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Single-Cell RNA-Sequencing
Portraying Functional Diversity and
Clinical Implications of IFI6 in
Ovarian Cancer
Hongyu Zhao, Zhefeng Li, Yan Gao, Jie Li, Xiaoting Zhao* and Wentao Yue*

Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China

Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Most patients
die of metastasis due to a lack of other treatments aimed at improving the prognosis of
OC patients. In the present study, we use multiple methods to identify prognostic S1 as
the dominant subtype in OC, possessing the most ligand–receptor pairs with other cell
types. Based on markers of S1, the consensus clustering algorithm is used to explore
the clinical treatment subtype in OC. As a result, we identify two clusters associated
with distinct survival and drug response. Notably, IFI6 contributes to the cluster
classification and seems to be a vital gene in OC carcinogenesis. Functional enrichment
analysis demonstrates that its functions involve G2M and cisplatin resistance, and
downregulation of IFI6 suppresses proliferation capabilities and significantly potentiates
cisplatin-induced apoptosis of OC cells in vitro. To explore possible mechanisms of IFI6
influencing OC proliferation and cisplatin resistance, GSEA is conducted and shows
that IFI6 is positively correlated with the NF-κB pathway, which is validated by RT-
qPCR. Significantly, we develop a prognostic model including IFI6, RiskScore, which
is an independent prognostic factor and presents encouraging prognostic values. Our
findings provide novel insights into elucidating the biology of OC based on single-
cell RNA-sequencing. Moreover, this approach is potentially helpful for personalized
anti-cancer strategies and predicting outcomes in the setting of OC.

Keywords: ovarian cancer, single-cell RNA-sequencing, heterogeneity, prognosis, IFI6, cisplatin resistance

INTRODUCTION

Ovarian cancer (OC) is one of the most aggressive gynecological cancers among women worldwide,
with an increased incidence in recent years. Despite the fact that much progress has been
made toward OC treatment regarding surgery, chemotherapy, targeted therapy, and neoadjuvant
chemotherapy, nearly 25% of OC patients are found to relapse within 6 months after combination
therapy (Miller et al., 2009). Most patients die of metastasis due to a lack of other treatments aimed
at improving the prognosis of OC patients. Thus, it is required to recognize OC-related risks and
formulate optimal and effective therapeutic strategies.

Dysregulated signal transduction or genetic variation of tumor cells is confirmed to accelerate
carcinogenesis (Karlberg et al., 2004; Bast et al., 2009). Efforts have been made to discuss the
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genomic changes in OCs and identify abnormal molecules that
influence the pathophysiology, prognosis (Ramus et al., 2015;
Millstein et al., 2020), and therapeutic targets (Sonego et al., 2019;
Gralewska et al., 2020; Oza et al., 2020). However, the identified
therapeutic targets based on bulk profiling technologies are not
suitable for all patients, because of a complete disregard for intra-
tumoral heterogeneity. Notably, intra-tumorigenic heterogeneity
is a key mechanism for both survival and progression of cancer
(Brock et al., 2009; Marusyk et al., 2012). Recent advances
in single-cell sequencing provide powerful tools to explore
genetic and functional heterogeneity, which have provided novel
mechanisms in our understanding of carcinogenesis and revealed
strategies for treatment (Puram et al., 2017; Lambrechts et al.,
2018; Yost et al., 2019; Zhang et al., 2020).

Recent scRNA-seq studies provide novel perspectives that
are helpful in advancing our understanding of OC progression
(Shih et al., 2018; Geistlinger et al., 2020; Hu et al., 2020;
Izar et al., 2020). However, effective diagnostic/therapeutic
strategies remain indistinct, and the mechanisms associated with
recurrence or metastasis are still poorly understood. A thorough
exploration of OC relapse or metastasis could strengthen
our understanding of the mechanisms associated with tumor
carcinogenesis and progression and thus helpful for discovering
more effective therapeutic strategies for OC.

In the present study, we thoroughly examine eight OC
patients, namely, four with primary carcinoma, two with
metastatic carcinoma, and two with recurrent carcinoma, with
single-cell transcription. Here, we depict single-cell atlas of OCs
and identify several diverse clusters. Significantly, we authenticate
a subtype in epithelial cells consisting of more recurrent cells,
which are more important across multiple clusters. Furthermore,
we explore the clinical application of novel genes of this
subtype with public datasets. In addition, interferon alpha
inducible protein 6 (IFI6) is identified as a pivotal gene in OC
progression. Notably, a variety of bioinformatic methods and
experimental assays are conducted, revealing that IFI6 accelerates
cell proliferation and influences cisplatin resistance. The potential
mechanism may be involved in the NF-κB pathway. Last, we
develop a prognostic model, RiskScore, which can be used as an
independent prognostic factor in OC. Our work will be helpful to
elucidate the biology of OC based on single-cell RNA-sequencing,
thus providing clinical guidance in prognosis and treatment
for OC patients.

