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Abstract

Introduction

Amino-acids positron emission tomography (PET) is increasingly used in the diagnostic

workup of patients with gliomas, including differential diagnosis, evaluation of tumor exten-

sion, treatment planning and follow-up. Recently, progresses of computer vision and

machine learning have been translated for medical imaging. Aim was to demonstrate the

feasibility of an automated 18F-fluoro-ethyl-tyrosine (18F-FET) PET lesion detection and

segmentation relying on a full 3D U-Net Convolutional Neural Network (CNN).

Methods

All dynamic 18F-FET PET brain image volumes were temporally realigned to the first

dynamic acquisition, coregistered and spatially normalized onto the Montreal Neurological

Institute template. Ground truth segmentations were obtained using manual delineation and

thresholding (1.3 x background). The volumetric CNN was implemented based on a modi-

fied Keras implementation of a U-Net library with 3 layers for the encoding and decoding

paths. Dice similarity coefficient (DSC) was used as an accuracy measure of segmentation.

Results

Thirty-seven patients were included (26 [70%] in the training set and 11 [30%] in the valida-

tion set). All 11 lesions were accurately detected with no false positive, resulting in a sensi-

tivity and a specificity for the detection at the tumor level of 100%. After 150 epochs, DSC

reached 0.7924 in the training set and 0.7911 in the validation set. After morphological dila-

tation and fixed thresholding of the predicted U-Net mask a substantial improvement of the

DSC to 0.8231 (+ 4.1%) was noted. At the voxel level, this segmentation led to a 0.88 sensi-

tivity [95% CI, 87.1 to, 88.2%] a 0.99 specificity [99.9 to 99.9%], a 0.78 positive predictive

value: [76.9 to 78.3%], and a 0.99 negative predictive value [99.9 to 99.9%].
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Conclusions

With relatively high performance, it was proposed the first full 3D automated procedure for

segmentation of 18F-FET PET brain images of patients with different gliomas using a U-Net

CNN architecture.

Introduction

Positron emission tomography (PET) is one of the most advanced medical imaging technolo-

gies at the molecular level for human functional imaging. Gliomas constitute the most frequent

brain tumors [1]. As 18F-Fluorodeoxyglucose shows high background uptake in normal brain,

radiolabeled amino acids such as 11C-methionine, 18F-fluoro-L-dopamine and 18F-fluoro-

ethyl-tyrosine (18F-FET) [2,3] are more appropriate as they exhibit lower background uptake

and can therefore depict brain tumors with a higher contrast. These tracers are increasingly

used in the diagnostic workup of patients with gliomas, including differential diagnosis, evalu-

ation of tumor extension, treatment planning and follow-up [4]. Even if PET remains the

modality of choice for its high sensitivity, it has several limitations including low spatial resolu-

tion with partial volume effect and relatively low signal-to-noise ratio. Therefore, brain tumor

segmentation is challenging, not only due to the technology limits but also because of the large

variations of shape and intensity of brain tumor uptake relating to the large heterogeneity in

histology, genetics, and outcome [5].

Segmentation is a common task in medical imaging and can be performed manually, semi-

automatically or automatically. It has multiple aims such as the definition of a gross tumor vol-

ume or biological tumor volume (BTV) for radiotherapy planning and is necessary for accu-

rate evaluation and monitoring of tumor response. It also has shown to have some

independent prognostic value such as metabolic tumor volume for example in patients with

diffuse large B-cell lymphoma [6]. One important step of an 18F-FET PET interpretation

requires the definition of a volume of interest (VOIs), which has a significant impact on diag-

nosis, staging, radiotherapy planning and treatment assessment. Indeed, analysis of time activ-

ity curves (TAC) requires a VOI and may have some interest for tumor grading [7,8],

characterizing molecular phenotypes [9] or differentiating radio-necrosis from progressive

disease [10]. 18F-FET PET VOIs are usually performed by manually drawing a 3D spherical

ellipse around the highest uptake, and/or by thresholding at standardized uptake values

(SUVs).

Nevertheless, manual delineation is time consuming and subject to intra- and inter-

observer variations among readers. Intensity-based thresholding is commonly used for VOI

segmentation in PET. Two approaches are used for thresholding, either with a fixed threshold

(SUV = 2.5) or an adaptive threshold (e.g. 41% of SUVmax). Nevertheless, these approaches do

not consider the spatial correlations of voxels in an image, making such methods sensitive to

image noise, uptake inhomogeneity and partial volume effect. Furthermore, these types of seg-

mentation are also sensitive to the selected threshold values that can lead in large differences of

volume [11].

