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Synopsis Body size is fundamental to the physiology and ecology of organisms. Crocodyliforms are no exception, and

several methods have been developed to estimate their absolute body sizes from bone measurements. However, species-

specific sizes, such as sexually mature sizes and the maximum sizes were not taken into account due to the challenging

maturity assessment of osteological specimens. Here, we provide a vertebrae-based method to estimate absolute and

species-specific body lengths in crocodylians. Lengths of cervical to anterior caudal centra were measured and relations

between the body lengths (snout–vent and total lengths [TLs]) and lengths of either a single centrum or a series of centra

were modeled for extant species. Additionally, states of neurocentral (NC) suture closure were recorded for the maturity

assessment. Comparisons of TLs and timings of NC suture closure showed that most extant crocodylians reach sexual

maturity before closure of precaudal NC sutures. Centrum lengths (CLs) of the smallest individuals with closed pre-

caudal NC sutures within species were correlated with the species maximum TLs in extant taxa; therefore, the upper or

lower limit of the species maximum sizes can be determined from CLs and states of NC suture closure. The application

of the current method to noncrocodylian crocodyliforms requires similar numbers of precaudal vertebrae, body pro-

portions, and timings of NC suture closure as compared to extant crocodylians.

Introduction
Body size is an important trait related to most bio-

logical aspects of organisms (McMahon and Bonner

1983; Peters 1983; Schmidt-Nielsen 1984). In extant

crocodylians, body size is associated with per-mass

bite force (Erickson et al. 2003, 2014), terrestrial and

aquatic locomotor capability (Bustard and Singh

1977a; Seebacher et al. 2003; Hutchinson et al.

2019), diving behavior (Cott 1961; Campbell et al.

2010; Grigg and Kirshner 2015), thermal relations

(Grigg et al. 1998; Seebacher et al. 1999), movements

and dispersal patterns (Hutton 1989; Kay 2004), and

reproductive characteristics (e.g., egg mass and

clutch size: Thorbjarnarson 1996; Verdade 2001).

Differences in adult sizes facilitate niche segregation

in sympatric crocodylian species (Ouboter 1996) and

may result in differential interaction with the prey

population and the surrounding environment

(Somaweera et al. 2020). In the geologic time scale,

macroevolutionary analysis of body size in extinct

crocodyliforms can illuminate the rate and mode of

the evolution and factors responsible for the long-

term disparity patterns (Godoy et al. 2019; Gearty

and Payne 2020; Sol�orzano et al. 2020).

Several osteological proxies have been used to es-

timate body size (snout–vent length [SVL], TL, and

body mass) of crocodyliforms and their relatives:

cranial measurements (e.g., head length and width:

Wermuth 1964; Greer 1974; Webb and Messel 1978;

Hutton 1987; Hall and Portier 1994; Woodward

et al. 1995; Verdade 2000; Sereno et al. 2001;

Hurlburt et al. 2003; Wu et al. 2006; Whitaker and

Whitaker 2008; Young et al. 2011, 2016; Fukuda

et al. 2013; Scheyer et al. 2013; O’Brien et al.
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2019); appendicular bone measurements (e.g., femur

length and width: Brochu 1992; Farlow et al. 2005;

Young et al. 2011, 2016); scute length (Bustard and

Singh 1977b). Recently, O’Brien et al. (2019) pro-

posed a phylogenetic prediction of body size from

the head width, which will be a strong tool when the

animal’s phylogenetic position is known within

Crocodylia.

All previous methods estimated absolute body

sizes of crocodyliforms, while species-specific sizes

(e.g., sexually mature sizes and the maximum sizes)

were not considered due to the lack of reliable ma-

turity indicator in the skull and the appendicular

skeleton, except for the histological features

(Erickson and Brochu 1999; Lee 2004; Woodward

et al. 2011). Maturity of the skull has been assessed

using the external morphological characteristics in-

cluding proportional relations of the skull regions,

the shape of supratemporal fenestrae, and the degree

of toothrow festooning (Mook 1921a; K€alin 1933;

Iordansky 1973; Dodson 1975). However, these char-

acteristics are often size-dependent instead of

maturity-dependent (Iijima 2017) and can at best

estimate broad ontogenetic stages (e.g., juvenile and

adult). Unlike most tetrapods, skull sutures remain

open throughout life in crocodylians, thus the degree

of skull suture closure cannot be used for the matu-

rity assessment (Bailleul et al. 2016). Osteological

maturity can be assessed by the presence/absence of

scars and tuberosity in the appendicular skeleton,

though the applicability of this method to fossil

forms is untested (Brochu 1992, 1996). The long

bone surface texture has no relation to the skeletal

maturity in crocodylians (Tumarkin-Deratzian et al.

2007). Osteological correlates of sexual maturity are

only known in the snouts of male Gavialis gangeticus

(Martin and Bellairs 1977; Hone et al. 2020), and

few extinct taxa are expected to yield those.

The most popular and noninvasive indicator of

skeletal maturity in crocodyliforms and their kin is

neurocentral (NC) suture closure in vertebrae (Mook

1933a; Brochu 1996; Irmis 2007). In extant crocody-

lians, the NC suture closes sequentially from distal

caudal vertebrae to anterior cervical vertebrae during

ontogeny (Brochu 1996; Ikejiri 2012), and dwarf spe-

cies show closure of precaudal NC sutures at smaller

sizes than large species (Brochu 1996). Although su-

ture closure timings may vary interspecifically, the

same caudal to cranial closure sequence is likely

shared among crocodyliforms (Irmis 2007).

In this study, we focus on crown-group crocody-

lians and provide a method to estimate absolute and

species-specific body lengths of extinct crocodylians

using the centrum lengths (CLs) and states of NC

suture closure. Crown-group crocodylians share the

same number of precaudal vertebrae (9 cervical, 15

dorsal, and 2 sacral vertebrae: Reese 1915; Mook

1921b; Hoffstetter and Gasc 1969; Iijima and Kubo

2019), allowing the body size estimation based on

incompletely preserved precaudal vertebrae.

Recently, sacralization of the last dorsal vertebra

was reported in a Miocene caimanine Purussaurus

mirandai (Scheyer et al. 2019), although it would

not change the total number of precaudal vertebrae.