MATERIALS AND METHODS

OC and Other Cancer Datasets
Single-cell RNA-seq for OCs is extracted from GSE130000. Bulk
RNA-seq data and relevant clinical data for TCGA cancers are
obtained from UCSC Xena1. Multiple OC datasets downloaded
from GEO are integrated with the sva package (Leek et al.,
2012). All public datasets used in this study are described in
Supplementary Table 1.

1https://xenabrowser.net/datapages/

Single-Cell RNA-Seq Data Preprocessing
The matrices for all samples are combined and processed
with Seurat v3 (Butler et al., 2018). All functions are run
with default parameters, unless otherwise specified. Low-
quality cells (<300 genes/cell, <3 cells/gene, and >20%
mitochondrial genes) are removed. The remaining cells are
normalized by log-transformation. We select the top 2,000
highly variable genes (HGVs) to aggregate samples into a
merged dataset and then scale. The batch effects among patients
are eliminated with the harmony package (Korsunsky et al.,
2019). The top 20 principal components, along with HGVs,
are used in this process. The FindClusters function of the
Seurat package is used for data clustering. The main cell
clusters are visualized using the t-distributed stochastic neighbor
embedding (tSNE) function. For sub-clustering analysis, we
apply the same procedure of finding HGVs, dimensionality
reduction, and clustering. The FindAllMarkers function is
used to list markers of all clusters. We characterize the
identities of cell types based on the CellMarker database
(Zhang et al., 2019).

Assessment of Tumor, Stromal, and
Immune Score
The ESTIMATE algorithm is used to infer tumor purity, immune,
and stromal score for each single cell with the ESTIMATE
package (Yoshihara et al., 2013).

The Chromosomal Copy Number
Variation Estimation
Initial copy number variations (CNVs) for each region are
estimated by the infer-CNV package (Patel et al., 2014). Non-
epithelial cells are used as the reference. The CNVs of all cells are
calculated by expression levels from single-cell sequencing data
for each cell with a cutoff of 0.1.

SCENIC Analysis
Transcription factor (TF) activity is analyzed using pySCENIC,
a Python-based computational analysis tool of the SCENIC
pipeline (Aibar et al., 2017). TF activity (AUC) for each cell is
calculated with motif collection version mc9nr.

Gene Set Functional Analysis
Predominantly, pathway analyses are conducted to evaluate the
activation of hallmark pathways and metabolic pathways,
which are summarized with the molecular signature
database (Subramanian et al., 2005) and curated dataset
(Gaude and Frezza, 2016), respectively. Then, we apply
AUCell or GSVA package to estimate the pathway activity of
each cell.

Cell–Cell Communication Analysis
To explore the potential relationship between different subtypes
of the epithelium and other cell types, a Python-based analysis
tool, CellPhoneDB (Vento-Tormo et al., 2018), is used to analyze
cell–cell communication at the molecular level and calculate
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ligand–receptor pairs for clusters. Cytoscape is used to visualize
the network of clusters.

Developmental Trajectory Inference
We use Monocle2 (Trapnell et al., 2014) to analyze the sample
trajectories and explore the differentiation process of two clinical
clusters. Differentially expressed genes across cluster transitions
are calculated by the “differentialGeneTest” function. “DDRTree”
is applied to reduce dimensions and “plot_cell_trajectory” is used
for visualization.

Deconvolution of Bulk Expression Data
The reference signature matrix is generated by the top 50
genes of each cell type (seven epithelial subtypes and other
four clusters). The reference matrix and the TCGA OC dataset
are deconvoluted by CIBERSORT, which is based on the
non-parameter support vector regression and is robust to
the interfering effects of noise and outliers (Newman et al.,
2015). CIBERSORT is run in the relative mode with 1,000
permutations. Deconvolution analysis generates scores of 11 cell
signatures in each tumor sample. This signature score could
be interpreted as the relative abundance of the corresponding
cell state in a particular tumor sample. Then, Cox regression
and Kaplan–Meier survival curves are used to explore the
survival of cell types.

Public Data Analysis
To identify gene patterns of S1 and classify patients for
further analysis, firstly, 18 of 344 genes of S1 are selected at
p < 0.05 with the univariate Cox regression model in the
TCGA OC dataset (Supplementary Table 2). Then, we employ
the R package ConsensusClusterPlus, a consensus clustering
algorithm (pam), to determine the optimal cluster number.
TCGA OC patients are divided into two subgroups associated
with the highest stability and the lowest ambiguity, which is
validated by the GDSC dataset (Lu et al., 2019). Subsequently,
Kaplan–Meier analysis is used to assess the survival of the two
clusters with the TCGA OC dataset, and R package pRRophetic
is used to estimate the IC50 for cisplatin and docetaxel in
different clusters. To explore the important genes between the
two clusters that exhibit different responses to treatment, we
apply the random forest classification algorithm with the R
package randomForest, which ranks the importance of genes
with Gini values. The top five genes are IFI27, IFI6, TMEM258,
COX7A2, and NDUFC2.

