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Abstract

Genome-wide association studies have shown that pleiotropy is a common phenomenon

that can potentially be exploited for enhanced detection of susceptibility loci. We propose

heritability informed power optimization (HIPO) for conducting powerful pleiotropic analy-

sis using summary-level association statistics. We find optimal linear combinations of

association coefficients across traits that are expected to maximize non-centrality parame-

ter for the underlying test statistics, taking into account estimates of heritability, sample

size variations and overlaps across the traits. Simulation studies show that the proposed

method has correct type I error, robust to population stratification and leads to desired

genome-wide enrichment of association signals. Application of the proposed method to

publicly available data for three groups of genetically related traits, lipids (N = 188,577),

psychiatric diseases (Ncase = 33,332, Ncontrol = 27,888) and social science traits (N ranging

between 161,460 to 298,420 across individual traits) increased the number of genome-

wide significant loci by 12%, 200% and 50%, respectively, compared to those found by

analysis of individual traits. Evidence of replication is present for many of these loci in

subsequent larger studies for individual traits. HIPO can potentially be extended to high-

dimensional phenotypes as a way of dimension reduction to maximize power for subse-

quent genetic association testing.

Author summary

Pleiotropy is a common phenomenon in genetics that one genetic variant has effects on

multiple traits. The shared genetic information across correlated traits can potentially be

exploited for enhanced detection of susceptibility loci. Most existing multi-trait methods

borrow information across phenotypes but not across SNPs, which can be inefficient for

traits that have major overlap. We propose a method that borrows information both

across traits and across SNPs to conduct powerful association analysis using summary-

level data. Simulations show that the method has correct type-I error rate and substantial
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increase in power. Application to blood lipids, psychiatric diseases and social science traits

identified plenty of new loci that cannot be detected by individual trait analysis. Our

method can potentially be extended to high-dimensional phenotypes as a dimension

reduction technique.

Introduction

Genome-wide association studies of increasingly large sample sizes are continuing to inform

genetic basis of complex diseases. These studies have now led to identification of scores of

susceptibility SNPs underlying a vast variety of individual complex traits and diseases [1–3].

Moreover, analyses of heritability and effect-size distributions have shown that each trait is

likely to be associated with thousands to tens of thousands of additional susceptibility variants,

each of which individually has very small effects, but in combination they can explain substan-

tial fraction of trait variation [4–15]. GWAS of increasing sample sizes as well as re-analysis of

current studies with powerful statistical methods are expected to lead to identification of many

of these additional variants.

An approach to increase the power of existing GWAS is to borrow strength across related

traits. Comparisons of GWAS discoveries across traits have clearly shown that pleiotropy is a

common phenomenon [3, 14, 16–19]. Aggregated analysis of multiple related traits have led to

identification of novel SNPs that could not be detected through analysis of individual traits

alone [20–23]. Further, analysis of genetic correlation using genome-wide panel of SNPs have

identified groups of traits that are likely to share many underlying genetic variants of small

effects [10, 12, 14, 24, 25]. As summary-level association statistics from large GWAS are now

increasingly accessible, there is a great opportunity to accelerate discoveries through novel

cross-trait analysis of these datasets.

A variety of methods have been developed in the past decade to increase power of GWAS

analysis by combining information across multiple traits [26–37]. Many of these methods have

focused on developing test-statistics that are likely to have optimal power for detecting an indi-

vidual SNP under certain types of alternatives of its shared effects across multiple traits [26, 30,

31, 35, 38, 39]. These approaches do not borrow information across SNPs and may be ineffi-

cient for analysis of traits that are likely to have major overlap in their underlying genetic

architecture. For the analysis of psychiatric diseases, for example, it has been shown that bor-

rowing pleiotropic information across SNPs can be used to improve power of detection of

individual SNP associations and genetic risk prediction [40, 41].

In this article, we propose a novel method for powerful aggregated association analysis for

individual SNPs across groups of multiple, highly related, traits informed by genome-wide

estimates of heritability and genetic covariance. We derive optimal test-statistics based on

orthogonal linear combinations of association coefficients across traits–the directions are

expected to maximize genome-wide averages of the underlying non-centrality parameters in a

gradually decreasing order. We exploit recent developments in LD-score regression methodol-

ogy [14, 42] for estimation of phenotypic and genotypic correlations for implementation of the

method using only summary-level results from GWAS. Our method applies to traits measured

on different samples with unknown overlap.

We evaluate performance of the proposed method through extensive simulation studies

using a novel scheme for directly generating summary-level association statistics for large

GWAS for multiple traits with possibly overlapping samples. We use the proposed method to

Heritability informed power optimization (HIPO)
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analyze summary-statistics available from consortia of GWAS of lipid traits [43], psychiatric

diseases [20] and social science traits [44]. These applications empirically illustrate that HIPO

components can be highly enriched with association signals and can identify novel and repli-

cable associations that are not identifiable at comparable level of significance based on analysis

of the individual traits.

Material and methods

Model and assumptions

Suppose that the summary level results are available for K traits. For a given SNP j, let bβj and sj
denote vectors of length K containing estimates of regression parameters and associated stan-

dard errors, respectively, for the K traits. Let M be the total number of SNPs under study.

Throughout, we will assume both genotypes and phenotypes are standardized to have mean 0

and variance 1. Let Nk denote the sample size for GWAS for the k-th trait. For binary traits, Nk

is the effective sample size
Ncase;kNcontrol;k
Ncase;kþNcontrol;k

. We assume Nk can vary across studies because traits may

be measured on distinct, but potentially overlapping, samples (see Section C in S1 Appendix

for discussion of the case where sample size varies across SNPs within the same study). We

assume that summary-level statistics in GWAS are obtained based on one SNP at a time analysis

and that bβjjβj follows a multivariate normal distribution: Nðβj;Sbb jÞ; where βj = (βj1, . . ., βjK)T is

referred to as the “marginal” effect sizes, the coefficients that will be obtained by fitting single-

SNP regression models across the individual traits in the underlying population. The variance-

covariance matric Sbb j; which may include non-zero covariance terms when the studies have

overlapping samples, will be estimated based on estimates of standard errors of the individual

coefficients (sj) and estimate of “phenotypic correlation” that could be obtained based on LD-

score regression.