Indeed, bilateral sacralization of the last dorsal or the

first caudal vertebra similar to that in P. mirandai

was also found in few extant crocodylian species

(Osteolaemus tetraspis [AMNH 69057]; G. gangeticus

[FMNH 98864]: M.I. personal observation). Here,

we first model relations of the absolute SVL and

TL against the lengths of either a single centrum

or a series of centra in extant crocodylians. We

then establish the relations of sexually mature body

lengths and the species maximum body lengths

against timings of NC suture closure in extant croc-

odylians. Finally, we estimate absolute and the spe-

cies maximum body lengths of extinct taxa using the

models of extant crocodylians.

Materials and methods
Institutional abbreviations: AMNH, American

Museum of Natural History, New York, NY, USA;

CM, Carnegie Museum of Natural History,

Pittsburgh, PA, USA; GMNH, Gunma Museum of

Natural History, Tomioka, Gunma, Japan; MOU,

Museum of Osaka University, Toyonaka, Osaka,

Japan; MZKB, Zaykaber Museum, Yangon,

Myanmar; NMNS, National Museum of Natural

Science, Taichung, Taiwan; NTM, Museum and Art

Gallery of the Northern Territory, Darwin, Australia;

QM, Queensland Museum, Brisbane, Australia;

TMM, Texas Memorial Museum, Austin, TX, USA;

UF, Florida Museum of Natural History, Gainesville,

FL, USA; USNM, Smithsonian National Museum of

Natural History, Washington DC, USA; YPM,

Peabody Museum of Natural History, Yale

University, New Haven, CT, USA.

Specimens, measurements, and assessments of NC
suture closure

For extant crocodylians, axial skeletons of 95 indi-

viduals from 18 species were sampled (Fig. 1;

Supplementary data, Table S1). Our sampling cov-

ered all six extant subfamilies of crocodylians

(Alligatorinae, Caimaninae, Crocodylinae,

Osteolaeminae, Tomistominae, and Gavialinae:

Brochu 2003). Sixty-seven individuals were wild-

2 M. Iijima and T. Kubo



caught and 28 individuals were captive-raised or

without locality data. The sample was variously rep-

resented by juveniles to adults. Sexes were known in

few individuals, thus we pooled males, females, and

unknown sex for the following analyses. The speci-

mens were primarily dry cervical to anterior caudal

vertebrae that allow CL measurements and assess-

ments of states of NC suture closure.

CLs of the axis to 10th caudal vertebra were mea-

sured with the Tresna digital caliper to the nearest

0.01 mm. A CL was defined as the craniocaudal

length along the mid-height of the centrum exclud-

ing the condyle (convex articular surface) (Iijima

and Kubo 2019; Fig. 2). The axis CL includes the

odontoid process, and the biconvex first caudal CL

excludes both anterior and posterior condyles.

Among 95 individuals examined, 46 individuals pre-

served a complete series of cervical to anterior caudal

vertebrae, while 49 individuals were missing at least

one centrum. A missing CL was estimated using the

equation CLav(CLsum.ind/CLsum.av), where CLav is the

average CL for the missing vertebral position in the

same species (if not available, the same genus) with

complete vertebral series, CLsum.ind is the sum of the

available CLs in the individual with missing verte-

brae, and CLsum.av is the sum of the average CLs of

corresponding vertebral positions in the same species

(if not available, the same genus).

States of NC suture closure were assessed using

the criteria outlined in previous studies (Brochu

1992, 1996; Irmis 2007; Ikejiri 2012; Fig. 2). A fully

open suture is the one that is visible along the entire

neural arch-centrum contact. Partially closed and

fully closed sutures exhibit partly obscured and

completely obscured suture lines, respectively. The

assessment was solely based on the observation of

the external surface of the vertebrae. The degree of

internal ossification (Ikejiri 2012) was disregarded

here.

Relations of absolute body lengths (SVLs and TLs)
and CLs

SVLs and/or TLs were available in 30 individuals

from 10 species. If either SVL or TL was missing

in these individuals, SVL–TL conversions were used

to calculate the missing value based on the SVL and

TL measurements and the conversion equations in

the literature (Supplementary data, Table S1).

To estimate body lengths in extinct crocodylians,

we formulated equations to derive SVLs and TLs

from a single vertebra or a series of vertebrae. The

axis to 10th caudal vertebra was divided into 10

regions (axis, 3–7th cervical vertebrae, 8th cervical

to 2nd dorsal vertebrae, 3–10th, 11–14th, and 15th

dorsal vertebrae, 1st and 2nd sacral vertebrae, 1st, 2–

4th, and 5–10th caudal vertebrae) (Fig. 3). The re-

gional boundaries of vertebrae were determined by

the ease of positional identification and the degree of

morphological and CL changes. The relations of

SVLs and TLs against the average CLs in each region

were modeled for 30 extant individuals with SVL

and/or TL records using reduced major axis

(RMA) regressions to estimate body lengths from a
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Crocodylus moreletii (3)

Crocodyus acutus (9)
Crocodylus niloticus (1)

Crocodylus palustris (1)

Crocodylus porosus  (4)
Crocodylus johnstoni  (4)

Osteolaemus tetraspis (3)

Tomistoma schlegelii (7)
Gavialis gangeticus (7)

Caiman crocodilus (9)

Caiman yacare (13)
Caiman latirostris  (2)

Melanosuchus niger (4)

Paleosuchus palpebrosus (7)
Paleosuchus trigonatus (2)
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Fig. 1 (A) Time-calibrated tree of 18 extant crocodylians ex-

amined in this study. The tree topology, root age (87.14 Myr), and

divergence times were adopted from Oaks’ (2011) analysis with

90 Myr upper limit on the root age. Numbers in parentheses are

sample sizes for each species. Subfamily: A, Alligatorinae; Ca,

Caimaninae; Cr, Crocodylinae; G, Gavialinae; O, Osteolaeminae;

T, Tomistominae.

partially
closed

closedopen

CLCLCL

Fig. 2 Measurements of CLs and the assessment of NC suture

closure. From left to right, 1st dorsal, 12th dorsal, and 1st caudal

vertebrae of C. johnstoni (QM J58446). Arrows represent open

sutures.
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single vertebra. We also modeled the relations of

SVLs and TLs against the sum of CLs in a series

of vertebrae (axis to 9th cervical vertebrae, 1–15th

dorsal vertebrae, and axis to 15th dorsal vertebrae)

with RMA regressions to estimate body lengths of

well-preserved fossils. We used RMA instead of or-

dinary least squares (OLSs) regressions because al-

though OLS is recommended when predicting the

depending variable from the independent variable,

RMA arguably performs better if a predicted value

falls beyond the range of observed values (Smith

2009). Variables were log10 transformed prior to

the regressions. RMA regressions were performed

with the R package smatr (Warton et al. 2012; R

Core Team 2016).