To explore the clinical application of IFI6, we built a novel
RiskScore including IFI6 and five other genes. Firstly, 18
prognostic genes are selected at p < 0.05 with the univariate
Cox regression model and then these genes are narrowed down
using the lasso algorithm. The TCGA OC dataset is used as
the training cohort and the GEO OC meta-dataset is deemed
as the testing cohort (an integrated OC cohort: GSE18520,
GSE19829, GSE26193, GSE30161, GSE63885, and GSE9891 with
GPL570, Supplementary Table 1). Using OS as the predictive
index, this procedure is repeated 10,000 times to construct the
RiskScore. Last, the RiskScore is generated with gene expression

values and corresponding lasso coefficients using the following
formula:

Y = [CCDC34 × (−0.157) + NDUFC2 × (−0.206) +

HMGN5 × (−0.116)+ SPEN × 0.131+ CLTA ×

(−0.225) + IFI6 × 0.19].

Kaplan–Meier survival analysis and time-dependent ROC
curves are used to evaluate the performance of RiskScore.
Patients are divided into a high- and low-RiskScore group based
on the median value of RiskScore.

Cell Culture and siRNA Transfection
In the present research, OC cell lines (including HEY, SKOV3,
A2780, and CAOV8) are obtained from ATCC. HEY, SKOV3,
and A2780 are cultured in Roswell Park Memorial Institute
(RPMI)-1640 medium supplemented with 10% fetal bovine
serum (FBS) and 100 U/ml penicillin/streptomycin at 37◦C
with 5% CO2. CAOV8 is cultured in high-glucose Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% FBS and
100 U/ml penicillin/streptomycin under similar conditions. All
cell lines are transfected with Lipofectamine RNAmax. IFI6-
target specific small interfering RNA (siRNA) is synthesized by
JTSBIO Co., Ltd., (Wuhan, China). The sequences of IFI6-target-
specifc-siRNA (siIFI6) are as follows: siRNA1, 5′-GCUGCUC
UUCACUUGCAGUTTACUGCAAGUGAAGAGCAGCTT-3′;
siRNA2, 5′-GCAGCGUCGUCAUAGGUAATTUUACCUAUGA
CGACGCUGCTT-3′, siRNA3, 5′-CCACAAGUAUCUCGAUAG
UTTACUAUCGAGAUACUUGUGGTT-3′; and the sequence
of control is 5′-UUCUCCGAACGUGUCACGUTACGUGA
TCACGUUCGGAGAATT-3′. All cells are cultured in six-well
plates. Cells are transfected with 100 nmol/L siIFI6 or siCon and
incubated for 24 h for subsequent assays.

Cell Proliferation Assay
CCK-8 assay and plate clone formation assay are used to
evaluate cell proliferation. CCK-8 assay is performed according
to our previous study (Zhao et al., 2020). After transfecting
siRNA for 24 h, A2780 cells are cultured in six-well culture
plates (1,000/well) for 7 days. The cells are fixed with 4%
paraformaldehyde (PFA) and stained with 0.1% crystal violet for
15 min and then photographed.

RNA Extraction and RT-qPCR
RNA extraction and RT-qPCR are conducted according to our
previous study (Zhao et al., 2020). The primer sequences are listed
in Supplementary Table 3.

Apoptosis Assays by Flow Cytometry
SKOV3 cells (5 × 105) are cultured in six-well plates for
24 h followed by cell transfections for 24 h. Subsequently, cells
are exposed to 10 µg/ml cisplatin. After 24-h treatment, the
cells are collected to determine apoptosis using Annexin-V-
(FITC) and propidium iodide (PI) kit (BD Biosciences, San Jose,
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CA, United States). The double-stained cells are subsequently
analyzed by the BD flow cytometer.

RESULTS

A Single-Cell Atlas of OCs
A total of eight samples, namely, four primary carcinomas,
two metastatic carcinomas, and two recurrent carcinomas, are
discussed. After removing low-quality cells, a total of 21,212
cells are finally acquired, namely, 3,242 cells from P1, 1,571
cells from P2, 2,186 cells from P3, 2,085 cells from P4, 1,489
cells from M1, 2,026 cells from M2, 5,191 cells from R1, and
3,422 cells from R2 (Supplementary Table 4). The single-cell
number in our study that is different from GSE130000 may result
from different filtration criteria. Considering the batch effects in
different samples, we use the R package harmony to integrate
these samples to eliminate the batch effects (Supplementary
Figure 1). These cells are classified into six main cell lineages,
namely, C0–C5 (Figure 1A). The corresponding proportion for
each cluster is discrepant (Figure 1B). C0 and C2 are composed
of a large proportion of recurrent carcinomas; C3 and C4 have
a relatively higher proportion of metastatic tumors. Then, we
annotate the cell clusters based on the average expression of
the top five markers and well-known markers for each cluster
(Figures 1C,D). We find that the atlas mainly comprises two
epithelial cell types (i.e., C0 and C2), a mesenchyme clusters
(C1), a T cell cluster (C3), a macrophage cluster (C4), and
an endothelium cluster (C5). Then, we estimate tumor purity,
immune, and stromal score for each single cell. Therefore,
immune cells (T cell and macrophage cell) play important
roles in OC metastasis. As shown in Figure 1E, mesenchyme
cells (C1) show a higher stromal score, and immune cells
(C3 and C4) exhibit a higher immune score. Cells scored
low for both stromal and immune gene expression present
higher tumor purity (C0 and C2) and express high levels of
epithelial markers (EPCAM and WFDC2), promoting that these
cells are malignant.