Power optimization

Power has a one-to-one correspondence with the non-centrality parameter (NCP, denoted by

δ) of the underlying χ2-statistic. Therefore, we try to find the linear combination cTbβ that max-

imizes the average NCP across SNPs (denoted by E[δ]), which is given by

E d½ � ¼
E½ðcTβÞ2�

varðcTbβÞ
: ð1Þ

Here c is the vector of weights for a HIPO component associated with individual traits; we

drop the subscript j from bβj and βj and use bβ and β for simple notations. The denominator is

easy to simplify: varðcTbβÞ ¼ cTSbbc, which does not depend on true value of β. We derive an

expression of the numerator based on commonly used random effect models that are used to

characterize genetic variance-covariances.

Let βðJÞj ¼ ðb
ðJÞ
j1 ; . . . ; b

ðJÞ
jK Þ

T
denote the vector of “joint” effect sizes associated with SNP j that

could be obtained by simultaneous analysis of SNPs in multivariate models across the K indi-

vidual traits. We assume that βðJÞj follows a multivariate normal distribution N 0; Sg
M

� �
, where

Sg is the genetic covariance matrix. It follows that βj, the vector of marginal regression coeffi-

cients, is also normally distributed with mean 0 and E βT
j βjjlj

h i
¼

ljSg
M , where lj ¼

PM
j0¼1

r2
jj0 is

the LD score. Here rjj0 is the correlation of genotypes between SNP j and j0.

Heritability informed power optimization (HIPO)

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007549 October 5, 2018 3 / 21

https://doi.org/10.1371/journal.pgen.1007549


Thus, based on the above model, the numerator of (1) can be written as

E½ðcTβ�2� ¼ cTE E½ββT jl�
� �

c ¼ E½l�
M cTSgc. Therefore, we have

E d½ � ¼
E½l�
M

cTSgc
cTSbbc

:

The matrix Sbb needs to take into account the sample size differences and overlaps across

studies. When all the phenotypes are measured on the same set of people, Sbb is proportional

to the phenotypic variance-covariance matrix and E[δ] reduces to maximizing the heritability

of the combined traits cTy (MaxH) [34]. Here y = (y1, . . ., yK) is the vector of phenotypes.

But HIPO is more general and can be applied to traits measured on different samples with

unknown overlap. The LD-score regression allows estimation of both Sg and Sbb based on

underlying slope and intercept parameters, respectively, using GWAS summary-level statistics

(Section A in S1 Appendix) [14, 42].

The first HIPO component c1 is given by solving the following optimization problem:

max
c

cTcSg c subject to cTcSbbc ¼ 1:

Subsequent components ck are defined iteratively by solving a slightly different optimiza-

tion problem

max
c

cTcSg c subject to cTcSbbc ¼ 1 and cTcSbbcl ¼ 0 ðl ¼ 1; 2; . . . ; k � 1Þ:

The above procedure can be implemented by suitable eigen decomposition, resulting in a

total of K HIPO components (Section B in S1 Appendix). We call the first HIPO component

HIPO-D1, the second HIPO component HIPO-D2, and so on. Interestingly, it can be shown

that the eigenvalues resulting from this procedure are the average NCP for χ2 association-sta-

tistics across SNPs along the HIPO directions (up to the same scale constant, Section B in S1

Appendix). Ideally, it is adequate to consider the top HIPO components if a few eigenvalues

clearly dominate the others.

For the kth HIPO component, the association for the SNP j is tested using Z-statistics in the

form

zj;ck; ¼
cT
k
bβj

ffiffiffiffiffiffiffiffiffiffiffiffiffi

cT
k
cSbbck

q :

It is easy to see that HIPO z-statistics reduce to the inverse standard error weighted z-scores

when all traits have the same heritability, have genetic correlation 1 and, there is no sample

overlap across studies. Therefore, HIPO can also be viewed as an extension of standard single-

trait meta-analysis.

It can be expected from theory that the performance of HIPO, characterized by the increase

of average NCP of HIPO components compared to individual traits, does not directly depend

on the overlaps of causal SNPs across traits or the overlap of samples across studies. In fact,

E[δ] only depends on the covariance matrices var(β) and varðbβÞ. These two matrices can stay

the same under different degrees of causal SNP overlap and sample overlap.

A closely related method is MTAG, which uses the summary level data of multiple traits to

estimate single trait effects, based on genetic and phenotypic correlation across traits [36].

MTAG is also based on linear combinations of summary statistics but the weights are different

Heritability informed power optimization (HIPO)
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from those obtained by HIPO. More specifically, MTAG solves the moment equation

E bβj �
ωk

okk
βj;k

� �

¼ 0;

which gives the solution

bbMTAG;j;k ¼

ωT
k

okk
Ω � ωkω

T
k

okk
þ Sbb

� �� 1

ωT
k

okk
Ω �

ωkωT
k

okk
þ Sbb

� �� 1
ωk
okk

bβj:

Here var(βj) = Ω, and ωk is a vector equal to the k-th column of Ω and ωkk is a scalar equal

to the k-th diagonal element of Ω. The matrix Sbb is the same for all SNPs if both genotypes and

phenotypes are standardized to have mean 0 and variance 1. We will compare HIPO with

MTAG in simulations and real data analysis.

Simulations

We use a novel simulation method that directly generates summary level data for GWAS of

multiple traits preserving realistic genotypic and phenotypic correlation structures. We pro-

posed the single-trait version of this approach in a recent study [15]. We propose to simulate

GWAS estimate for marginal effects across K traits, denoted as bβj ¼ ð
bb j1; . . . ; bb jKÞ

T
, using a

model of the form

bβj ¼ βj þ vj þ ej;

where two types of errors terms, vj and ej, are introduced to account for variability due to pop-

ulation stratification effects and estimation uncertainty, respectively. We assume the popula-

tion stratification effects vj s follow independent and identically distributed (i.i.d.) multivariate

normal across SNPs. We generate the estimation error terms ~e ¼ ðeT
1
; . . . ; eT

MÞ
T

following a

multivariate normal distribution that takes into account both phenotypic correlation across

traits and linkage disequilibrium across SNPs. Note that there is widespread correlation

between error terms, which can exist across different SNPs within the same study or for the

same SNP across different studies. Correlation can also exist between different SNPs in differ-

ent studies in the presence of LD, phenotypic correlation and sample overlap. All the possibili-

ties can be captured by simulating from ~e � Nð0;R
N

SeÞ where the covariance matrix is the

Kronecker product of the LD coefficient matrix R ¼ frjj0 gj;j0¼1;...;M
and

Se ¼
Nkl

NkNl
cov yk; ylð Þ

� �

k;l¼1;2;...K

where the (k, l) element involves sample sizes, the sample overlap Nkl and the phenotypic

covariance between the kth and lth trait (Section D in S1 Appendix). We assume that the sam-

ple size is the same for all the SNPs within the same study.