To avoid such problems, some automatic PET segmentation methods have been suggested

and recently reviewed by Hatt et al. [12]. Some of these approaches are 2D methods that con-

sider each PET slice individually or 3D methods that seem more appropriate as they consider

the contextual information of the whole volume. Main 3D techniques include gradient-based

segmentation, region growing (such as fuzzy-c-means), statistical algorithms, machine
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learning and texture-based segmentation. Recently, progresses in computer vision and

machine learning have been translated in medical imaging. Convolutional neural networks

(CNN) can gather local information around a voxel and produce a likelihood map, rather

than an output for a single voxel [13]. The U-Net architecture comprises a fully connected

CNN followed by an upsampling part. Then, aim was to demonstrate the feasibility of an auto-

mated 18F-FET PET lesion detection and segmentation relying on a full 3D U-Net CNN.

Materials and methods

Patients

Thirty-seven patients were retrospectively included. Characteristics are given in S1 Table.

Every patient underwent a 18F-FET PET/CT at diagnosis before any planned surgical stereo-

taxic biopsy or treatment (tumor resection, chemotherapy, radiotherapy). Patients who

required rapid surgery (<2 weeks) due to mass effect or intracerebral hemorrhage, as well as

patients with history of brain biopsy, surgery or brain treatment were excluded. All patients

underwent imaging procedures as standard care and gave written informed consent before

inclusion. The retrospective analysis was approved by the local Human Research Ethics Com-

mittee of the State of Vaud (#2017–00758).

18F-FET PET acquisition

Patients underwent a dynamic 18F-FET PET/CT on Discovery D690 time-of-flight (27

patients) and Discovery LS (10 patients) within the same imaging department (GE Healthcare,

Waukesha, WI, USA). They were required to fast for at least 4 hours before 18F-FET injection

as recommended by international guidelines [14]. After intravenous injection of 214 ± 25

MBq (range 145 to 295 MBq) of 18F-FET, PET images were acquired using a dynamic protocol

over 50 minutes (10 frames of 5 min; 3.3-mm or 4.2-mm section thickness; 24 cm field-of-

view, matrix size of 256 × 256). Calibration for the two machines was the same. 18F-FET image

volumes were reconstructed by the iterative method ordered-subset expectation maximization

(OSEM, 3 iterations and 16 subsets) including a Gaussian post-filter (FWHM = 5 mm).

18F-FET PET image characteristics and normal distribution

Normal brain distribution of 18F-FET demonstrated relatively low background uptake, mainly

due to venous drainage in lateral/sagittal sinus or cavernous system and fat (subcutaneous,

peri-orbitary). Bordure artifacts were sometimes seen in the limits of the field of view. No false

positive was expected from this dataset. Patients were included in a clinical trial and any

abnormal uptake within brain white or grey matter was considered as pathologic. CT volumes

were not available in any patient and therefore manual segmentation only relied on PET data.

Taking into account that the maximum uptake of 18F-FET was not necessary the tumor, in

order to achieve brain tumor segmentation, it was decided to follow a two-step procedure.

First, a detection of the glial tumor using a U-Net CNN, followed by a second part of proper

segmentation using morphological dilatation and thresholding.

Ground truth 18F-FET PET segmentation

All dynamic 18F-FET PET brain image volumes were temporally realigned to the first dynamic

acquisition, coregistered and spatially normalized onto the Montreal Neurological Institute

template (McGill University, Montreal, Canada). Dimensions of the resulting voxels were

2x2x2 mm3. A summation image from the 20th to 40th minute post-injection served as refer-

ence either for manual segmentation or training. Spatial normalization was performed using
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the Statistical Parametric Mapping software (SPM 12) implemented in Matlab version R2015a

(Mathworks Inc., Sherborn, MA). To perform a semi-automatic contouring, a manually

drawn mask around the tumor was performed with LifeX Software (https://www.lifexsoft.com,

CEA, Saclay, France) [15,16] and a threshold was set to 1.3 x background as suggested by Bette

et al. [17–19], where the background was defined as the mean value of a 10 cm3 spherical VOI

in the contralateral hemisphere.

Pre-processing

For computational purposes, all images (masks and summation images) were resized with a

linear interpolation to a 64x64x40 volume. Due to the limited resolution of PET and the blur-

ring effects of the point spread function, it was performed a gradient magnitude calculation

that was added to the original image to reinforce contour definition. Each volume was normal-

ized from mean and standard deviation. To avoid overfitting, a data-augmentation strategy

was used to enlarge the training dataset. This procedure included rotations (–30 and +30˚),

translations (–0.1, 0.1) shearing (–10, +10˚), and zooming (0.85, 1.15). To avoid overfitting

and to evaluate the segmentation procedure in clinical conditions, dataset was randomly split

between a training group and a validation group (70 and 30% of the whole population,

respectively).