The chromosomal CNV score of each cell helps to identify the
malignant clusters. We demonstrate that the epithelial cells (C0
and C2) exhibit remarkably higher CNV levels than other cell
types across intervals of the genome (Figure 1F). Thus, C0 and C2
are malignant epithelial cells, supporting the fact that OC mainly
originated from the epithelium. Studying the epithelial cells may
help to understand the recurrence of OC.

S1 Occupies a Dominant Role in OC
Cells and Is Associated With Survival
Overall, 16,146 malignant cells from eight tumor samples
are identified and retained for further analyses. In this study,
seven diverse subgroups are identified in the malignant
epithelial cluster on the basis of the tSNE graph (Figure 2A),
demonstrating the heterogeneity of epithelial cells in OC.
Conspicuously, S0–S3 are composed of a larger proportion
of recurrent carcinomas; S5 is almost composed of primary
carcinomas (Figure 2B). We notice that specific markers
of S1 are related to immunity such as SPP1, SLPI, and

IFITM3 (Figure 2C). We then apply SCENIC analysis to
explore TFs with gene expression differences across cell types
(Figure 2D). As a result, a set of TFs related to carcinogenesis
are enriched in S1, such as PAX8 and MYC. We further
explore the functions of different epithelial subtypes by
comparing pathway activities. As shown in the heatmap
(Figure 2E), S1 enriches some hallmark terms related to
immune, such as INTERFERON_ALPHA_RESPONSE,
INTERFERON_GAMMA_RESPONSE, and
TNFA_SIGNALING_VIA_NFKB. Notably, some metabolic
terms are also enriched in S1 (Figures 2E,F), such as
XENOBIOTIC_METABOLISM, Pterin biosynthesis, and
Riboflavin Metabolism. Thus, S1 is a malignant epithelial and
related to immunity and metabolism; discussing this subtype
may help to understand the biological mechanisms of OC
progression and seek for novel therapeutic targets.

To investigate the interaction network of epithelial subtypes
and other clusters in OC, we utilize CellphoneDB to calculate
potential ligand–receptor pairs. Notably, S1 shows the most
interaction pairs with other cell types (Figures 3A,B), revealing
its dominant role in OC. As shown in Figure 3C, CXCR4,
TNFSF10, VEGFA, and JAG1 secreted by S1 interact with
receptors expressed on mesenchyme, immune cells, and
endothelium cells. These ligand–receptor pairs may be related to
immune, angiogenesis, and CAF proliferation.

Then, we use the deconvolution method to explore the
proportion of each cell type with the TCGA OC dataset. The cell-
type proportions are shown in Figure 3D, and box plots depict
their distributions (Figure 3E). Notably, S1 exhibits the highest
proportion across all cell types, followed by S6. To explore the
importance of clusters, we employ the Cox regression to discuss
the prognosis of each cluster. As a result, S1, S6, and C3 are
statistically significant in OC (p < 0.05, Figure 3F). The HR
and 95% CI for S1 is 0.872 (0.765–0.994), which for S6 and
C3 are 1.144 (1.007–1.3) and 0.806 (0.676–0.962), respectively.
Kaplan–Meier curves also show that S1 and S6 are associated
with survival (p < 0.05, Figure 3G). Above all, we deduce that S1
plays an important role in OC carcinogenesis. Moreover, MHC
molecules such as HLA-DRB1 and HLA-DRA highly express in
S1 (Figure 3H), consistent with our previous results that S1 is
closely related with immunity.

Association of Markers in S1 With
Clinical Treatment Subtypes
To explore the clinical application of gene expression patterns
in S1, we use univariate Cox regression to narrow down 344
markers. As a result, 18 genes are associated with survival
and selected at p < 0.05. Then, 379 OC patients are divided
into two different subtypes with ConsensusClusterPlus based
on the 18 markers (Figures 4A,B). The relationship of the
markers is illustrated in Supplementary Figure 2. Compared
to the patients from C1, patients in C2 show worse outcome
(Figure 4C). Cisplatin and docetaxel are classical treatment
in OCs. Interestingly, we discover that IC50 for cisplatin and
docetaxel is higher in C2 (Figure 4D), meaning that these patients
are drug resistant. The above results are validated with the GDSC
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FIGURE 1 | ScRNA-seq profiling of the primary, metastatic, and relapsed OCs. (A) tSNE plot annotating six major cell types in OCs. (B) Histogram indicating the
proportion of diverse cell types across different sample origins. (C) Violin plots exhibiting the expression of representative markers across diverse cell types. The
y-axis was the normalized read count. (D) Dot plot showing the expression of the top five markers in each indicated cell types. (E) Violin plots illustrating the
estimation of tumor purity, immune score, and stromal score across different cell types. (F) Chromosomal landscape of inferred large-scale CNVs distinguishing
malignant epithelial cells from other cells.
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FIGURE 2 | Detailed characterization of malignant epithelial cells. (A) tSNE plot showing seven subgroups generated from malignant epithelial cells. (B) Heatmap
showing the average expression of the top five markers across different subgroups. (C) The proportion of diverse subgroups across different sample origins.
Differences in the activities of the TFs (D), HALLMARK pathway (E), and metabolic pathways (F) in each malignant epithelial subgroup.

dataset (Supplementary Figure 3), demonstrating that our
classification is stable and robust. Moreover, pseudotime graph
illustrates a differentiation process from C1 to C2, confirming
heterogeneity between the two clusters (Figure 4E).