Relations of species-specific body lengths (sexually
mature and the maximum TLs) and timings of NC
suture closure

Previous studies of Alligator mississippiensis demon-

strated that precaudal NC sutures close after both

sexes reach sexual maturity, and NC suture closure

progresses rapidly toward the axis after the first clo-

sure of a sacral centra (Brochu 1996; Ikejiri 2012).

Given these observations, we chose the smallest indi-

viduals showing partially/fully closed NC sutures in

precaudal vertebrae (hereafter referred to as the

smallest osteologically mature individuals) in each

species for the relative maturity comparison.

Species were selected for the analysis if the TL dif-

ference between the smallest osteologically mature

individual and the nearest sized individual with fully

open precaudal vertebrae within species was <30%.

Thirteen out of 18 species satisfied the cutoff criteria.

Missing SVLs and TLs of the smallest osteologically

mature individuals in 13 extant species were calcu-

lated using the RMA equations of SVLs and TLs

against the sum of the axis to 10th caudal CLs for

30 individuals with the body length records. Male

and female sexually mature TLs were qualitatively

compared with the smallest osteologically mature

TL in each species. We did not conduct statistical

tests because sex data were sparse in our sample.

For the species maximum body length estima-

tions, relations between the maximum TLs and the

CLs for the smallest osteologically mature individuals

in 13 species were modeled using RMA regressions:

the average CLs of each vertebral region (axis, 3–7th

cervical vertebrae, 8th cervical to 2nd dorsal verte-

brae, 3–10th, 11–14th, and 15th dorsal vertebrae, 1st

and 2nd sacral vertebrae, 1st, 2–4th, and 5–10th cau-

dal vertebrae) and the sum of CLs in a series of

vertebrae (axis to 9th cervical vertebrae, 1–15th dor-

sal vertebrae, and axis to 15th dorsal vertebrae) were

used for the modeling. Variables were log10 trans-

formed prior to the regressions. Both males and

females in 13 species were used for the modeling.

The analysis of the pooled sex sample might
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Fig. 3 (a) Cervical to caudal vertebrae of C. johnstoni (QM J58446), illustrating the divisions of vertebrae used in this study. (B) CL

profile of extant crocodylians. Normalized CLs were calculated as a CL divided by the ratio of the sum of the axis to 10th caudal CLs

in the same individual to its average in 95 individuals from 18 species. Scale bar equals 5 cm.
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complicate the model interpretation because extant

crocodylians are sexually size-dimorphic and the

maximum sizes are attained by males (e.g., Webb

and Manolis 1989; Vliet 2020). However, males

and females reach sexual maturity at similar sizes

in most extant species (Ferguson 1985), and the tim-

ings of NC suture closure in the pooled sex sample

of A. mississippiensis are rather uniform (Ikejiri

2012). Therefore, we assumed that suture closure

timings relative to the absolute body lengths are sim-

ilar in males and females in each species. Male and

female sexually mature TLs and the maximum TLs

in each species were adopted from the literature.

SVLs were not used for the species-specific size com-

parison because TLs were more readily available in

larger species. The use of size instead of age as the

measure of maturity should be valid because sexual

maturity is size-dependent in extant crocodylians

(e.g., Webb and Manolis 1989; Vliet 2020). We did

not use the phylogenetically generalized least squares

model for the species regressions because the phylo-

genetic signal k (Pagel 1999) was 0 and the null

hypothesis of k¼ 1 was rejected (P< 0.001) for all

regressions, suggesting a negligible phylogenetic sig-

nal. The time-calibrated tree of 13 extant species

used for the simultaneous estimations of k (Revell

2010) was based on Oaks’ (2011) tree (Fig. 1), de-

leting five species that were not included in the anal-

ysis. The analysis was performed with the R package

caper (Orme et al. 2013).

Absolute and species-specific body length estima-
tions in extinct crocodyliforms

With the regression models established for extant

crocodylians, we estimated the absolute SVLs and

TLs and the maximum TLs of extinct crocodylians.

The absolute SVLs and TLs were estimated using the

relations of SVLs and TLs against the CLs in 30 ex-

tant crocodylians with SVL and/or TL records.

Similarly, the upper and lower limits of the species

maximum TLs were estimated using the relation of

the maximum TLs against the CLs of the smallest

osteologically mature individuals in 13 extant spe-

cies. The 95% confidence intervals (CIs) of SVL,

TL, and the upper and lower limits of the maximum

TL estimates were calculated using 1000 bootstrap

replicates of the dataset. Because the smallest osteo-

logically mature individual was defined as the small-

est one with partially/fully closed precaudal NC

sutures, a specimen with closed precaudal vertebrae

can predict the upper limit of the species maximum

TL, and a specimen with open caudal vertebrae can

predict the lower limit of the species maximum TL.

If a species is represented by multiple individuals

with closed precaudal vertebrae and open caudal ver-

tebrae, then the maximum TL estimate can be con-

strained by upper and lower limits. A single vertebra

or a series of vertebrae was used for the maximum

TL estimation, depending on the preservation of

fossils.

We applied the vertebrae-based absolute and max-

imum body length estimations to the following ex-

tinct crocodylians: (1) Neogene and Quaternary

gavialids in Asia (Toyotamaphimeia machikanensis

from Japan [MOU F00001], Penghusuchus pani

from Taiwan [NMNS 005645], and an indeterminate

gavialine from Myanmar [MZKB F1280]); (2)

Eocene crocodylians from the Bridger Formation of

Wyoming (“Crocodylus” affinis [YPM 258],

“Crocodylus” grinnelli [YPM 1344], Boverisuchus

vorax [AMNH 29993; USNM 12957], and

Borealosuchus wilsoni [USNM 12990]); (3) a giant

alligatoroid Deinosuchus riograndensis (AMNH

3073) from the Campanian of Texas. We also ex-

tended the application of the current method to

(4) a dwarf noncrocodylian neosuchian

Pachycheilosuchus trinquei (USNM 427794) from

the Albian of Texas (Supplementary data, Table

S2). Pachycheilosuchus trinquei was previously recov-

ered as a close relative of atoposaurids (Rogers 2003;

Bronzati et al. 2012) or hylaeochampsids (Buscalioni

et al. 2011; Turner and Pritchard 2015).

