drug discovery system in finding repurposing agents for opioid use disorders.
Rather than finding drugs targeting the pathological mechanism of the disorder, which is
still mainly unknown, the system explored repurposing candidates sharing similar side
effects or common targets with drugs causing or indicated for opioid use disorders. Using a
network-based iterative algorithm, top-ranked repurposing candidates including tramadol,
olanzapine, mirtazapine, bupropion and atomoxetine were identified with supporting
clinical corroboration (Table 2) [116].

As presented in Section 3, psychiatric disorders tend to share mechanisms, such as
pleiotropic genes associated with multiple disorders. By incorporating disease phenome
and disease genome networks together, one can explore the common pathophysiology
between diseases and infer potential reusable targets of one disease in a different disease.
Such a disease-gene network was first proposed by Goh et al. as a “diseasome”—a bi-
partite graph including all known genetic disorders and disease genes connected by the
association of genetic mutations to disorders [142]. Such a network can be interpreted
for gene-gene similarity (connected if two genes share a disorder), or disease–disease
similarity (linked if two disorders share a gene). While the specific application of dis-
easome in psychiatric disorders is still limited, Lüscher Dias et al. built a diseasome
network considering multiple psychiatric and neurological disorders using text mining.
They found several clusters shared by multiple disorders and their enriched functional
annotations, e.g., depression with anxiety disorder (enriched for inflammatory response),
bipolar disorder with schizophrenia (enriched for long-term potentiation and circadian
entrainment). However, Lüscher Dias et al. did not consider common genes for their drug
repurposing steps but focused on unique genes associated with each disorder as potential
targets for the corresponding disorder (ABC model), shifting back to a single-disease con-
text [118]. To our knowledge, there have been no cases using disease–disease similarity
networks for drug repurposing in psychiatric disorders. An example outside of psychiatry
from Langhauser et al. demonstrated how the repurposing hypothesis can be generated
from a disease–disease similarity network of the diseasome, even from seemingly distinct
diseases [143]. They built diseasome networks for 132 diseases based on four different
relationships: shared genes, protein interactome, common symptoms and co-morbidity.
From the diseasome, Langhauser et al. found the cGMP signalling pathway was associated
with a cluster of disease phenotypes including neurological, cardiovascular, metabolic and
respiratory diseases. This GBA approach suggested cGMP modulators as treatments for
diseases belonging to this cluster. Based on this premise, the authors repurposed soluble
guanylate cyclase (sGC) activators—cGMP generation facilitators—from their exclusive
indications for cardiovascular diseases to neurological disorders and successfully validated
their neuroprotection effects in vivo [143].
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4.6. Network-Based Drug Repurposing Platforms

There are various approaches to yield network-based repurposing insights from
biomedical data if one would like to build networks from the ground up, which has been
comprehensively reviewed [36,37,41]. However, there are several platforms that can serve
as a “one-stop shop” for network repurposing with the incorporation of multiple biological
datasets, pre-constructed networks, pre-set analyses for easy access and queries of existing
or user-generated data: for example, GRAND, a web-based database of gene regulatory
networks specific for disease- or drug-related phenotypes inferred from prior experimental
data such as protein–protein interactions, transcriptional profiles, transcriptional factor
binding motifs and miRNAs predicted targets [119]. Using similarity scores based on
properties of inferred regulatory networks, the CLUEreg tool of GRAND allows users to
query a list of “high-targeted” and “low-targeted” genes or transcriptional factors of the
disease to identify single or combinations of compounds that might “reverse” aberrant
regulatory patterns [119]. Other examples of open-sourced platforms include PharmOmics
and NeDRex; the former is a knowledgebase supporting gene-network-based drug repur-
posing and the latter allows heterogeneous network construction to mine disease modules
for drug prioritization [100,120]. While these platforms would be easy to use with curated
networks, users are limited by the scope of the current platforms, and how regularly they
are updated. Reproducibility would be a challenge especially with commercial platforms
such as IBM Watson for Drug Discovery where detailed analysing workflows are not pub-
licly accessible [121]. Moreover, most datasets incorporated were yielded from different
domains such as oncology, weakening the robustness of interpretations in psychiatry.

5. Challenges of Network-Based Drug Repurposing in Psychiatry

Despite its great potential, there are major obstacles preventing network-based drug
repurposing from making substantial impact:

(1) While previous knowledge plays a major role in network construction, our current
understanding of psychiatric disorders remains inadequate and biased towards well-
studied mechanisms and biological entities. Even high-throughput screening data such
as for protein interactions can only capture 20% of all potential interactions, leaving us an
80% incomplete interactome network with a great deal of missing gaps and fragmented
clusters [144].