Then, we explore the functions of the two clusters which reveal
different survival and drug responses. Meaningfully, C1 enriches
in immune and C2 is concerned with ECM and drug metabolism
(Supplementary Figure 4). To further explore the pivotal gene
that alters the functional state and drug reaction between the
two clusters, the 18 prognostic markers are subjected to random
forest algorithm. As a result, IFI27, IFI6, TMEM258, COX7A2,
and NDUFC2 are the top five important genes in our clusters

(Figures 4F,G). We explore their expression in different epithelial
subtypes, finding that IFI6 is the unique gene that specifically
expresses in S1 (Supplementary Figure 5). In our next work, we
explore the carcinogenesis of IFI6 in OC.

Downregulation of IFI6 Suppresses
Proliferation and Potentiates Sensibility
to Cisplatin Treatment of OC Cells
IFI6 is reported to be carcinogenic in cancers (Gupta et al., 2016;
Cheriyath et al., 2018; Liu et al., 2020). Thus, we deduce that
IFI6 plays an important role in OC progression. We extract the
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FIGURE 3 | S1 is the dominant subtype in malignant epithelial subgroups. (A) Interaction network constructed by CellPhoneDB; circle size represents interaction
counts. (B) Bar plot illustrating the count of ligand–receptor pairs. (C) Dot plot showing ligand–receptor pairs of malignant epithelial subgroups and other clusters.
(D) Stacked bar plot summarizing cell subtype fractions with the deconvolution result of 379 OCs from TCGA. Colors of the bars represent 11 cell states as shown in
the legend. The y-axis represents the proportion of each state in a tumor sample. In the x-axis, each column represents one tumor case. (E) Box plot illustrating the
proportion of each state in TCGA OC samples. (F) Association between relative abundance of cell states calculated by CIBERSORT and survival. (G) Kaplan–Meier
curves for the relative abundance of S1 and S6. (H) Violin plots exhibiting the MHC molecules such as HLA-DRB1 and HLA-DRA across different subtypes. The
y-axis was the normalized read count.
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FIGURE 4 | Identification of two clinical treatment subtypes from the TCGA OC dataset. (A) Consensus matrixes of the TCGA OC cohort for k = 2–6. (B) Heatmap
of 18 genes in the TCGA OC dataset. (C) Kaplan–Meier plot for two clusters in the TCGA OC dataset. (D) Box plot illustrating that higher IC50 for cisplatin and
docetaxel in C2. (E) Pseudotime graph demonstrating the differentiation process from C1 to C2. (F) Error rate for the data as a function of the classification tree.
(G) Importance of 18 genes for the predictors.

survival data of IFI6 in 1,657 OC patients using Kaplan–Meier
plotter2. IFI6 upregulation is found to be associated with poor
OS in OC (Figure 5A and Supplementary Figure 6). Forest
plot reveals the impact of IFI6 expression on patient outcomes

2http://kmplot.com/analysis/index.php?p=service&cancer=ovar

in different clinical status. Although the results of subgroup
analysis are heterogeneous, IFI6 is supported as a poor prognostic
biomarker in most subtypes (Figure 5B). Overall, patients with
higher IFI6 are accompanied with poor overall survival. In the
stage III/IV group, patients with higher IFI6 present as poor
survival with significance. In the stage I/II group, higher IFI6
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is also associated with poor survival, but it is not statistically
significant. Stratified by tumor grades, we find that higher IFI6
is associated with poor survival with significance in the grade
I/II group. Upon stratification of the samples according to TP53
mutation status, significant differences in survival were observed
between low- and high-IFI6 groups in the TP53 wild group. In the
chemotherapy analysis, higher IFI6 is related to poor survival in
patients treated with taxol, supporting the idea that they may be
resistant to taxol. In truth, IFI6 is the unique gene that specifically
expresses in S1 (Figure 5C and Supplementary Figure 5). The
mRNA expression level of IFI6 is higher in multiple cancers
including OC than paired normal samples in GTEx (Figure 5E).
Noteworthy is the observation that the representative protein
expression level of IFI6 is positive in OCs based on the Human
Protein Atlas (HPA) database (Figure 5D). Briefly, a total of 11
OC patients including one moderate and 10 weak are positive
considering the intensity of each IHC. As compared, the intensity
of three normal ovary samples is negative.