Pachycheilosuchus trinquei is a noncrocodylian neo-

suchian and may not share the same vertebral for-

mula with extant crocodylians; therefore, the body

length estimates of P. trinquei should be interpreted

with caution.

Results
CLs of the axis to 10th caudal vertebra and their

states of NC suture closure were documented for

95 individuals from 18 extant species (Fig. 4;

Supplementary data, Table S1).

For the estimations of body lengths in extinct

crocodylians, the axis to 10th caudal vertebra was

divided into 10 morphologically distinct regions

(Fig. 3). The mean differences (%) between the min-

imum and average CLs and the maximum and av-

erage CLs in seven vertebral regions with multiple

vertebrae are shown in Table 1. CL measurements

are expected to differ from the averages by 2.0–

5.8% in each vertebral region. For example, the

mean difference between the length of the shortest

3rd dorsal centrum and the average CL within 3–

10th dorsal vertebrae in 95 individuals is 5.7%

(Table 1). A summary of the log–log regressions of

Body length estimation in crocodylians 5



SVLs and TLs against the average CLs within each

vertebral region and the sum of CLs in a series of

vertebrae for 30 individuals from 10 species with

SVL and/or TL records is shown in Table 2. R2

values were >0.95 for all regressions, indicating the

strong correlations between the body lengths (SVLs

and TLs) and the CLs.

SVLs and TLs of the smallest osteologically mature

individuals (individuals showing partially/fully closed

precaudal NC sutures), male and female mature TLs,

and the maximum TLs for 13 extant species are

shown in Table 3. Missing SVLs (mm) and TLs

(mm) of the smallest osteologically mature individ-

uals of 13 extant species were estimated from the

following equations using 30 individuals with the

body length records: SVL¼ 1.329(CLC2Ca10sum)0.980;

TL¼ 2.504(CLC2Ca10sum)0.983, where CLC2–Ca10sum

stands for the sum of the CLs of the axis to 10th

caudal vertebra. Three species (Melanosuchus niger,

O. tetraspis, and Tomistoma schlegelii) did not have

male mature TL records, thus those values were es-

timated from female mature TLs using the average

ratio of male and female mature TLs in 10 other

species (Table 3). The smallest osteologically mature

TLs were equal or larger than both male and female

sexually mature sizes in 10 species, and between male

and female sexually mature sizes in three species

(Paleosuchus trigonatus, Crocodylus acutus, and

Osteolaemus tetraspis

Melanosuchus niger

Crocodylus acutus
Crocodylus moreletii
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Fig. 4 Anteriormost positions of partially/fully closed NC sutures in 79 individuals from 13 species. Colored bars on top of the graph

represent the smallest osteologically mature individuals (individuals showing partially/fully closed precaudal NC sutures) for 13 species.

Am, A. mississippiensis; Ca, C. acutus; Cc, C. crocodilus; Cj, C. johnstoni; Cm, C. moreletii; Cp, C. porosus; Cr, C. rhombifer; Cy, C. yacare; Gg,

G. gangeticus; Mn, M. niger; Ot, O. tetraspis; Pt, P. trigonatus; Ts, T. schlegelii.

Table 1 Mean differences (%) between the minimum/maximum and average CLs in seven vertebral regions among 95 individuals from

18 species

Mean difference (%)

from the average CL C2 C3–7 ave C8–D2 ave D3–10 ave D11–14 ave D15 S1–2 ave Ca1 Ca2–4 ave Ca5–10 ave

The minimum CL – 4.5 5.0 5.7 4.3 – 3.0 – 5.8 2.5

The maximum CL – 3.8 5.3 5.6 3.3 – 3.0 – 5.2 2.0

ave, average; C, cervical; Ca, caudal; D, dorsal; S, sacral.
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Crocodylus johnstoni). On average, the smallest osteo-

logically mature TLs were 1.09 and 1.27 times larger

than males and female mature sizes, respectively. A

summary of the log–log regressions of the species

maximum TLs against the CLs (average CLs within

each vertebral region and sum of the CLs in a series

of vertebrae) of the smallest osteologically mature

individuals for 13 species is shown in Table 4. R2

values were >0.83 for all regressions, indicating

strong correlations between the species maximum

TLs and the CLs in extant crocodylians (Fig. 5 and

Table 4).

The vertebrae-based estimations of absolute SVLs

and TLs and the upper and lower limits of the

maximum TLs were applied to nine extinct crocody-

lians and an extinct noncrocodylian neosuchian

(Table 5). Three post-Paleogene gavialids from Asia

are osteologically mature (showing closed NC

sutures in precaudal vertebrae), indicating those

individuals reached sexual maturity (Fig. 6A–C).

All three taxa are large with the absolute TLs of

4.49–7.01 m, and the maximum TLs of <9.00–

14.02 m. Among Eocene crocodylians from the

Bridger Formation of Wyoming, C. grinnelli, B.

vorax, and B. wilsoni are sexually mature (Fig. 6E–

G), while C. affinis (Fig. 6D) is osteologically imma-

ture and its sexual maturity is uncertain. The abso-

lute and the maximum TLs of C. affinis are 3.87 m

and >7.54 m, respectively. Crocodylus grinnelli and B.

vorax are smaller species with their absolute TLs of

2.09–2.21 m and the maximum TLs of <3.63–3.88 m.

Borealosuchus wilsoni is a relatively large species with

its TL of 3.19 m and the maximum TL of <5.99 m.

Sexual maturity of an alligatoroid D. riograndensis is

unknown because the only available precaudal verte-

bra (possibly a third dorsal vertebra) shows an open

NC suture (Fig. 6H). A dwarf neosuchian P. trinquei

is sexually mature (Fig. 6I). The absolute TLs of D.

riograndensis and P. trinquei are 7.73 and 1.15 m,

respectively, and the maximum TL of the latter is

<1.69 m.

Discussion
Applicability and limitations of vertebrae-based
body length estimations

This study is the first to provide vertebrae-based

estimations of body lengths in crocodylians.