Implementation

The volumetric CNN was implemented based on a modified Keras implementation of a U-Net

library supporting 3D operations. All the trainings and experiments were conducted on a per-

sonal computer work-station equipped with a NVIDIA TITAN X 1080 Ti graphics processing

unit (GPU). The networks were trained with Stochastic Gradient Descent Adam Optimizer

method, with Dice Similarity Coefficient (DSC) as an accuracy measure of the segmentation

procedure, and minus DSC as a loss function that was backpropagated through the CNN. The

batch size was set to 5. The learning rate was set to 10−4, initially; the model was trained for up

to 150 epochs.

Architecture of the U-Net

The network architecture followed as described by Ronneberger et al. [20] is illustrated in Fig

1. It consisted of an encoding path seen at the left side and a decoding path at the right side of

Fig 1. The encoding path followed a typical architecture of a CNN with repeated application of

two 3×3×3 convolutions (with a padding of 2). Each was followed by a rectified linear unit

(ReLU) and a 2×2×2 maxPooling operation with a stride of 2 for downsampling. At each

downsampling step, the number of feature channels was doubled, starting with 16 channels at

the fist convolution. Every step in the expansion path consisted of: 1) an upsampling of the fea-

ture map followed by a 3×3×3 convolution (“up-convolution”) that halved the number of fea-

ture channels; 2) a concatenation with the correspondingly cropped feature map from the

contracting path; and 3) two 3×3×3 convolutions, each followed by a ReLU. At the final layer,

a 1×1×1 convolution was used to map each component feature vector to the desired number

of classes (here 2). In total, the network had 11 convolution layers and 387,889 parameters had

to be trained. The predicted mask from the U-Net was followed by a morphological dilatation

with a 3×3×3 square connectivity. Also, it was performed a fixed thresholding, where the

threshold was set to 1.3 times the mean value of an hemispheric swap of the predicted U-Net

mask to match the procedure that was performed for ground truth. All these computations

were performed using python 2.7 with numpy, nilearn and scikit-learn packages [21].

Full 3D U-Net CNN in 18F-FET PET
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Metrics

To assess the performance of the segmentation procedure, a DSC was computed. It was used

as an accuracy measure for the training of the U-Net and also as a loss function. DSC was com-

puted as followed where P and T corresponded to the prediction of the U-Net model and the

ground truth respectively.

DSC P;Tð Þ ¼
2 � P \ T
P þ T

Values of sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative pre-

dictive value (NPV) were calculated at the voxel level on the validation set of 11 patients. Se,

Sp, PPV and NPV were defined as follow:

Se ¼
TP

TPþ FN

Sp ¼
TN

TNþ FP

PPV ¼
TP

TPþ FP

NPV ¼
TN

TNþ FN

where TP (True Positive) was the number of voxels correctly classified as tumor, TN (True

Negative) the number of voxel correctly classified as non-tumor, FP (False Positive) the num-

ber of voxels wrongly classified as tumor and FN (False Negative) the number of voxels

patients wrongly classified as non-tumor.

Results

Detection

Thirty-seven patients were included, with 26 patients (70%) in the training set and 11 patients

(30%) in the validation set. In the latter, all lesions were accurately detected with no false posi-

tive resulting in a 100% sensitivity and specificity for tumor detection.

Fig 1. Architecture of the fully connected CNN with a 3 layer “U-Net” architecture.

https://doi.org/10.1371/journal.pone.0195798.g001
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Segmentation

After 150 epochs, DSC reached 0.7924 in the training set and 0.7911 in the validation set.

Training curves of loss function and DSC curves over epoch can be seen in Fig 2. Morphologi-

cal dilatation and adaptive thresholding of the predicted U-Net mask leaded to substantial

improvement of DSC to 0.8231 (+ 4.1%) in the validation set. At the voxel level, confusion

matrix in the validation set is shown in Table 1. It resulted in a 0.88 sensitivity [95% CI, 87.1 to

88.2%], a 0.99 specificity [99.9 to 99.9%], a 0.78 PPV [76.9 to 78.3%] and a 0.99 NPV [99.9 to

99.9%] respectively. These results took into account the large majority of non-tumor voxels.

Examples of segmentation are illustrated in Fig 3.

Discussion

The aim of the current study was to implement and evaluate a 3D U-Net CNN for brain tumor

segmentation of 18F-FET PET studies. As shown by the relatively low number of false negative

Fig 2. Learning curves with DSC over epochs (upper panel) and loss over epochs (lower panel).

https://doi.org/10.1371/journal.pone.0195798.g002
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voxels in the validation set resulting in a sensitivity of 88%, it was tried additional resources to

catch neighbor voxels that were missed by the U-Net. Therefore, it was tried a region growing

approach and a watershed segmentation using random seeds from the predicted U-Net mask.