(2) Furthermore, the integration of heterogenous and high-dimensional datasets gen-
erally has to deal with disparate, incompatible or missing information [145]. To merge
multiple datasets into a homogenous network would compromise accuracy due to the
disregarding of biological and experimental variations affiliated with each dataset [146].

(3) Regardless of the scale of the network and data integrated, network representation
in drug repurposing so far has only recapitulated static snapshots of the biological systems
despite their dynamic nature. However, dynamic network modelling is still a major
challenge due to the limited knowledge of interaction kinetics [147].

(4) Whilst phenotypic profiles are important data for network-based drug repurpos-
ing, similar phenotypes are not necessarily the result of similar modes of action. Genes,
medication histories, and traits all play a significant role in the phenotypic outcomes of a
drug’s mode of action [148].

(5) Repurposing candidates have been implied from various network-based ap-
proaches, yet the preclinical validation of these candidates is limited. Even though bi-
ological follow-ups are the gold-standard, the lack of representative experimental models
for psychiatric disorders has posed a great obstacle to in vitro and in vivo validation of
drug efficacy [6]. Most studies in psychiatry resorted to in silico validation such as literature
cross-referencing, domain expert consultation and electronic health records (EHR) [149].
The literature-based validation is undertaken by mining clinical trials or PubMed articles to
find supportive evidence such as the work of Lüscher Dias et al. [118]. Expert consultation
is employed for a more credible evaluation of results and literature support, as done by
Tan et al. [59]. While these validations are dependent on the inference of prior knowledge,
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the EHR-based validation can provide a more observational corroboration based on real-
world clinical data. Zhou et al. employed EHR of nearly 73 million patients provided
by the IBM Watson Health platform to validate repurposing candidates for opioid use
disorders (OUD), using the odds of OUD remission as the outcome measure [116]. To
validate repurposing drug X, they identified a cohort of OUD patients diagnosed with
repurposing drug X’s original indication (disease A). This group was then split into an expo-
sure group (patients with OUD, disease A, using drug X) and a comparison group (patients
with OUD, disease A, not using drug X). The odds ratios of remission rates between these
groups were then measured. They reported patient cohorts using top-ranked repurposing
candidates had higher odds of OUD remission than corresponding groups without these
drugs, supporting their repurposing potential for OUD [116]. A list of EHR resources can
be referred from the collection of Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM) compliance databases [150]. Most of this list are commercial
and private databases whose utility is mostly hampered by the restrictive access policies.
However, recent initiatives such as “All of Us” have been collecting large-scale EHR data
and making data widely available for approved researchers, offering valuable resources for
biomedical research [151].

6. Conclusions and Future Perspectives

Drug repurposing has emerged as a promising alternative for de novo drug discovery
and has become a vital shift in the pharmaceutical industry. Taking advantage of the
expanding accumulation of biomedical data, various computational drug repurposing
approaches have been facilitating informed decisions for drug research. Among those,
network-based approaches offer a unique opportunity to integrate various domains of bio-
logical knowledge to discover latent repurposing candidates for complex diseases such as
psychiatric disorders. Given the virtually stagnant progress of drug discovery in psychiatry,
we have presented the incentives for using network-based drug repurposing for psychiatric
disorders: the efficiency of repurposing drugs with verified safety records and the compati-
bility of network science with the poly-pharmacology concept for complex disorders. We
then summarised major concepts and main strategies for network-based drug repurposing,
including the ABC model and GBA approaches. Data sources and current repurposing
applications for psychiatric disorders were then summarised to offer readers an update
with the progress of this approach in psychiatry. However, no methodology is without
limitations; thus, we presented common challenges of using network-centric approaches
for drug repurposing—mostly with the noisiness and insufficiency of data resources,
lack of appropriate models for follow-up validation and the dynamic representation of
complex systems.