Regional vertebral numbers are remarkably conserva-

tive among crocodylians (Reese 1915; Mook 1921b;

Hoffstetter and Gasc 1969; Iijima and Kubo 2019),

enabling the body length estimation using a single

vertebra or a series of vertebrae. Because vertebrae

have a high preservation potential due to their abun-

dance, the current vertebrae-based method can com-

plement the previous skull- and limb-based body

length estimations (e.g., Wermuth 1964; Sereno

et al. 2001; Farlow et al. 2005; O’Brien et al. 2019).

Moreover, the maturity assessment using NC suture

closure made it possible to reconstruct the species-

specific body lengths (sexually mature and the max-

imum body lengths) in extinct crocodylians for the

first time.

Comparison between the TLs of the smallest

osteologically mature individuals (individuals show-

ing partially/fully closed precaudal NC sutures) and

male and female sexually mature TLs in 13 species

showed that closed precaudal NC sutures can be

Table 2 Regressions of SVLs and TLs against the average CLs

within each vertebral region and the sum of CLs in a series of

vertebrae using the individuals with SVL and TL records (n¼ 30)

Independent

variable (x) R2 P-value Elevation Slope Slope 95% Cl

log(SVL) on log(x)

C2 0.972 <0.001 1.472 0.999 0.936–1.066

C3–7ave 0.980 <0.001 1.710 0.961 0.909–1.015

C8–D2ave 0.985 <0.001 1.735 0.953 0.909–0.999

D3–10ave 0.981 <0.001 1.626 0.990 0.939–1.043

D11–14ave 0.980 <0.001 1.640 0.974 0.922–1.029

D15 0.978 <0.001 1.717 0.956 0.903–1.011

S1–2ave 0.978 <0.001 1.630 0.950 0.898–1.006

Ca1 0.968 <0.001 1.681 1.001 0.934–1.072

Ca2–4ave 0.975 <0.001 1.591 1.011 0.951–1.075

Ca5–10ave 0.974 <0.001 1.589 0.984 0.924–1.047

C2–9sum 0.981 <0.001 0.810 0.966 0.916–1.018

D1–15sum 0.983 <0.001 0.495 0.980 0.931–1.031

C2–D15sum 0.984 <0.001 0.329 0.976 0.929–1.025

log(TL) on log(x)

C2 0.955 <0.001 1.751 1.002 0.923–1.087

C3–7ave 0.962 <0.001 1.990 0.963 0.894–1.039

C8–D2ave 0.970 <0.001 2.015 0.956 0.894–1.022

D3–10ave 0.972 <0.001 1.906 0.993 0.930–1.059

D11–14ave 0.977 <0.001 1.920 0.976 0.920–1.036

D15 0.971 <0.001 1.997 0.958 0.897–1.024

S1–2ave 0.972 <0.001 1.910 0.953 0.893–1.017

Ca1 0.953 <0.001 1.961 1.003 0.923–1.091

Ca2–4ave 0.960 <0.001 1.871 1.014 0.939–1.095

Ca5–10ave 0.959 <0.001 1.868 0.987 0.912–1.067

C2–9sum 0.964 <0.001 1.088 0.969 0.900–1.042

D1–15sum 0.974 <0.001 0.771 0.982 0.923–1.045

C2–D15sum 0.973 <0.001 0.605 0.978 0.918–1.043

ave, average; SVL, TLs, and CLs are in mm.
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used as an indicator of sexual maturity (Table 3).

The smallest osteologically mature TLs were larger

than male sexually mature TLs in 10 out of 13 spe-

cies, and larger than female sexually mature TLs in

all 13 species, suggesting that precaudal NC sutures

generally start to close after sexual maturity in extant

crocodylians (Table 3). The current observation

across extant crocodylians is consistent with the pre-

vious studies of NC suture closure in crocodylians

(Brochu 1992, 1996; Ikejiri 2012). Ikejiri (2012) ex-

amined 75 A. mississippiensis and demonstrated that

all precaudal NC sutures remain open at sexually

mature sizes in males and females (TL¼ 1.83 m;

Joanen and McNease 1975, 1980; Vliet 2020).

Brochu (1992, 1996) examined the timings of NC

suture closure in two large species (A. mississippiensis

and C. acutus) and two dwarf species (Alligator

sinensis and O. tetraspis), showing that precaudal

NC sutures close at different sizes in large and dwarf

species. He also noted slightly accelerated suture clo-

sure in C. acutus compared to A. mississippiensis

(Brochu 1992, 1996), which is congruent with the

current results (Fig. 5 and Table 3).

Although a closed precaudal NC suture seems to

be a sound sexual maturity indicator for both males

and females, there are several limitations to the cur-

rent dataset. First, poor sampling might underesti-

mate the smallest osteologically mature TLs in

several species (M. niger, C. acutus, Crocodylus mor-

eletii, and G. gangeticus: Fig. 4; Supplementary data,

Table S1). Second, intraspecific variation in the tim-

ings of NC suture closure was not assessed due to

the small sample size and sparsity of sex data. In

extant crocodylians, males grow larger than females

(Webb and Manolis 1989; Vliet 2020), and male sex-

ual maturity sizes are �17% larger than those of

females on average (Table 3). The disparity of male

and female sexually mature sizes is most pronounced

in Crocodylus porosus, where the male maturity size is

46% larger than that in females (Webb and Manolis

1989). Moreover, sexual maturity can be reached at

smaller sizes in captive environments (Webb and

Manolis 1989; Platt et al. 2010), which would be

the case in our captive specimens (28 individuals).

Furthermore, sexual maturity sizes may differ across

populations and geographical regions (Webb et al.

1983; Thorbjarnarson 1989), which was not taken

into account here. The effects of these factors (sex,

wild-caught/captive-raised, population, and geogra-

phy) on timings of NC suture closure need to be

investigated with a larger dataset in the future.