After analyzing the public data, we sought to determine
whether targeting IFI6 expression in OC cells could be used as
a practicable therapeutic target to inhibit cell viability. In order
to investigate the function of IFI6 in OC, we divide people into
two groups according to the median of IFI6 in TCGA OC dataset.
GSEA shows that high-IFI6 group is mainly associated with G2M
checkpoint (Figure 6A), demonstrating that IFI6 is associated
with cell cycle progression and accelerates cell proliferation.
We further investigate the effects of siIFI6 on cell proliferation
with CCK-8 assay and plate clone formation assay. As a result,
downregulation of IFI6 decreases the proliferation of OC cell
lines (Figures 6B–D).

Cisplatin is an important therapeutic drug in OC; however,
its therapeutic effect is impeded by drug resistance. Exploring
new targets and explaining resistance mechanisms are urgent
and vital. In the present study, we find that IFI6 is higher
in the cisplatin resistance and relapse group (Figure 6E).
WHITESIDE_CISPLATIN_RESISTANCE_UP is more enriched
in the IFI6-High group with GSVA algorithm (Figure 6F). These
results prompt that IFI6 is associated with cisplatin resistance.
In order to discuss the effect of IFI6 on the sensitivity of
OC cell lines to cisplatin, CCK-8 assay and flow cytometry
are performed. Forty-eight hours after transfection, SKOV3
cells are treated with increasing concentrations of cisplatin
for 24 h, and their inhibition rate is measured by CCK8. As
expected, SKOV3 cells transferred with siIFI6 are more sensitive
to cisplatin toxicity (Figure 6G). Furthermore, SKOV3 cells
transferred with siIFI6 significantly aggrandize cisplatin-induced
apoptosis when compared to the siCon cells (Figures 6H,I).
This clearly proves concrete evidence for the role of IFI6 in
drug resistance.

Furthermore, to determine the molecular mechanism of IFI6
in promoting proliferation and cisplatin resistance, GSEA is
conducted, and the result illustrates that the high-IFI6 group is
enriched in the NF-κB pathway (Figure 6J). Convincingly, IFI6
is also positive with markers of the NF-κB pathway in cancers
(Supplementary Figure 7). Then, we conduct RT-qPCR to
validate the result. Interestingly, mRNA levels of NFKB1, RELA,
XIAP, and TNF are lower in the silent IFI6 group compared to the

siCon group (Figure 6K). Thus, we infer that IFI6 promoting OC
progression may be involved in the NF-κ B pathway.

Construction of a Robust Prognostic
Model Associated With IFI6
To deeply discuss the clinical application of IFI6, we use lasso
algorithms to construct the RiskScore model including IFI6 and
five other genes. The formula of the RiskScore is Y = [CCDC34×
(−0.157) + NDUFC2× (−0.206) + HMGN5× (−0.116) + SPEN
× 0.131 + CLTA× (−0.225) + IFI6× 0.19]. Patients with a lower
RiskScore exhibit greater OS (log-rank p < 0.01; Figures 7A,B).
Significantly, RiskScore is reliable to predict the survival of OCs
based on time-dependent ROC curves. As a result, the area
under curve (AUC) is 0.667, 0.609, and 0.661 in 1-year, 3-year,
and 5-year survival, respectively (Figure 7C). In the validation
dataset, the AUC is 0.589, 0.603, and 0.612 for 1-year, 3-year, and
5-year survival, respectively (Figure 7D). Calibration plots for
RiskScore demonstrate that the model is reliable (Supplementary
Figure 8). RiskScore analysis for six specific biomarkers in OC
patients are shown in Figures 7E,F. Furthermore, the forest
plot reveals diverse OS of RiskScore across multiple cancers in
TCGA (Figure 7G). RiskScore is associated with poor survival in
SARC, STAD, OV, SKCM, and BLCA. In contrast, RiskScore is
associated with better survival in ACC and LGG. The RiskScore
is determined to be an independent and robust prognostic factor
for OC samples with univariate and multiple Cox regression
analysis (Figures 7H,I). This indicates the good potential of
RiskScore in survival monitoring. Moreover, we utilize GSEA to
investigate the biological functions of RiskScore. The dot plot
illustrates that RiskScore activates carcinogenesis-related terms
and is associated with an inflammatory response (Figure 7J),
such as EPITHELIAL_MESENCHYMAL_TRANSITION,
COMPLEMENT, TNFA_SIGNALING_VIA_NFKB, INFLAM
MATORY_RESPONSE, and IL2_STAT5_SIGNALING.

DISCUSSION

Despite the fact that many progresses in treatment strategies
have improved overall survival rates, the clinical outcomes of
OC remain depressed due to the high incidence of recurrence
or metastasis, even after combination therapy (Miller et al.,
2009). Treatment strategies of recurrent or metastasis tumors are
often based on the primary tumor, although the molecular and
pathological features are distinguishing. Studies have attempted
to explore the mechanisms or therapeutic targets of metastasis
or recurrent cancer (Lee et al., 2013; Samardzija et al., 2015).
Exploration of a more effective treatment approach to improve
patient outcome is important. However, identified markers or
therapeutic targets with a complete disregard for intra-tumoral
heterogeneity are not suitable for all patients. In recent years,
mechanisms in cancer carcinogenesis and treatment strategies
with scRNA-seq (Puram et al., 2017; Lambrechts et al., 2018;
Yost et al., 2019; Zhang et al., 2020) in consideration of tumoral
heterogeneity have been promoted and are more convincing.
Thus, it is highly desirable to explore the underlying mechanisms
between primary, metastasis, and recurrent OC, and then develop
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FIGURE 5 | Analysis of prognosis and expression level of IFI6 in OC. (A) Kaplan–Meier curve illustrating higher IFI6 accompanied by poor OS. (B) Survival associated
with IFI6 in different subgroups of OC patients. (C) IFI6 has a high expression in S1. (D) Representative protein expression levels of IFI6 were high in OCs based on
the Human Protein Atlas database. (E) Box plot showing higher IFI6 in OCs than paired normal samples.