Nevertheless, network-based repurposing holds great potential for expanding the
knowledge of drug research, especially for complex disorders. Emerging techniques
and resources will complement its capabilities for psychiatric research. Neuroimaging
techniques such as functional magnetic resonance imaging (fMRI) offer the detection of the
drug-induced perturbations of brain activity for predicting the efficacy of drug action [152].
A library of drug-related fMRI patterns might offer biomarker refences to compare the
similarity between repurposing drugs with existing ones [153,154]. Its unique ability
of non-evasively capturing functional differences at the brain systems level would be
beneficial for psychiatric drug research given the complex nature of these diseases and
inadequate experimental models. However, it is still an open challenge to incorporate the
human connectome, i.e., the map of neural connections mapped via brain imaging, into
the network-based drug repurposing given most biological data resources were measured
at the molecular level. The emerging application of more pathological-representative
preclinical models for psychiatric disorders such as iPSCs and organoids is also expected
to provide more phenotypic-relevant datasets for drug repurposing and validation. A
patient-derived stem cells library of drug response specifically for psychiatric disorders
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would offer a more accurate context-specific overview of drug action and therefore improve
the robustness of network-based drug repurposing.

To address the incompleteness of data, computational approaches are being developed
for the integration of multi-dimensional data with differences in statistical properties and
biological objectives. It is challenging to represent relationships between multitudinous
omics data solely with traditional linear modelling. Therefore, multi-omics tools employing
multivariate statistics, machine learning (ML) and deep learning (DL) approaches have
been proposed to extract and predict complex non-linear patterns [52,155]. While much
development and optimization are needed to generalize ML/DL models for systems-level
capture of dynamics and kinetics underlying phenotypes, ML/DL has been aiding network
inference and improving network coverage via the prediction of missing connections with
supervised and unsupervised analyses [52,156]. While data integration is a cornerstone
of network-based inference, most aggregation results in a single network endeavoring
to represent a population with a broad spectrum of phenotypic differences. Despite be-
ing informative in terms of finding shared characteristics of the inspected population,
aggregated networks generally ignore population heterogeneity. Emerging attention for
precision medicine has facilitated the development of personalized characterization of
biological perturbations. Several efforts have been made in network medicine to account
for individual-level estimations, e.g., via overlaying the sample-specific expression data on
the known biological networks, or interpolation of aggregated networks with and without
a sample to estimate network contribution of such sample [157,158].

Empowered by the ever-growing amount of biomedical data and new computational
analyses, the network-centric approach will keep proving itself as a powerful tool for
the comprehension of vast knowledge to shed light on new repurposing candidates for
psychiatric disorders.
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18. Caban, A.; Pisarczyk, K.; Kopacz, K.; Kapuśniak, A.; Toumi, M.; Rémuzat, C.; Kornfeld, A. Filling the gap in CNS drug

development: Evaluation of the role of drug repurposing. J. Mark Access Health Policy 2017, 5, 1299833. [CrossRef] [PubMed]
19. Yildiz, A.; Aydin, B.; Gökmen, N.; Yurt, A.; Cohen, B.; Keskinoglu, P.; Öngür, D.; Renshaw, P. Antimanic Treatment With Tamoxifen

Affects Brain Chemistry: A Double-Blind, Placebo-Controlled Proton Magnetic Resonance Spectroscopy Study. Biol. Psychiatry
Cogn. Neurosci. Neuroimaging 2016, 1, 125–131. [CrossRef]

20. Pharmaceuticals, A. A Multicenter, Randomized, Double-blind, Placebo-Controlled, Parallel-Arm Study to Assess the Efficacy,
Safety, and Tolerability of AVP-786 (Deudextromethorphan Hydrobromide [d6-DM]/Quinidine Sulfate [Q]) for the Treatment
of Negative Symptoms of Schizophrenia. Available online: https://www.clinicaltrials.gov/ct2/show/study/NCT03896945
(accessed on 16 May 2022).

21. Bowden, C. The effectiveness of divalproate in all forms of mania and the broader bipolar spectrum: Many questions, few
answers. J. Affect. Disord. 2004, 79, 9–14. [CrossRef]

22. Schwartz, J.; Murrough, J.W.; Iosifescu, D.V. Ketamine for treatment-resistant depression: Recent developments and clinical
applications. Evid. Based Ment. Health 2016, 19, 35. [CrossRef]

23. Maron, B.A.; Altucci, L.; Balligand, J.-L.; Baumbach, J.; Ferdinandy, P.; Filetti, S.; Parini, P.; Petrillo, E.; Silverman, E.K.;
Barabási, A.-L.; et al. A global network for network medicine. NPJ Syst. Biol. Appl. 2020, 6, 29. [CrossRef] [PubMed]

24. Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [CrossRef]
25. Bianchi, M.T.; Botzolakis, E.J. Targeting ligand-gated ion channels in neurology and psychiatry: Is pharmacological promiscuity

an obstacle or an opportunity? BMC Pharmacol. 2010, 10, 3. [CrossRef]
26. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major

psychiatric disorders: A genome-wide analysis. Lancet 2013, 381, 1371–1379. [CrossRef]
27. Anttila, V.; Bulik-Sullivan, B.; Finucane, H.K.; Walters, R.K.; Bras, J.; Duncan, L.; Escott-Price, V.; Falcone, G.J.; Gormley, P.;

Malik, R.; et al. Analysis of shared heritability in common disorders of the brain. Science 2018, 360, eaap875. [CrossRef]
28. Gandal Michael, J.; Haney Jillian, R.; Parikshak Neelroop, N.; Leppa, V.; Ramaswami, G.; Hartl, C.; Schork Andrew, J.; Appadurai,

V.; Buil, A.; Werge Thomas, M.; et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic
overlap. Science 2018, 359, 693–697. [CrossRef]

29. Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; van Bakel, H.; Varghese, M.; Wang, Y.;
et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018, 362, eaat8127.
[CrossRef] [PubMed]

30. Jacobi, F.; Wittchen, H.U.; HÖLting, C.; Höfler, M.; Pfister, H.; Müller, N.; Lieb, R. Prevalence, co-morbidity and correlates
of mental disorders in the general population: Results from the German Health Interview and Examination Survey (GHS).
Psychol. Med. 2004, 34, 597–611. [CrossRef]

31. Andrews, G.; Henderson, S.; Hall, W. Prevalence, comorbidity, disability and service utilisation: Overview of the Australian
National Mental Health Survey. Br. J. Psychiatry 2001, 178, 145–153. [CrossRef]

32. Kessler, R.C.; McGonagle, K.A.; Zhao, S.; Nelson, C.B.; Hughes, M.; Eshleman, S.; Wittchen, H.-U.; Kendler, K.S. Lifetime and
12-Month Prevalence of DSM-III-R Psychiatric Disorders in the United States: Results From the National Comorbidity Survey.
Arch. Gen. Psychiatry 1994, 51, 8–19. [CrossRef]

33. Merikangas, K.R.; Angst, J.; Eaton, W.; Canino, G.; Rubio-Stipec, M.; Wacker, H.; Wittchen, H.U.; Andrade, L.; Essau, C.;
Whitaker, A.; et al. Comorbidity and boundaries of affective disorders with anxiety disorders and substance misuse: Results of an
international task force. Br. J. Psychiatry Suppl. 1996, 168, 58–67. [CrossRef]

34. Qu, X.A.; Gudivada, R.C.; Jegga, A.G.; Neumann, E.K.; Aronow, B.J. Inferring novel disease indications for known drugs by
semantically linking drug action and disease mechanism relationships. BMC Bioinform. 2009, 10 (Suppl. S5), S4. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/27920881
http://doi.org/10.1111/j.1476-5381.2010.01127.x
http://doi.org/10.1016/j.nbd.2020.105136
http://doi.org/10.1016/j.neuropharm.2016.03.021
http://doi.org/10.1038/nrd.2018.168
http://doi.org/10.1038/nrd1468
http://doi.org/10.3390/app10155076
http://doi.org/10.1358/dot.2019.55.1.2959663
http://www.ncbi.nlm.nih.gov/pubmed/30740611
http://doi.org/10.1093/bib/bbr021
http://www.ncbi.nlm.nih.gov/pubmed/21504985
http://doi.org/10.1001/jama.2014.3002
http://www.ncbi.nlm.nih.gov/pubmed/24867009
http://doi.org/10.1080/20016689.2017.1299833
http://www.ncbi.nlm.nih.gov/pubmed/28473889
http://doi.org/10.1016/j.bpsc.2015.12.002
https://www.clinicaltrials.gov/ct2/show/study/NCT03896945
http://doi.org/10.1016/j.jad.2004.01.003
http://doi.org/10.1136/eb-2016-102355
http://doi.org/10.1038/s41540-020-00143-9
http://www.ncbi.nlm.nih.gov/pubmed/32868765
http://doi.org/10.1038/nchembio.118
http://doi.org/10.1186/1471-2210-10-3
http://doi.org/10.1016/S0140-6736(12)62129-1
http://doi.org/10.1126/science.aap8757
http://doi.org/10.1126/science.aad6469
http://doi.org/10.1126/science.aat8127
http://www.ncbi.nlm.nih.gov/pubmed/30545856
http://doi.org/10.1017/S0033291703001399
http://doi.org/10.1192/bjp.178.2.145
http://doi.org/10.1001/archpsyc.1994.03950010008002
http://doi.org/10.1192/S0007125000298425
http://doi.org/10.1186/1471-2105-10-S5-S4