We simulate βj by first randomly selecting ~12K causal SNPs out of a reference panel of

~1.2 million HapMap3 SNPs with MAF >5% in 1000 Genomes European population. This

SNP list is downloaded from LD Hub [45]. For selected casual SNPs, we generate i.i.d. joint

effect sizes βðJÞj from a multivariate normal distribution N 0;
Sg

12;000

� �
, where Sg is the genetic

covariance matrix. For simplicity we assume all the traits have the same set of causal SNPs. We

calculate the marginal effect sizes βj as the sum of the joint effect size of SNPs in neighborhood

Heritability informed power optimization (HIPO)
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N j weighted by the LD coefficient, i.e. βj ¼
P

j0 2N j
βðJÞj0 rjj0 . The neighborhood N j is defined to

be set of SNPs that are within 1MB distance and have r2 > 0.01 with respect to SNP j.
For simulation of ~e, we observe that in a GWAS study where the phenotypes have no associ-

ation with any of the markers, the summary-level association statistics is expected to follow the

same multivariate distribution as ~e. We utilize individual level genotype data available from

489 European samples from the 1000 Genomes Project. For each of the 489 subjects, we simu-

late a vector of phenotype from a predetermined multivariate normal distribution without any

reference to their genotypes. We then conducted standard one SNP at a time GWAS analysis

for each trait to compute the association statistics bβj;1000G ¼ ð
bb j1;1000G; . . . ; bb jK;1000GÞ

T
for the

1.2 million SNPs. To mimic the incomplete sample overlap between traits, we can calculate

bb j1;1000G,. . . bb jK;1000G based on different subsamples of 1000 Genomes EUR, of size n1, . . ., nK.

Finally, to generate error terms according to sample size specification for our simulation stud-

ies, we use the adjustment

ej ¼

ffiffiffiffiffin1

p

ffiffiffiffiffiffi
N1

p bb j1;1000G; . . . ;

ffiffiffiffiffinK
p

ffiffiffiffiffiffi
NK
p bb jK;1000G

� �T

;

We show in Section D in S1 Appendix that this ~e ¼ ðeT
1
; . . . ; eT

MÞ
T

has the desired

distribution.

We conduct simulation studies to validate HIPO-based association tests and investigate

expected power gain under varying sample size and heritability. For simplicity, we first con-

sider the scenarios where all traits are measured on the same set of subjects. To make the set-

tings more realistic, we use two sets of genetic and phenotypic covariance matrices estimated

from real data:

1. Blood lipid traits: LDL, HDL, TG, TC (see next section for full name)

Sg ¼ h2
max

0:87 � 0:04 0:30 0:85

� 0:04 1:00 � 0:62 0:18

0:30 � 0:62 0:93 0:30

0:85 0:18 0:30 0:95

0

B
B
B
B
@

1

C
C
C
C
A
; Sy ¼

1:00 � 0:10 0:21 0:86

� 0:10 1:00 � 0:36 0:12

0:21 � 0:36 1:00 0:32

0:86 0:12 0:32 1:00

0

B
B
B
B
@

1

C
C
C
C
A

2. Psychiatric diseases: ASD, BIP, SCZ (see next section for full name)

Sg ¼ h2
max

0:69 0:02 0:12

0:02 0:88 0:63

0:12 0:63 1:00

0

B
@

1

C
A; Sy ¼

1:00 0:01 0:00

0:01 1:00 0:01

0:00 0:01 1:00

0

B
@

1

C
A:

We choose only 3 psychiatric diseases instead of all 5 involved in real data analysis to speed

up computation. ASD, BIP and SCZ have high heritability and substantial genetic correlation,

which should be helpful to illustrate the property of the method. We vary the value of scale fac-

tor h2
max ¼ 0:1; 0:2; 0:35; 0:5 to control heritability of the traits while preserving the genetic

correlation structure. We also vary the sample size: N = 10K, 50K, 100K, 500K. The covariance

matrix of vj is set to

7:35� 10� 8

1 0:5 0:5 0:5

0:5 1 0:5 0:5

0:5 0:5 1 0:5

0:5 0:5 0:5 1

0

B
B
B
B
@

1

C
C
C
C
A

and 7:35� 10� 8

1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

0

B
@

1

C
A

Heritability informed power optimization (HIPO)
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in the first and second settings, respectively. This choice of parameters leads to an average per

SNP population stratification that is about 25% of the per SNP heritability when h2
max ¼ 0:35.

For each setting we repeat the simulation 100 times.

More extensive simulations are conducted to investigate the performance of HIPO under

partial sample overlap across studies, and when different traits have different sets of causal

SNPs (S1 Table). We also investigate the performance in higher dimensions by simulating 10

traits which are divided into two blocks of 5 traits, with higher correlation within blocks and

lower correlation between blocks (S1 Table). In addition, we conduct simulations using UK

Biobank data to study the type I error of HIPO under unbalanced case-control design (Section

E.1 of S1 Appendix), as well as the relationship between the number of dominant HIPO com-

ponents and underlying genetic mechanisms (Section E.2 in S1 Appendix).

Summary level data

We analyze publicly available GWAS summary-level results across three groups of traits mea-

sured on European ancestry samples using the proposed method. Global Lipids Genetics

Consortium (GLGC) provides the GWAS results for levels of low-density lipoprotein (LDL)

cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG) and total choles-

terol (TC) [43]. The data consist of 188,577 European-ancestry individuals with ~1.8 million

SNPs after implementing the LD Hub quality control procedure (described at the end of this

section).

The Psychiatric Genomics Consortium (PGC) cross-disorder study analyzed data for 5 psy-

chiatric disorders: autism spectrum disorder (ASD), attention deficit-hyperactivity disorder

(ADHD), bipolar disorder (BIP), major depressive disorder (MDD) and schizophrenia (SCZ)

[20, 46–49]. Two of the five traits involved trio data: ASD (4788 trio cases, 4788 trio pseudo-

controls, 161 cases, 526 controls, equivalent to 4949 cases and 5314 controls) and ADHD

(1947 trio cases, 1947 trio pseudocontrols, 840 cases, 688 controls, equivalent to 2787 cases

and 2635 controls). The other three studies did not involve trios: BIP (6990 cases, 4820 con-

trols), MDD (9227 cases, 7383 controls) and SCZ (9379 cases, 7736 controls). After applying

the same QC procedure, we included ~1.05 million SNPs for HIPO analysis.