more effective therapeutic targets and prognostic biomarkers
with scRNA-seq in OC patients.

In this study, we establish a comprehensive single-cell
expression atlas and identify two malignant epithelial cell
types composed of a large proportion of recurrent carcinomas.
Thus, studying the epithelial cells may help to understand the
recurrence of OC. Epithelial ovarian cancer (EOC) accounts
for the majority OC cases and advanced EOC eventually
develops into a recurrent platinum-resistant disease. These
malignant epithelial cells are further explored and reclustered
to seven subtypes. Each subtype shows distinct functions
and markers, revealing substantial heterogeneity among OCs.
Notably, multiple carcinogenesis and immune-related terms and
markers are enriched in S1. Prognostic S1 exhibits the highest
proportion in OC and has the most ligand–receptor pairs with

other cells. Meaningfully, these interaction pairs are related to
immune, angiogenesis, and CAF proliferation. The above reveals
the dominant role of S1 in OC.

To explore the clinical application of S1, we classify patients
into two clusters with 18 prognostic genes. Significantly, patients
in C1 are associated with favorable survival and more sensitive
to cisplatin and docetaxel. Furthermore, we find a differentiation
process from C1 to C2. Then, we explore the functions of the
two clusters and found that C1 is associated with immune and
C2 is concerned with ECM and drug metabolism. This further
confirms that the two distinct clusters may play different roles
in OC progression and treatment. In the subsequent in-depth
analysis, we identify IFI6 as an important gene in predicting
the two clusters, which may be essential for carcinogenesis and
therapeutic strategies in OC.
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FIGURE 6 | Potential mechanism of IFI6 promoting OC proliferation and cisplatin resistance may be related to the NF-κB pathway. (A) GSEA showing high-IFI6
groups is associated with G2M checkpoint in the TCGA OC dataset. (B,C) Effect of IFI6 on the colony formation of OC cells by plate colony formation assay.
(D) CCK-8 assays demonstrating slower proliferation in IFI6 silent cells compared to the siCon cells. (E) Box plot illustrating higher IFI6 in the cisplatin-resistant and
relapse group based on GEO datasets. (F) GSVA of WHITESIDE_CISPLATIN_RESISTANCE_UP in high- and low-IFI6 groups. (G) Cisplatin sensitivity in siCon and
siIFI6 in SKOV3 cells. (H,I) Apoptotic cells by flow cytometry in control and siIFI6 in SKOV3 untreated or treated with cisplatin. The p-value of apoptosis (Q3) between
the groups siCon+Cisplatin and siIFI6+Cisplatin is <0.05. (J) GSEA presenting higher IFI6 is associated with the NF-κB pathway. (K) Compared with control cells,
the expressions of NFKB1, RELA, XIAP, and TNF are lower in siIFI6 cells in mRNA level.
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FIGURE 7 | Excellent prognosis of the RiskScore. (A,B) Kaplan–Meier survival curves, (C,D) time-dependent ROC curve analyses, (E,F) RiskScore distribution,
survival status, and gene expression profile for patients in high- and low-RiskScore groups in the TCGA OC cohort and GEO OC dataset. (G) Forest plot illustrating
the OS of the RiskScore in multiple cancers. SARC, sarcoma; STAD, stomach cancer; OV, ovarian cancer; SKCM, Melanoma; BLCA, bladder cancer; ACC,
adrenocortical cancer; LGG, lower grade glioma. (H,I) RiskScore is determined to be an independent and robust prognostic factor for OC samples by univariate Cox
regression (H) and multivariable Cox regression (I) analysis. (J) Dot plot showing the functions of RiskScore across multiple cancers.

IFI6, an interferon (IFN)-stimulated gene (ISG), is mainly
enriched in the inner mitochondrial membrane (Liu et al., 2020)
and plays important roles in immune modulation (Liu et al.,
2019). IFI6 is reported to overexpress in multiple malignant
cancers (Gupta et al., 2016; Cheriyath et al., 2018; Liu et al.,
2020) and is identified as a survival factor (Cheriyath et al., 2007;
Liu et al., 2020). Upregulation of IFI6 may contribute to cancer
progression; however, the roles of IFI6 in OC carcinogenesis
remain unclear. In the current research, prognostic IFI6 is higher
in ovarian tumors compared to the normal ovary in mRNA

and protein levels. Although the understanding of its biological
functions is limited, IFI6 is characterized as a proliferative factor
(Gupta et al., 2016; Liu et al., 2020) and associated with metastasis
(Cheriyath et al., 2018). Studies reveal that IFI6 influences
proliferation via regulating DNA replication stress (Gupta et al.,
2016) and mediating ROS accumulation (Liu et al., 2020). In the
present study, GSEA is performed and demonstrates that IFI6 is
related to G2M checkpoint. The G2/M DNA damage checkpoint
prevents the cell from entering mitosis (M phase) if the genome
is damaged; thus, the proliferation is inhibited. As validation,
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the in vitro assays disclose that IFI6 promotes cell proliferation.
However, we do not have further information of IFI6 influencing
cell proliferation by G2M checkpoint. In future work, we will
explore the relationship of IFI6 and G2M checkpoint.