The current vertebrae-based method provides

insights into the maximum sizes of extinct crocody-

lians. In extant crocodylians, the species maximum

TLs are strongly correlated with the CLs of the

smallest osteologically mature individuals

(R2> 0.83) (Fig. 5 and Table 4). Therefore, com-

bined with the state of NC closure (closed precaudal

vertebrae or open caudal vertebrae), the upper or

Table 4 Regressions of the species maximum TLs against the CLs

(average CLs within each vertebral region and sum of the CLs in

a series of vertebrae) of the smallest osteologically mature indi-

viduals for 13 species

Independent

variable (x) R2 P-value Elevation Slope Slope 95% CI

log(max. TL) on

log(x)

C2 0.835 <0.001 1.649 1.220 0.935–1.592

C3–7ave 0.886 <0.001 1.879 1.215 0.972–1.517

C8–D2ave 0.878 <0.001 1.937 1.190 0.946–1.497

D3–10ave 0.847 <0.001 1.991 1.103 0.853–1.427

D11–14ave 0.863 <0.001 1.936 1.134 0.889–1.446

D15 0.848 <0.001 1.859 1.236 0.957–1.597

S1–2 0.832 <0.001 1.726 1.243 0.951–1.626

Ca1 0.870 <0.001 1.853 1.255 0.990–1.590

Ca2–4 0.880 <0.001 1.761 1.255 1.000–1.576

Ca5–10 0.860 <0.001 1.678 1.275 0.997–1.631

C2–9sum 0.882 <0.001 0.749 1.218 0.972–1.527

D1–15sum 0.858 <0.001 0.633 1.129 0.881–1.446

C2–D15sum 0.868 <0.001 0.344 1.159 0.913–1.472

ave, average; TLs and CLs are in mm.

Sum of C2–D15 CLs (m) of the smallest individuals
with closed precaudal NC sutures within speceis

M
ax

im
um

 to
ta

l l
en

gt
hs

 (m
)

Am
MnCm

Ca
Cp

Gg
Ts

Cr
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Cc
Cy

Pt
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0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.0

3.0
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R² = 0.868
P < 0.001

Fig. 5 A relation between the maximum TLs and the sum of C2–

D15 CLs of the smallest individuals with closed precaudal NC

sutures for 13 species. Am, A. mississippiensis; Ca, C. acutus; Cc, C.

crocodilus; Cj, C. johnstoni; Cm, C. moreletii; Cp, C. porosus; Cr, C.

rhombifer; Cy, C. yacare; Gg, G. gangeticus; Mn, M. niger; Ot, O.

tetraspis; Pt, P. trigonatus; Ts, T. schlegelii.
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lower limit of the species maximum TL can be de-

termined from the CLs. Vertebrae of multiple indi-

viduals from a single species can narrow the range

of the maximum TL; the smallest closed precaudal

vertebra and the largest open caudal vertebra con-

strain the upper and lower limit, respectively.

Meanwhile, if the maximum TL in one individual

is smaller than the absolute TL in the other indi-

vidual, those can be distinguished as different spe-

cies. Limitations to the current dataset are the

accuracy of the maximum TL records in extant spe-

cies and the difficulty in estimating the exact max-

imum TLs of extinct crocodylians, as well as the

poor sampling and intraspecific variation discussed

above. We adopted only the measured maximum

TL records, while unconfirmed reports and eyewit-

nesses that could represent the maximum TLs were

not considered (Webb and Manolis 1989). Besides,

the ongoing search for larger individuals of extant

species may break the current maximum TL records

in the future (Whitaker and Whitaker 2008).

Estimations of exact maximum TLs are challenging

because precaudal NC sutures close rapidly toward

the axis once the sacral vertebrae start to close

(Brochu 1996; Ikejiri 2012). Consequently, there is

a large intraspecific variation in the anteriormost

positions of closed vertebrae among similar-sized

individuals (Brochu 1996; Ikejiri 2012).

Body length estimations in extinct crocodyliforms

Among three Asian post-Paleogene gavialids

(Table 5), T. machikanensis preserves its skull and

allows comparison of vertebrae- and skull-based TL

estimates. For the TL estimations from skull lengths,

the measurements of two extant gavialids (G. gang-

eticus and T. schlegelii: Wermuth 1964; Sereno et al.

2001) were used for RMA regressions given the un-

certain phylogenetic position of T. machikanensis

(Iijima and Kobayashi 2019). The vertebrae-based

TL estimate of T. machikanensis (6.32 m) is compa-

rable to the skull-based TL estimates using the ex-

tant gavialids (6.28–7.26 m; Table 5), confirming the

utility of the vertebrae-based method. In T. machi-

kanensis and P. pani, NC sutures are partially/fully

closed in almost all precaudal vertebrae, thus these

individuals reached sexual maturity much earlier,

and their maximum TL estimates are of little utility.

All three Asian gavialids examined here are large

taxa, with absolute TL estimates of 4.49–7.01 m

(Table 5). Because extant gavialids (G. gangeticus

and T. schlegelii) are also large taxa (maximum

TLs> 5 m; Table 3), and the middle Miocene gav-

ialid Rhamphosuchus crassidens was estimated as 8–B
or
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11 m TL (Head 2001), Asian post-Paleogene gavialids

may form a large-bodied group. Prior to the

Neogene, several possible gavialids are known from

the Eocene of Central, South, Southeast, and East

Asia (Yeh 1958; Sahni and Mishra 1975; Efimov

1982, 1988; Böhme et al. 2011; Shan et al. 2017;

Martin et al. 2019). Most of these materials are frag-

mentary, while Maomingosuchus petrolica is repre-

sented by hundreds of skeletons from the late

Eocene of Guangdong Province, China (Yeh 1958;

Shan et al. 2017). The largest skull is 503 mm in

length (Shan et al. 2017), which gives the TL esti-

mates of 2.98–2.99 m based on the extant gavialid

measurements, suggesting that M. petrolica is a

medium-sized crocodylian. The phylogenetic rela-

tionship of gavialids needs to be resolved to recon-

struct the body size evolution in Asian gavialids.

The middle–late Eocene Bridger Formation and

the stratigraphically correlated lower Washakie

Formation of Wyoming (Roehler 1973; Murphey

axis, closed D15, closed mid dorsal v., closed S2, open D11, closed

D2, closed S2, closed D3, open S2, closed

A B C
D

E

F

G

H I

Fig. 6 States of neurocentral suture closure in selected vertebrae of (A) Toyotamaphimeia machikanensis (MOU F00001), (B)

Penghusuchus pani (NMNS 005645), (C) Gavialinae sp. indet. (MZKB F1280), (D) “Crocodylus” affinis (YPM 258), (E) “Crocodylus” grinnelli

(YPM 1344), (F) Boverisuchus vorax (USNM 12957), (G) Borealosuchus wilsoni (USNM 12990), (H) Deinosuchus riograndensis (AMNH

3073), and (I) Pachycheilosuchus trinquei (USNM 427794). D, dorsal; S, sacral. Enclosed areas are enlarged below for each vertebra.

Arrows represent open sutures. Scale bars equal 2 cm.