The Social Science Genetic Association Consortium (SSGAC) provides summary statistics

for depressive symptoms (DS, N = 161,460), neuroticism (NEU, N = 170,911) and subjective

well-being (SWB, N = 298,420) [44]. The DS data are the meta-analysis results combining a

study by the Psychiatric Genomics Consortium [48], the initial release of UK Biobank

(UKB) [50] and the Resource for Genetic Epidemiology Research on Aging cohort (dbGap,

phs000674.v1.p1). For neuroticism, the study pooled summary level data sets from UKB and

Genetics Personality Consortium (GPC). The SWB data is the meta-analysis result from 59

cohorts [44]. All subjects are of European ancestry. We analyzed ~2.1 million SNPs after QC.

For all three groups of traits, we use the GWAS parameter estimates and standard errors to

compute the z-statistics and p-values without making post-meta-analysis correction of geno-

mic control factors. We perform SNP filtering to all three groups of phenotypes based on LD

Hub quality control guideline. Markers that meet the following conditions are removed: (1)

with extremely large effect size (χ2 > 80) (to avoid the results to be unduly influenced by outli-

ers) (2) within the major histocompatibility complex (MHC) region (26Mb~34Mb on chro-

mosome 6) (3) MAF less than 5% in 1000 Genomes Project Phase 3 European samples (4)

sample size less than 0.67 times the 90th percentile of the total sample size (to account for SNP

missingness) (5) alleles do not match the 1000 Genomes alleles. We further remove SNPs that

are missing for at least one trait. The summary statistics are supplied to LDSC software [14, 42,

45] to fit LD score regression.

Heritability informed power optimization (HIPO)
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We defined a locus to be “novel” if it contains at least one SNP that reach genome-wide sig-

nificance (p-value < 5×10−8) by the HIPO method and the lead SNP in the region is at least

0.5 Mb away and has r2 < 0.1 from all lead SNPs of genome-wide significance regions identi-

fied by individual trait analysis (Section F in S1 Appendix).

Results

Simulations

Simulation results show that all HIPO components maintain the correct type I error rate with

or without population stratification, consistently across different sample sizes and values of

heritability (Table 1 and S2–S5 Tables), even in unbalanced case-control studies (S13 Table).

One representative example is the case with covariance structure of blood lipids (Table 1). It

can be seen that correct type I errors are maintained under three different significance levels:

p<0.05, p<0.01 and p<0.001. Desired type I error rates are also maintained in simulation

settings where causal SNPs across traits only overlapped partially and there are incomplete

Table 1. Type I error rates for HIPO observed in datasets simulated under covariance structure estimated from studies of blood lipids. See S1 Table 1a and 1b for

detailed settings. Summary-level association statistics are simulated for 4 traits using genetic and phenotypic covariance matrices estimated from Global Lipids Genetics

Consortium (GLGC) data, with and without population stratification. The results for HIPO-D1 and the most heritable trait are listed. Reported are the average of genome-

wide type I error rates across 100 simulations, under significance thresholds p<0.05, p<0.01 and p<0.001.

h2

max
p-value threshold 0.1 0.2 0.35 0.5 0.1 0.2 0.35 0.5

N

HIPO-D1 Without population stratification With population stratification

10K p<0.05 0.051 0.051 0.05 0.05 0.051 0.051 0.05 0.05

p<0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p<0.001 0.0011 0.001 0.001 0.001 0.0011 0.001 0.001 0.001

50K p<0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

p<0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p<0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

100K p<0.05 0.05 0.05 0.051 0.05 0.05 0.05 0.05 0.051

p<0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p<0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

500K p<0.05 0.05 0.051 0.05 0.052 0.05 0.051 0.051 0.052

p<0.01 0.01 0.01 0.01 0.011 0.01 0.01 0.01 0.011

p<0.001 0.001 0.0011 0.001 0.0011 0.001 0.001 0.0011 0.0011

Most heritable trait Without population stratification With population stratification

10K p<0.05 0.051 0.051 0.05 0.051 0.051 0.051 0.05 0.051

p<0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p<0.001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.001 0.0011

50K p<0.05 0.05 0.05 0.051 0.051 0.051 0.051 0.051 0.051

p<0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p<0.001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

100K p<0.05 0.051 0.051 0.051 0.051 0.052 0.051 0.051 0.051

p<0.01 0.01 0.01 0.01 0.01 0.011 0.011 0.011 0.011

p<0.001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

500K p<0.05 0.05 0.051 0.051 0.051 0.055 0.055 0.055 0.055

p<0.01 0.01 0.01 0.01 0.01 0.012 0.012 0.012 0.012

p<0.001 0.0011 0.0011 0.0011 0.0011 0.0013 0.0013 0.0013 0.0013

h2
max is the largest heritability among the individual traits.

https://doi.org/10.1371/journal.pgen.1007549.t001
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sample overlaps across studies (S3 Table). Similar patterns can be observed for the case with

covariance structure of psychiatric diseases (S4 and S5 Tables). In the presence of population

stratification, the degree of which is modest according to our simulation scheme, tests based

on individual traits show somewhat inflated type I error under large sample size (e.g. 500K)

(Table 1 and S4 Table).

Results also show that association analysis based on HIPO-D1 leads to substantial number

of additional true discoveries compared to that based on the most heritable trait (S6 Table). In

most settings, the value of average χ2-statistics are larger for HIPO-D1 than those for the indi-

vidual traits and MTAG estimates (S7 and S8 Tables). After LD-pruning, HIPO components

identify a substantial number of novel loci that are not discovered by individual trait analysis

(Table 2, S9 and S10 Tables). For the case with covariance structure of blood lipids, the largest

power increase can be observed when N = 50K and N = 100K, where HIPO can identify up to

206 new loci (Table 2). Similar patterns are followed in other settings (S9 and S10 Tables).

Results also show that QQ plots for HIPO-D1 to be more enriched with signals than those for

the most heritable trait (S1–S4 Figs).

We compare HIPO and MTAG in all our simulation settings. Both MTAG and HIPO find

many novel loci compared to individual trait analysis and the set of novel loci identified by

HIPO and MTAG tend to have some overlaps, but each method identifies some unique ones

that is not discovered by the other. Although MTAG tends to find more loci than HIPO in

total, HIPO tends to find more novel loci that are not detected by individual trait analysis and

MTAG tends to replicate existing findings (Table 2, S9 and S10 Tables). This pattern is more

obvious when the sample size is large (N� 100K) and is not sensitive to the LD clumping crite-

rion (S11 Table). HIPO tends to be more powerful in settings of higher dimensions, with the

number of novel loci nearly twice of the number identified by MTAG in several cases (S10

Table).