Cisplatin is one of the most commonly used drugs for
OC treatment, and cisplatin cytotoxicity has been attributed
to DNA binding, single-stranded DNA breaks, and further
induction of cell death (Cepeda et al., 2007). However, cisplatin
resistance is a clinical challenge for patient treatment (Pujade-
Lauraine et al., 2019). IFI6 is reported to be associated with
chemoimmunotherapy (Moschella et al., 2013) and tamoxifen
resistance (Cheriyath et al., 2012). In the present study, we
find that higher IFI6 is associated with cisplatin resistance.
We also observe that depletion of IFI6 significantly reveals a
higher inhibition rate and reinforces cisplatin-induced apoptosis
in OC cell lines, suggesting that IFI6 potentiates the effect
of cisplatin sensitivity. However, the mechanisms of IFI6
influencing cisplatin resistance in OC remain unknown. Cisplatin
resistance leads to therapeutic failure, and the mechanisms may
be involved in enhanced DNA damage repair, imbalance of
cisplatin uptake and efflux, and altered regulatory pathways
(Galluzzi et al., 2012). It is reported that IFI6 is necessary for
cancer progression via regulating DNA replication stress (Gupta
et al., 2016), thereby inhibiting cell apoptosis and modulating
cisplatin resistance. This needs to be further confirmed in our
subsequent work. Exploring the effect of IFI6 on OC may help
to understand the regulatory mechanisms of cisplatin-resistance
generation, assisting therapeutic strategies in the clinical setting.

Recent studies have ascribed a prominent role of IFI6 for
mitochondrial reactive oxygen species (mtROS) in metastasis
(Porporato et al., 2014; Rivadeneira et al., 2015). Whether
IFI6 promotes OC progression by another mechanism remains
elusive. In our present study, mechanism analysis demonstrates
that IFI6 is positively associated with the NF-κB pathway.
As a validation, our experiments reveal that the levels of
NFKB1, RELA, XIAP, and TNF are lower in the siIFI6
group. Mechanistically, NF-κB activity can be induced under
stress conditions, including DNA damage (Zhang et al., 2018).
Moreover, NF-κB activation slows down the cell cycle, inducing
anti-apoptotic proteins and stemness, thereby conferring pro-
tumorigenic and resistance to chemotherapy (Zhang et al., 2018;
Yang et al., 2020; Kumar et al., 2021). Thus, we infer that
IFI6 may affect the activity of the NF-κB pathway, leading
to pro-tumorigenesis and cisplatin resistance. With respect
to tumorigenesis, NF-κB signaling is also a master regulator
of the inflammatory response and increases pro-tumorigenic
inflammation (Li et al., 2019; Ni et al., 2020; Gu et al., 2021). IFI6
may influence the inflammatory response by interacting with the
NF-κB pathway, thus modulating OC progression.

IFI6 has an effect on proliferation and cisplatin resistance,
and we further develop a RiskScore including IFI6 to explore
the clinical application in prognosis. Exhilaratingly, RiskScore
is an independent prognostic factor and presents encouraging
prognostic value in predicting survival in OC and other
cancers. Then, GSEA is further conducted to clarify the
mechanisms of RiskScore. The result hints that RiskScore may
affect the survival of OCs via carcinogenic terms, such as
EPITHELIAL_MESENCHYMAL_TRANSITION. RiskScore is

also associated with immune-related terms, corresponding to
functions of two previous clusters. During the past years, several
signatures have been identified for prognostic prediction based
on the bulk mRNA transcription dataset (Fan et al., 2020; Wu
et al., 2020). In this study, RiskScore generated with carcinogenic
genes in the single-cell level seems to be more credible. Our study
comprehensively analyzes the single-cell RNA-sequencing of OC
and provides novel ideas for predicting outcomes and therapeutic
strategies in OCs.

CONCLUSION

In conclusion, we authenticate S1 as the dominant cells in
OC and identify IFI6 as the vital gene in OC carcinogenesis.
We demonstrate a potential mechanism of IFI6, influencing
carcinogenesis, cell proliferation, and cisplatin resistance, which
may be involved in the NF-κB pathway in OC. Significantly, we
develop a prognostic model, RiskScore, which is an independent
prognostic factor and presents encouraging prognostic values.
Thus, this approach is potentially helpful for personalized anti-
cancer strategies and predicting outcomes in the setting of OC.
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