12 M. Iijima and T. Kubo



and Evanoff 2011) hosted a wide array of crocody-

lians including B. wilsoni (Mook 1959; Brochu

1997a), a planoclaniid B. vorax (Troxell 1925a;

Langston 1975; Brochu 2013), alligatorines

Allognathosuchus polyodon and Procaimanoidea kayi

(Cope 1873; Mook 1921c, 1941, 1961; Brochu

2004), and genus Crocodylus (Marsh 1871; Cope

1882; Mook 1921d, 1933b; Troxell 1925a; Gilmore

1946; Steel 1973; Norell and Storrs 1989; Brochu

1997b, 2000). Examinations of nonalligatoroid taxa

revealed the body size diversity within the forma-

tions. Crocodylus affinis (YPM 258) is a large species

(TL¼ 3.87 m, maximum TL> 7.54 m), and C. grin-

nelli (YPM 1344) is a medium-sized species

(TL¼ 2.09 m; maximum TL< 3.63 m). Crocodylus

affinis (YPM 258) is osteologically immature at

3.87 m TL, which is larger than sexual maturity sizes

of all extant crocodylians (Table 3). The upper limit

of the maximum TL estimate of C. grinnelli (YPM

1344) is below the absolute TL estimate of C. affinis

(YPM 258) although their 95% CIs slightly overlap

(Table 5), thus these specimens probably belong to

different species. Our result contradicts the previous

conclusion that C. grinnelli is a junior synonym of C.

affinis (Norell and Storrs 1989; Brochu 1997b). Since

YPM 258 is only represented by postcrania and ten-

tatively referred to as C. affinis (Norell and Storrs

1989), additional materials with associated cranial

and axial elements need to be examined to confirm

the body length difference between C. affinis and C.

grinnelli. Previous TL estimates of C. affinis (USNM

12719) were 3.00–3.44 m based on the skull and fe-

mur lengths and the mounted skeleton (Gilmore

1946; Farlow et al. 2005; Mannion et al. 2019;

Table 5). If YPM 258 and USNM 12719 are conspe-

cific, the latter should show open precaudal NC

sutures. A planocraniid B. vorax is a medium-sized

species (TL¼ 2.15–2.21 m; maximum TL< 3.77–

3.88 m) comparable to the size of C. grinelli, while

B. wilsoni is a large species (TL¼ 3.19 m; maximum

TL< 5.99 m). Because the anteriormost position of

the closed NC suture is the first sacral vertebra in B.

wilsoni (USNM 12990), its maximum TL would be

close to 6 m. Previous skull- and femur length-based

TL estimates for B. vorax (2.98–3.57 m) and B. wil-

soni (4.26–4.54 m) are larger than their vertebrae-

based TL estimates, but still smaller than their max-

imum TL estimates (Farlow et al. 2005; Mannion

et al. 2019; Table 5). Diverse body lengths in non-

alligatoroid crocodylians in the Bridger and

Washakie formations, combined with their morpho-

logical specializations (e.g., Langston 1975;

Rossmann 2000), might facilitate the habitat parti-

tioning among the sympatric species (Stout 2012).

An alligatoroid Deinosuchus from the Campanian

of North America and a noncrocodylian neosuchian

P. trinquei from the Albian of Texas are iconic giant

and dwarf crocodyliforms, respectively, and their

body sizes have long been debated (Colbert and

Bird 1954; Brochu 1996; Erickson and Brochu

1999; Schwimmer 2002; Rogers 2003; Farlow et al.

2005). The TL estimate of D. riograndensis (AMNH

3073) based on a possible third dorsal vertebra is

7.73 m (Table 5). However, the third dorsal vertebra

is the shortest in the anterior–mid dorsal region (3rd

to 10th dorsal vertebrae), of which the average CLs

in extant crocodylians were used for the TL estima-

tion. Therefore, the TL estimate can be up to 5.7%

larger and be 8.17 m (Table 1). An open NC suture

in the third dorsal vertebra of D. riograndensis

(AMNH 3073) prevents the sexual maturity assess-

ment. The TL of the same material was previously

estimated as 15.24 m (Colbert and Bird 1954), which

is now regarded as an overestimate (Schwimmer

2002). Deinosuchus vertebrae larger than AMNH

3073 were known from the Judith River Formation

of Montana (CM 963: Holland 1909), from which

12.0 m TL was roughly deduced in Schwimmer

(2002). States of NC suture closure in CM 963 are

hardly determined from the published drawings and

figures (Holland 1909; Cossette and Brochu 2020).

TLs of other Deinosuchus materials from Texas were

estimated as 7.67 m from the femur length (TMM

43632-1; Farlow et al. 2005), 8.43–9.10 m (Erickson

and Brochu 1999) and 11 m (Sues 1989) from man-

dibular remains, and 9.8 m (Schwimmer 2002) and

10.64 m (TMM 43632-1; Farlow et al. 2005) from

skull lengths (Table 5). Additional vertebral remains

are required to get a better understanding of the

sexually mature and the maximum sizes of

Deinosuchus.

Pachycheilosuchus trinquei is a dwarf species

(TLs¼ 1.15 m, maximum TL< 1.69 m); it is osteo-

logically mature and probably smaller than all extant

crocodylians (Table 3). Previous TL estimates of P.

trinquei were 0.64–0.80 m from a dentary and the

composite reconstruction, and 1.13 m from the fe-

mur length (Farlow et al. 2005; Table 5).

Examination of the state of NC suture closure in

smaller precaudal vertebrae (Rogers 2003) may fur-

ther constrain the upper limit of the maximum TL.

Discussion of the body size dwarfism on the lineage

of P. tringuei requires the establishment of its phy-

logenetic position.

The application of vertebrae-based estimations of

absolute and species-specific body lengths in more

inclusive groups (e.g., Neosuchia and

Crocodyliformes) requires the following premises:

Body length estimation in crocodylians 13



(1) caudal to cranial NC suture closure sequence; (2)

similar timings of NC suture closure (i.e., closure in

precaudal vertebrae after sexual maturity); and (3)

similar regional vertebral numbers and body propor-

tions as compared to crown-group crocodylians.