Application to blood lipid data

We applied our method to the Global Lipids Genetics Consortium (GLGC) data [43]. The

average NCP decreases from 0.213 for HIPO-D1 to 0.026 for HIPO-D4, with most association

signals appears to be associated with the first and second components (S14 Table). This may

be due to the fact that LDL and TC are highly correlated with each other and as are HDL and

TG, and HIPO-D1 and HIPO-D2 each captures the signal of one pair of traits. HIPO-D1 is

positively related to TG, negatively related to HDL and TC and depends weakly on LDL.

HIPO-D2 depends mostly on TC. The last component HIPO-D4, which contains very little

genetic association signals and hence can be used as a negative control, is positively correlated

with TC and negatively with the other three traits. Note that all 4 traits have similar heritability

and sample size (S14 Table), hence the difference in weights is likely driven by genetic correla-

tions. The order of λGC and average of empirical χ2 statistic also tracks with the average NCP

(Fig 1), suggesting that the observed enrichments are likely due to polygenic effects. We

identified twenty novel loci by HIPO-D1 and 4 by HIPO-D2 at genome-wide significant level

(p< 5 × 10−8) (Table 3). The number of novel loci changed to 16 for HIPO-D1 and 4 for

HIPO-D2 under a more stringent LD-pruning criterion: r2 < 0.1 and lead SNPs of different

loci are >1Mb from each other. The pattern of p-values for individual traits show that the pro-

posed method detects novel SNPs that contain moderate degree of association signals across

multiple traits. There is very little overlap between new loci found by HIPO-D1 and by

HIPO-D2, as expected from genetic orthogonality of the two components (S5 Fig). Among the

24 new loci found by HIPO-D1 and HIPO-D2, 9 are not found by any of the MTAG estimates.

MTAG identified 10 novel loci that are not detected by HIPO-D1 or HIPO-D2 (S17 Table).

Heritability informed power optimization (HIPO)
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Table 2. Number of truly associated independent loci discovered by HIPO, MTAG and individual trait analysis observed in datasets simulated under the covariance

structure estimated from studies of blood lipids. See 1a-1d in S1 Table for detailed settings. We report the average number of truly associated loci identified by all the

individual traits/HIPO components/MTAG estimates across 100 simulations, under significance threshold p< 5 × 10−8 and LD pruning threshold r2 < 0.1 and different

loci required to be>0.5Mb apart.

h2

max
0.1 0.2 0.35 0.5 0.1 0.2 0.35 0.5

N

Same causal SNPs Without population stratification With population stratification

10K Individual traits 0 1 1 3 0 0 1 3

HIPO 0 0 1 2 0 0 1 2

MTAG 0 1 1 4 0 0 1 4

HIPO new 0 0 1 2 0 0 1 1

MTAG new 0 0 1 2 0 0 1 2

50K Individual traits 3 25 134 341 3 25 136 344

HIPO 2 24 129 317 2 23 128 318

MTAG 4 32 165 393 3 32 165 394

HIPO new 2 12 52 98 1 12 51 101

MTAG new 2 13 51 90 1 12 50 90

100K Individual traits 25 193 722 1299 26 201 727 1314

HIPO 23 185 679 1232 24 186 669 1229

MTAG 32 233 799 1382 33 234 791 1381

HIPO new 12 68 167 206 12 66 154 197

MTAG new 12 65 139 157 13 62 130 148

500K Individual traits 1303 2536 3173 3490 1352 2557 3186 3491

HIPO 1240 2464 3132 3471 1204 2425 3119 3454

MTAG 1394 2568 3175 3488 1358 2531 3164 3474

HIPO new 202 144 81 53 171 120 70 46

MTAG new 162 88 33 17 121 63 26 12

Partial causal SNP overlap Partial sample overlap

10K Individual traits 0 0 1 3 0 0 1 1

HIPO 0 0 1 3 0 0 0 1

MTAG 0 0 1 4 0 0 1 1

HIPO new 0 0 1 2 0 0 0 1

MTAG new 0 0 1 2 0 0 0 1

50K Individual traits 3 26 135 348 1 8 49 136

HIPO 2 21 122 312 1 8 50 139

MTAG 4 33 163 403 1 11 67 179

HIPO new 2 13 60 126 1 5 26 61

MTAG new 2 12 49 96 1 6 28 64

100K Individual traits 26 196 730 1336 8 73 334 719

HIPO 23 178 651 1219 8 73 332 715

MTAG 33 239 802 1412 12 98 413 845

HIPO new 14 84 195 256 5 36 122 199

MTAG new 13 68 136 153 6 38 118 184

500K Individual traits 1338 2601 3269 3588 725 1954 2799 3193

HIPO 1225 2523 3243 3583 721 1938 2772 3181

MTAG 1419 2632 3274 3589 854 2078 2846 3219

HIPO new 254 198 116 75 194 231 143 94

MTAG new 155 82 31 15 186 189 91 54

h2
max is the largest heritability among the individual traits.

https://doi.org/10.1371/journal.pgen.1007549.t002
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The result is fairly consistent with our simulation studies which shows that MTAG and HIPO

tend to find some overlapping and some unique novel loci.

Application to psychiatric diseases

Applications of HIPO to Psychiatric Genomics Consortium (PGC) cross-disorder data [20]

show that most association signals are captured by HIPO-D1 (S15 Table), which has an aver-

age NCP twice larger than that of HIPO-D2. The first HIPO component puts the highest

weights on BIP and SCZ, which have the largest heritability and relatively large sample sizes. It

is noteworthy that for a few of the strongest signals, HIPO is outperformed by standard meta-

analysis, which was implemented in PGC cross-disorder analysis as a way for detecting SNPs

that may be associated with multiple traits. The QQ plot of HIPO-D1, however, dominates

those for the individual traits and for the standard meta-analysis when p> 1 × 10−8 (Fig 1).

This suggests that HIPO is superior to standard meta-analysis in detecting moderate effects,

while sacrificing some efficiency for the top hits. The value of λGC and average χ2 -statistics are

higher for HIPO-D1 than those for individual traits and standard meta-analysis.