Both did not improve significantly the DSC, and even if it decreased, the number of false nega-

tives impacted negatively the number of false positives (data not shown).

Main limitation of this work includes the relatively small dataset size. Even if some authors

argue that small population can be problematic in deep learning (as larger sample size usually

leads to improvement of performance [22]), it can be partially corrected by a data-augmenta-

tion strategy [23]. Therefore, main data-augmentation strategies using translations or shearing,

which may increase the risk of overfitting, should be pondered with either regularization or

drop-out. Furthermore, they seem to be the most effective ones for improvement of model per-

formance [24]. Other data-augmentation strategies could also have been employed such as

generative adversarial networks where two neural networks compete with each other, the first

one (the generator) creates a fictive image volume, and the second one (the discriminator)

tries to discriminate whether this volume can “statistically” be drawn from the distribution of

the dataset [25]. If the discriminator is fooled and the volume is thought to be a real volume,

these images can be used for training. Nevertheless, such approaches would have even more

complexes training and methodology that may have lost most of non-deep-learning specialist

readers. As part of the preprocessing, a volume resize for computational purposes was per-

formed. It usually leads to a loss of information and may degrade accuracy in performance but

this procedure was mandatory due to the limitation of our GPU.

Secondly, it is important to discuss the ground truth generation. For that purpose, it was

performed a manual segmentation of 18F-FET PET followed by a fixed thresholding as rou-

tinely performed for BTV in clinics. There is no consensus on how the adaptive thresholding

should be applied. Filss et al. showed that the threshold choice applied had logically a large

importance on tumor volume [26]. It is important to note that because of the low resolution

and manual segmentation, the absence of thresholding (either fixed or adaptive) would have

introduced contour overflow and may also have decreased performance. The choice of using

an adaptive thresholding relied both on clinical consideration but also on the fact that two dif-

ferent generations of PET scanners were used in this study, which would have complexified

the choice of a fixed threshold. It is probably true that modifications of the ground truth ROI

would lead to substantial differences. Indeed, due to the thresholding operations that does not

take into account the spatial correlation of voxels, some tumor voxels may have been missed

on ground truth as seen in Fig 3B. Some “positive voxels” were clearly within the tumor, but

were not considered as such, as the reference mask was thresholded. Regarding the number of

false negatives, two main reasons can be hypothesized. They were missed by the U-Net CNN

or they were omitted after thresholding. As both original mask and U-Net mask were followed

by a fixed thresholding, the different threshold levels between ground truth and predicted

mask (one 1.3 times the mean value of 10 cm3 in the contralateral hemisphere, the other one

1.3 times the mean value within an hemispheric swap of the predicted mask) may explain this

difference. Nevertheless, it was decided to apply this fixed threshold, as it decreased the num-

ber of false positive from 3,049 to 1,476 without impacting significantly the number of true

positive (from 10,051 to 10,478).

Table 1. Confusion matrix at the voxel level in the validation set of 11 patients.

Predicted / truth True False

True 10,478 1,426

False 3,025 1,787,261

https://doi.org/10.1371/journal.pone.0195798.t001
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In the future, it is likely that this process of segmentation will be even faster, reproducible

and user-friendly with fully automated brain tumor segmentation integrated into clinical rou-

tine. These results can be improved at multi-levels. First, some preprocessing operations such

as the use of histogram equalization or Contrast Limited Adaptive Histogram Equalization

(CLAHE) to improve contrast of these images may better allow the differentiation of back-

ground from tumor tissue. Indeed, CLAHE is already used in digital mammograms [27] to

enhance contrast for the radiologist eye. Also, the architecture of this CNN can be adapted if

more patients are included with deeper layers or cascaded convolutional neural networks [28].

Finally, in the era of hybrid imaging, combining PET and CT/MRI modalities within one

Fig 3. Segmentation examples with for each example: Original resized slices 18F-FET (top), original mask (middle

up), predicted mask + threshold (middle down) and difference between the predicted and original mask (bottom,

with false negative in red and false positive in blue).

https://doi.org/10.1371/journal.pone.0195798.g003
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examination, it is possible to consider the addition of CT or MRI information using multi-

channel deep learning framework. Indeed, even if CT may not have interest (as these tumors

are rarely seen on non-enhanced CT), combined PET/MRI systems are now available and may

improve multiple tissue characterization and segmentation.

Conclusion

The current study proposed a full 3D automated approach for brain segmentation from PET

images in subjects spanning different glial tumors using a U-Net CNN architecture. To the

best of our knowledge, this is the first time that this kind of approach is used with the PET

modality. This process was achieved with relatively high performance within the limits of the

technique.

Supporting information

S1 Table. Population characteristics. Values are median (25th-75th interquartile range) or n

(%).

(XLSX)
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