Caudal to cranial suture closure sequence is most

likely shared among crocodyliforms and even among

pseudosuchians, because anteriorly open and poste-

riorly closed vertebrae are found in non-

crocodyliform pseudosuchians including an erpeto-

suchid Parringtonia (Nesbitt and Butler 2013), aeto-

saurians Aetosauroides, Desmatosuchus, and

Typothorax (Case 1922; Martz 2002; Irmis 2007;

Taborda et al. 2015), a basal crocodylomorph

Terrestrisuchus (Irmis et al. 2013), metriorhynchoids

Pelagosaurus, Cricosaurus, and Tyrannoneustes

(Delfino and Dal Sasso 2006; Herrera et al. 2013;

Young et al. 2013), and crocodyliforms such as a

dyrosaurid Guarinisuchus (Barbosa et al. 2008). A

comparison of relative timings of NC suture closure

is challenging. A possible case of late suture closure

was reported in Notosuchus, where all individuals,

including the one with a very large skull, show

open sutures in presacral vertebrae (Pol 2005).

Whether all those individuals are relatively young

(e.g., sexually immature individuals) is uncertain.

Numbers of presacral vertebrae vary in noncrocody-

lian Neosuchia (Paralligatoridae, Bernissartiidae,

Goniopholididae, Susisuchidae, Tethysuchia, and

Atoposauridae), Notosuchia, and Protosuchia

(Protosuchus, Gobiosuchus, Zaraasuchus,

Edentosuchus, Shantungosuchus, Sichuanosuchus, and

Hsisosuchus: Wilberg et al. 2019) (Fig. 7; see

Supplementary data, Table S3 for vertebral counts

for each species). Generally, there are 7–9 cervical,

13–17 dorsal, and 2–3 sacral vertebrae in crocodyli-

forms, and only a few taxa deviate from the range:

possibly 6 cervical vertebrae in Atoposaurus jourdani

(Lortet 1892; Tennant et al. 2016); 12 dorsal verte-

brae in Goniopholis aff. G. lucasii (Erickson 2016); 19

dorsal vertebrae in Brillanceausuchus babouriensis

(Michard et al. 1990; Tennant et al. 2016); 10 cervi-

cal and 19 dorsal vertebrae in Notosuchus terrestris

(Pol 2005; Fiorelli and Calvo 2008). Additionally,

Thalattosuchia, a group of aquatic noncrocodyliform

crocodylomorphs (Wilberg 2015) slightly deviates

from the precaudal vertebral formula of crocodyli-

forms (6–9 cervical, 15–19 dorsal, and 2–3 sacral

vertebrae: Pierce and Benton 2006; Young et al.

2010; Herrera et al. 2013; Sachs et al. 2019;

Johnson et al. 2020). Meanwhile, relative tail lengths

in some notosuchian crocodyliforms are significantly

shorter than those in crown-group crocodylians (e.g.,

Simosuchus clarki and Caipirasuchus mineirus: Georgi

and Krause 2010; Martinelli et al. 2018). Given the

small variation in the number of precaudal vertebrae

in crocodyliforms, SVL estimation can be applied to

crocodyliforms with caution, while TL estimation

Crocodylia

Hylaeochampsa

Paralligatoridae

Bernissartiidae

Goniopholididae

Susisuchidae

Tethysuchia

Atoposauridae

Notosuchia

Protosuchia

Eusuchia

Neosuchia

Crocodyliformes

Cervical v. Dorsal v. Sacral v.
9

?

8

9

7–9

8–9

9

6–8

8–10

8–9

15

?

?

14

12–15

14–15

13–16

15–19

14–19

14–15

2

?

2

2

2

2

2

2–3

2–3

2

Fig. 7 Numbers of cervical, dorsal, and sacral vertebrae in crocodyliforms. The phylogenetic relationships are based on Wilberg (2015)

and Wilberg et al. (2019), supplemented by Turner (2015) and Tennant et al. (2016). Note that phylogenetic positions of many clades

are still under debate (Pu�ertolas-Pascual et al. 2020). Literature for vertebral counts of each clade: Paralligatoridae (Wu, Cheng, et al.

2001; Pol et al. 2009); Bernissartiidae (Norell and Clark 1990); Goniopholididae (Wu et al. 1996; Lauprasert et al. 2007; Erickson 2016;

Martin et al. 2016; GMNH-PV0000229); Susisuchidae (Salisbury et al. 2003, 2006; Figueiredo et al. 2011); Tethysuchia (Troxell 1925b;

Storrs 1986; Langston 1995; Wu, Russell, et al. 2001; Jouve and Schwarz 2004; Jouve et al. 2006; Schwarz et al. 2006); Atoposauridae

(Wellnhofer 1971; Buscalioni and Sanz 1990; Michard et al. 1990; Storrs and Efimov 2000; Tennant et al. 2016); Notosuchia (Pol 2005;

Turner 2006; Fiorelli and Calvo 2008; Sereno and Larsson 2009; Georgi and Krause 2010; Nascimento and Zaher 2010; O’Connor

et al. 2010; Nobre and de Souza Carvalho 2013; Leardi et al. 2015; Martinelli et al. 2018); Protosuchia (Colbert and Mook 1951; Li

1985; Wu et al. 1994; Peng 1996; Osm�olska et al. 1997; Pol and Norell 2004; Peng and Shu 2005). See Supplementary data, Table S3

for vertebral counts for each species.
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should best be applied to close relatives of crown-

group crocodylians (e.g., Eusuchia or Neosuchia).

Nonetheless, closed precaudal NC sutures can still

be used as the sexual maturity indicator in extinct

crocodyliforms on the assumption that timings of

suture closure are similar as compared to crown-

group crocodylians.

Conclusion
Crown-group crocodylians share the same number

of precaudal vertebrae, allowing the vertebrae-based

estimations of their body lengths. Measurements of

the CLs and assessments of states of NC suture clo-

sure provided insights into the absolute and species-

specific body lengths (sexually mature and the max-

imum body lengths) in crocodylians. Most extant

crocodylians reach sexual maturity before closure of

precaudal NC sutures; therefore, closed sutures in

precaudal vertebrae can be used as an indicator of

sexual maturity. CLs of the smallest individuals with

closed precaudal NC sutures within species were cor-

related with the species maximum TLs for 13 extant

species; using this relationship, the upper or lower

limit of the maximum TLs in extinct species can be

derived from the smallest precaudal vertebrae with

closed sutures and the largest caudal vertebrae with

open sutures, respectively. The current method can

potentially be applied to noncrocodylian crocodyli-

forms, although differences in the regional vertebral

numbers, body proportions, and timings of NC su-

ture closure need to be carefully considered.
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