HIPO-D1 discovers one new locus, marked by the lead SNP rs13072940 (p = 1.71 × 10−8),

that is not identified by either the individual traits or the meta-analysis. The same loci is identi-

fied under LD-pruning criterion r2 < 0.1 and lead SNPs of different loci are>1Mb from each

other. The marker rs13072940 shows association with bipolar disorder (pBIP = 0.0026) and

schizophrenia (pSCZ = 2.55 × 10−6) but no association with autism spectrum disorder (pASD =

0.97), ADHD (pADHD = 0.70) or major depressive disorder (pMDD = 0.11). The meta-analysis

signal (pMeta = 7.02 × 10−6) does not reach genome-wide significance and is, in fact, weaker

compared to that from schizophrenia alone. This SNP shows stronger association in more

recent larger studies of bipolar disorder [47] (pBIP = 0.0003) and schizophrenia [51] (pSCZ =

1.32 × 10−7), clearly indicating that this is likely to be a true signal underlying multiple PGC

traits. MTAG also identifies the same new locus (rs13072940) as HIPO-D1 under the same sig-

nificance and LD pruning threshold.

Application to social science traits

Application of HIPO to Social Science Genetic Association Consortium studies reveals that

most of the genetic variation is captured by HIPO-D1 that has an average NCP twice larger

Fig 1. QQ plots for individual traits and underlying HIPO components across blood lipids, psychiatric diseases, social science traits. Blood lipid traits include

HDL, LDL, triglycerides (TG) and total cholesterol (TC). Psychiatric diseases include autism spectrum disorder (ASD), ADHD, bipolar disorder (BIP), major

depressive disorder (MDD) and schizophrenia (SCZ). Meta-analysis QQ plot is also included for psychiatric diseases (in green). Social science traits include depressive

symptoms (DS), neuroticism (NEU) and subjective well-being (SWB). Genomic control factors and average χ2 statistics are shown in the legend.

https://doi.org/10.1371/journal.pgen.1007549.g001
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than that of HIPO-D2 (S16 Table). The component is negatively associated with DS and NEU

and is positively associated with SWB. The tail region of QQ plot of HIPO-D1 lies close to that

of neuroticism, but the values of λGC and average χ2 are substantially larger for HIPO-D1

(Fig 1). HIPO-D1 identifies 12 new loci that are not discovered by individual trait analysis of

SSGAC data (Table 4), increasing the total number of genome-wide significant loci from 24 to

36 (S7 Fig). The number of new loci changes to 11 under a more stringent LD pruning crite-

rion: r2 < 0.1 and lead SNPs of different loci are>1Mb from each other. MTAG identifies 14

loci that are not identified by individual trait analysis, including the 12 loci found by HIPO-D1

(S18 Table).

We examined evidence of replication of the novel loci based on more recent and larger

studies of DS and SWB that were incorporated in the MTAG analysis [36]. As this study

Table 3. Novel loci discovered at genome-wide significance level (p< 5 × 10−8) by the first and second HIPO components of blood lipid traits.

SNP CHR MBP Nearest Gene (Distance) pLDL pHDL pTG pTC pHIPO-D1 pHIPO-D2

HIPO-D1

rs4850047 2 3.6 RPS7(+6.244kb) 2.87e-03 (+) 1.15e-04 (+) 8.58e-04 (-) 2.14e-06 (+) 1.13e-09# 7.82e-04

rs2249105 2 65.3 CEP68(0) 8.72e-02 (+) 6.35e-06 (+) 1.89e-06 (-) 4.66e-01 (+) 1.33e-08 7.92e-01

rs2062432 3 123.1 ADCY5(0) 9.78e-01 (+) 3.88e-06 (-) 2.44e-03 (+) 6.75e-02 (-) 4.30e-08 5.52e-01

rs6855363 4 157.7 PDGFC(-12.22kb) 6.44e-01 (-) 3.20e-07 (+) 3.18e-04 (-) 5.89e-01 (+) 2.27e-08 5.44e-01

rs17199964 4 102.7 BANK1(-3.972kb) 3.11e-01 (-) 9.19e-08 (-) 1.27e-01 (+) 9.85e-04 (-) 3.03e-08 2.43e-02

rs10054063 5 173.4 CPEB4(+5.085kb) 7.00e-01 (-) 6.13e-04 (-) 7.72e-07 (+) 2.67e-01 (-) 3.69e-08 7.80e-01

rs11987974 8 36.8 KCNU1(+30.17kb) 7.66e-01 (+) 3.79e-06 (-) 1.85e-06 (+) 7.16e-01 (-) 3.91e-09# 3.32e-01

rs740746 10 115.8 ADRB1(-11.02kb) 4.32e-01 (-) 1.09e-06 (-) 1.61e-03 (+) 1.07e-01 (-) 4.21e-08 5.74e-01

rs10832027 11 13.4 ARNTL(0) 2.53e-02 (+) 1.52e-07 (+) 5.73e-07 (-) 1.87e-02 (+) 3.88e-12# 3.16e-01

rs7938117 11 68.6 CPT1A(0) 3.69e-01 (-) 2.05e-07 (-) 9.49e-06 (+) 4.01e-02 (-) 3.35e-11# 5.30e-01

rs1565228 11 27.6 BDNF-AS(0) 2.46e-01 (-) 3.50e-05 (-) 3.44e-06 (+) 7.19e-02 (-) 2.56e-09# 6.44e-01

rs661171 11 110.0 ZC3H12C(0) 9.06e-03 (+) 9.84e-07 (+) 1.77e-01 (-) 2.70e-06 (+) 2.58e-08 2.23e-04

rs895953 12 122.2 SETD1B(0) 7.23e-01 (-) 1.45e-06 (+) 3.98e-07 (-) 5.43e-01 (+) 2.84e-10# 3.86e-01

rs2384034 12 113.2 RPH3A(-24.86kb) 9.47e-03 (+) 3.61e-07 (+) 3.18e-02 (-) 5.00e-05 (+) 4.39e-09# 2.51e-03

rs11048456 12 26.5 ITPR2(-25.2kb) 8.65e-02 (-) 2.93e-07 (-) 1.59e-03 (+) 5.74e-02 (-) 1.75e-08 3.28e-01

rs721772 15 41.8 RPAP1(0) 5.17e-01 (+) 2.26e-07 (-) 4.30e-05 (+) 7.10e-01 (-) 4.25e-09# 3.75e-01

rs11079810 17 46.2 SKAP1(0) 1.99e-02 (+) 1.71e-07 (+) 2.23e-04 (-) 9.51e-03 (+) 4.30e-10# 1.32e-01

rs4805755 19 32.9 ZNF507(0) 9.34e-01 (-) 5.58e-08 (+) 4.83e-03 (-) 9.85e-02 (+) 7.71e-09# 6.28e-01

rs10408163 19 47.6 ZC3H4(0) 1.47e-01 (-) 9.99e-07 (+) 3.20e-07 (-) 2.70e-01 (-) 8.87e-09 1.65e-02

rs6059932 20 33.2 PIGU(0) 1.30e-01 (+) 5.73e-07 (+) 6.33e-05 (-) 6.33e-02 (+) 1.27e-09# 4.76e-01