Pharmaceutics 2022, 14, 1464 18 of 22

35. Barabási, A.-L. Network Science; Cambridge University Press: Cambridge, UK, 2016.
36. Recanatini, M.; Cabrelle, C. Drug Research Meets Network Science: Where Are We? J. Med. Chem. 2020, 63, 8653–8666. [CrossRef]
37. Csermely, P.; Korcsmáros, T.; Kiss, H.J.M.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: A novel

paradigm of drug discovery: A comprehensive review. Pharmacol. Ther. 2013, 138, 333–408. [CrossRef] [PubMed]
38. Albert, R.K. Network Inference, Analysis, and Modeling in Systems Biology. Plant Cell 2007, 19, 3327–3338. [CrossRef]
39. Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662–1664. [CrossRef] [PubMed]
40. Vidal, M.; Cusick, M.E.; Barabási, A.-L. Interactome Networks and Human Disease. Cell 2011, 144, 986–998. [CrossRef] [PubMed]
41. Network Medicine: Complex Systems in Human Disease and Therapeutics; Harvard University Press: Cambridge, MA, USA, 2017.
42. Barabási, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [CrossRef]
43. Seebacher, J.; Gavin, A.C. SnapShot: Protein-protein interaction networks. Cell 2011, 144, 1000. [CrossRef]
44. Barabási, A.-L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113.

[CrossRef]
45. Penrod, N.M.; Cowper-Sal-lari, R.; Moore, J.H. Systems genetics for drug target discovery. Trends Pharmacol. Sci. 2011, 32, 623–630.

[CrossRef]
46. Swanson, D.R. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect. Biol. Med. 1986, 30, 7–18. [CrossRef]
47. Baek, S.H.; Lee, D.; Kim, M.; Lee, J.H.; Song, M. Enriching plausible new hypothesis generation in PubMed. PLoS ONE 2017,

12, e0180539. [CrossRef]
48. Weeber, M.; Klein, H.; de Jong-van den Berg, L.T.W.; Vos, R. Using concepts in literature-based discovery: Simulating Swanson’s

Raynaud–fish oil and migraine–magnesium discoveries. J. Am. Soc. Inf. Sci. Technol. 2001, 52, 548–557. [CrossRef]
49. Chiang, A.P.; Butte, A.J. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin. Pharm.

2009, 86, 507–510. [CrossRef] [PubMed]
50. Andronis, C.; Sharma, A.; Virvilis, V.; Deftereos, S.; Persidis, A. Literature mining, ontologies and information visualization for

drug repurposing. Brief. Bioinform. 2011, 12, 357–368. [CrossRef] [PubMed]
51. Lekka, E.; Deftereos, S.N.; Persidis, A.; Persidis, A.; Andronis, C. Literature analysis for systematic drug repurposing: A case

study from Biovista. Drug Discov. Today Ther. Strateg. 2011, 8, 103–108. [CrossRef]
52. Krassowski, M.; Das, V.; Sahu, S.K.; Misra, B.B. State of the Field in Multi-Omics Research: From Computational Needs to Data

Mining and Sharing. Front. Genet. 2020, 11, 610798. [CrossRef]
53. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.;

Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef]
54. Pence, H.E.; Williams, A. ChemSpider: An Online Chemical Information Resource. J. Chem. Educ. 2010, 87, 1123–1124. [CrossRef]
55. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank

5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]
56. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019

update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [CrossRef]
57. Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.;

Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules
for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy
sciences. Nucleic Acids Res. 2021, 49, D437–D451. [CrossRef]

58. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al.
Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef] [PubMed]

59. Tan, F.; Yang, R.; Xu, X.; Chen, X.; Wang, Y.; Ma, H.; Liu, X.; Wu, X.; Chen, Y.; Liu, L.; et al. Drug repositioning by applying
‘expression profiles’ generated by integrating chemical structure similarity and gene semantic similarity. Mol. Biosyst. 2014,
10, 1126–1138. [CrossRef]
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