HIPO-D2:

rs4683438 3 142.7 LOC100507389(0) 5.70e-05 (-) 6.85e-01 (+) 3.77e-04 (-) 2.87e-07 (-) 5.41e-01 2.99e-08

rs176813 4 69.6 UGT2B15(+63.04kb) 2.62e-05 (+) 1.75e-01 (+) 4.23e-04 (+) 5.68e-08 (+) 5.62e-01 8.10e-09#

rs2268719 6 52.4 TRAM2(0) 7.52e-07 (-) 3.08e-01 (+) 4.14e-02 (-) 6.66e-08 (-) 9.39e-01 2.13e-08

rs7939352 11 78.0 GAB2(0) 2.79e-06 (-) 9.75e-01 (-) 5.47e-03 (-) 2.48e-07 (-) 9.57e-01 3.47e-08

Independent SNPs were identified through LD-pruning with r2 threshold of 0.1 and pruned SNPs were assumed to represent independent loci if they are >0.5Mb apart.

Loci are considered novel if they are not identified at genome-wide significance level through analysis of individual traits. For each lead SNP, p-values for association are

shown for HIPO components and for individual traits. The directions of association (+/-) are also shown for each of the individual traits. TG: triglycerides; TC: total

cholesterol. HIPO-D1 and HIPO-D2: 1st and 2nd HIPO components. The weights for the first and second HIPO components are:

bbHIPO� D1 ¼ 0:147bbLDL � 0:618bbHDL þ 0:591bbTG � 0:469bbTC;
bbHIPO� D2 ¼ 0:206bbLDL � 0:017bbHDL þ 0:228bbTG þ 0:765bbTC.

# in the last two columns indicates that this locus passes the Bonferroni corrected significance threshold p < 5�10� 8

6
¼ 8:3� 10� 9 (11 loci by HIPO-D1 and 1 by

HIPO-D2).

https://doi.org/10.1371/journal.pgen.1007549.t003
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reported only a list of top SNPs (p< 1 × 10−5) after stringent LD-pruning (r2 < 0.1), we could

not look up the exact lead SNPs that we report for the novel regions (Table 4). Instead, we

searched for SNPs in the top list reported by MTAG study that could be considered proxy

(D’>0.75) for our lead SNPs. We found 7 of the 12 novel have such proxies and these proxy

SNPs show stronger level of association in the more recent MTAG study for at least one of DS

and SWB (Table 5).

Table 4. Novel loci discovered at genome-wide significance level (p< 5 × 10−8) by HIPO-D1 for social science traits.

SNP CHR MBP Nearest Gene (Distance) pDS pNEU pSWB pHIPO−D1

HIPO-D1

rs2874367� 1 21.3 EIF4G3(0) 6.33e-05 (-) 6.33e-05 (-) 6.33e-05 (+) 1.38e-08

rs11100449� 4 141.0 MAML3(0) 1.47e-05 (-) 6.33e-05 (-) 6.33e-05 (+) 8.02e-09#

rs10475748� 5 164.6 NA 1.47e-05 (-) 5.73e-07 (-) 1.96e-02 (+) 1.90e-08

rs6919210 6 70.6 COL19A1(0) 1.15e-03 (-) 5.73e-07 (-) 1.77e-04 (+) 1.88e-09#

rs6569095 6 120.3 NA 8.58e-04 (+) 2.14e-05 (+) 1.47e-05 (-) 5.94e-09#

rs210899� 6 11.7 ADTRP(0) 1.10e-01 (+) 2.03e-06 (+) 6.33e-05 (-) 3.61e-08

rs2396726 7 114.0 FOXP2(0) 1.77e-04 (+) 3.06e-06 (+) 8.58e-04 (-) 1.04e-08#

rs12701427� 7 4.2 SDK1(0) 1.15e-03 (-) 1.47e-05 (-) 6.33e-05 (+) 1.28e-08

rs9584850� 13 99.1 FARP1(0) 6.33e-05 (-) 1.52e-07 (-) 8.58e-04 (+) 6.50e-10#

rs11644362 16 13.0 SHISA9(-1.379kb) 2.70e-03 (-) 2.46e-04 (-) 3.06e-06 (+) 3.73e-08

rs7239568 18 52.0 C18orf54(+56.37kb) 5.96e-03 (-) 2.14e-05 (-) 9.64e-08 (+) 8.17e-10#

rs1261093� 18 52.9 TCF4(0) 8.58e-04 (+) 9.64e-08 (+) 2.70e-03 (-) 3.92e-09#

Independent SNPs are identified through LD-pruning with r2 threshold of 0.1 and pruned SNPs are assumed to represent independent loci if they are >0.5Mb apart.

Loci are considered novel if they were not identified at genome-wide significance level through analysis individual traits. For each lead SNP, p-values for association are

shown for HIPO components and for individual traits. The directions of association (+/-) are also shown for each of the individual traits. DS: depressive symptoms;

NEU: neuroticism; SWB: subjective well-being. HIPO-D1: 1st HIPO component. Weights for HIPO-D1: bbHIPO� D1 ¼ � 0:247bbDS � 0:607bbNEU þ 0:588bbSWB. NA in the

Nearest Gene column means there is no gene within 200kb of the SNP. SNPs marked by � indicates underlying loci show evidence of replication in the larger data set

used in the MTAG paper (see Table 5).

# in the last column indicates that this locus passes Bonferroni corrected significance threshold p < 5�10� 8

4
¼ 1:25� 10� 8 (7 loci in total).

https://doi.org/10.1371/journal.pgen.1007549.t004

Table 5. Evidence of replication of novel loci identified by HIPO analysis for social science traits in subsequent larger studies of DS and SWB.

Lead SNP in Novel Loci Proxy SNP Reported in MTAG Study D’ Individual Trait p-value in SSGAC Individual Trait p-value in MTAG Study

DS

rs11100449 rs1877075 0.78 2.00e-06 1.10e-06

rs10475748 rs10045971 0.99 4.51e-02 1.17e-09

rs12701427 rs4723416 0.91 1.59e-03 1.17e-06

rs9584850 rs4772087 1.00 2.42e-03 1.04e-06

rs1261093 rs11876620 0.82 1.58e-04 4.45e-08

SWB

rs2874367 rs12125335 1.00 NA 7.09e-08

rs11100449 rs769664 0.79 3.18e-03 4.59e-07

rs210899 rs10947543 0.93 NA 3.10e-08

Reported are P-values for proxy SNPs (D’ > 0.75) for individual trait associations in SSGAC data and the more recent MTAG study. Novel loci are identified through

analysis of SSGAC which include studies of DS and SWB with sample sizes Neff = 161,460 and N = 298,420, respectively. The MTAG study includes an expanded set of

sample with Neff = 354,862 and N = 388,538 for DS and SWB, respectively. DS: depressive symptoms; NEU: neuroticism; SWB: subjective well-being. NA indicates that

the proxy SNP is not present in the SSGAC data.

https://doi.org/10.1371/journal.pgen.1007549.t005
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Discussion

In this report, we present a novel method for powerful pleiotropic analysis using summary

level data across multiple traits, accounting for both heritability and sample size variations.

Application of the proposed method to three groups of genetically related trait identifies a vari-

ety of novel and replicable loci that were not detectable by analysis of individual traits at com-

parable level of confidence. We also conduct extensive simulation studies in realistic settings

of large GWAS to demonstrate the ability of the method to maintain type-I error, achieve

robustness to population stratification and enhance detection of novel loci. The novel method

we introduce for directly simulating summary-level GWAS statistics, preserving expected

correlation structure across both traits and SNP markers, will allow rapid evaluation of alterna-

tive methods for pleiotropic analysis in settings of large complex GWAS more feasible in the

future.

Application of the proposed method provides new insight into the genetic architecture of

groups of related traits. For blood lipids, which have similar sample sizes, the average NCPs

for HIPO-D1 and HIPO-D2 dominate the other two, suggesting that there are perhaps two

unrelated mechanisms through which most genetic markers are associated with the individual

cholesterol traits. For psychiatric diseases and social science traits, the top HIPO component

dominates the others, indicating that there is perhaps one major genetic mechanism underly-

ing each group of traits. These conjectures are supported by a simple simulation (Section E.2,

S1 Appendix). However, given that top HIPO component down weights traits with smaller

sample sizes, it is possible that there exist other independent genetic mechanisms related to

these traits that could not be captured by the top HIPO component. Nevertheless, HIPO, by

taking into account both heritability and sample sizes, provides a clear guideline how many

independent sets of tests should be performed across the different traits to capture most of the

genetic signals.

Throughout the paper we report results based on significance threshold p< 5 × 10−8.

We do not recommend adjusting the significance threshold to account for multiple compari-

son, since HIPO components are not independent of individual-trait tests. Similar issues will

also arise about MTAG or other pleiotropic methods. Investigation of setting up proper

threshold is beyond the scope of the current paper. However, even if we apply Bonferroni

correction, HIPO is still able to find a substantial number of new loci. For blood lipids, since

there are 4 traits and 2 HIPO components under consideration, the Bonferroni adjusted

threshold is p < 5�10� 8

6
¼ 8:3� 10� 9. HIPO-D1 still discovers 11 new loci under the new

threshold and HIPO-D2 still discovers 1 (Table 3). For social science traits, since there are 3

traits and 1 HIPO component under consideration, the Bonferroni-corrected threshold is

p < 5�10� 8

4
¼ 1:25 � 10� 8. HIPO-D1 still discovers 7 new loci under the new threshold

(Table 4).

Earlier studies have proposed methods for association analysis in GWAS informed by heri-

tability analysis. For analysis of multivariate traits observed on the same set of individuals, the

MaxH [34] method was proposed to conduct association analysis along directions that maxi-

mizes trait heritability. HIPO allows a generalization of this approach by taking into account

sample size differences and overlaps across studies allowing powerful cross-disorder analysis

using only summary-level data across distinct studies.

Another closely related method is MTAG [36], which also utilizes summary level data and

LD score regression to estimate genotypic and phenotypic variance-covariance matrices.

MTAG, however, performs association tests for each individual trait by improving estimation

of the underlying association coefficients using cross-trait variance-covariance structure. In

contrast, we propose finding optimal linear combination of association coefficients across traits

Heritability informed power optimization (HIPO)
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that will maximize the power for detecting underlying common signals. The advantage of

MTAG is that it does associate the SNPs to individual traits and thus has appealing interpreta-

tion. However, strictly speaking, MTAG, similar to HIPO, is only a valid method for testing

the global null hypothesis of no association of a SNP across any of the traits and may identify a

SNP to be associated with a null trait while in truth it is only related to another trait in the same

group. The advantage of HIPO is that it directly focuses on optimization of power in orthogonal

directions for cross-disorder analysis and can provide significant dimension reduction for anal-

ysis of higher dimensional traits. Simulation studies as well as analysis of real data shows that

both HIPO and MTAG identify substantial number of novel loci compared to analysis of indi-

vidual traits (Table 2, S9, S10, S17 and S18 Tables). The sets of novel loci identified by the two

methods tend to be substantially non-overlapping indicating that it may be useful to implement

both methods for cross-trait analysis. Simulations also show that when the number of traits

become larger, HIPO tends to find substantially more novel SNPs than MTAG (S10 Table).

There exists a variety of methods for pleiotropic analysis [30, 31, 35, 38, 39] that aim to opti-

mize power for testing associations with respect to individual SNPs without being informed by

heritability. The method ASSET [39], for example, searches through different subsets of traits

to find the optimal subset that yields the strongest meta-analysis z statistic for each individual

SNP. Methods like HIPO and MTAG, which use estimates of heritability based on genome-

wide set of markers, are likely to be more powerful when the underlying traits have strong

genetic correlation, such as that observed for psychiatric disorders. In contrast, methods such

as ASSET may be more powerful for analysis of groups of traits that have more moderate

genetic correlation, such as cancers of different sites [13], for detection of loci with unique but

insightful pleiotropic patterns of association. There is potential to develop intermediate meth-

ods, which borrows information across SNPs but in a more localized manner, for example,

based on functional annotation information [52, 53]. Further research is also merited for

implementation of HIPO for very high-dimensional pleiotropic analysis and rare variant asso-

ciation studies, two settings in both of which there could be challenges associated with dealing

with noises associated with estimation of genetic variance-covariance matrices.

In conclusion, HIPO provides a novel and powerful method for joint association analysis

across multiple traits using summary-level statistics. Application of the method to multiple

datasets shows that it provides unique insight into genetic architecture of groups of related

traits and can identify substantial number of novel loci compared to analysis of individual

traits. Further extension of the method is merited for facilitating more interpretable and parsi-

monious association analysis across groups of high-dimensional correlated traits.

Our R package is available at https://github.com/gqi/hipo.
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