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Abstract
Only few information on the potential toxic effectiveness of biofuels are available. Due to

increasing worldwide demand for energy and fuels during the past decades, biofuels are

considered as a promising alternative for fossil fuels in the transport sector. Hence, more

information on their hazard potentials are required to understand the toxicological impact of

biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from

Biomass” design processes for economical, sustainable and environmentally friendly biofu-

els are investigated. In an unique and interdisciplinary approach, ecotoxicological methods

are applied to gain information on potential adverse environmental effects of biofuels at an

early phase of their development. In the present study, three potential biofuels, ethyl levuli-

nate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investi-

gated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro

bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism,

so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied

using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special prop-

erties of these fuel samples required modifications of the test design. Points that had to be

addressed were high substance volatility, material compatibility and low solubility. For test-

ing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing

approach were tested to address the high hydrophobicity and low solubility of these com-

plex mixtures. Further work has to focus on an improvement of the chemical analyses of

the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.
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Introduction

During the last decades, fossil fuels, such as gasoline and diesel, were the main energy source in
the transport sector worldwide.[1] In the European Union (EU) the transport sector contrib-
utes to 32% of the total energy consumption and is dominated by fossil fuels.[2] This share is
predicted to rise further.[3] Beside economic and political considerations, fossil fuels and their
combustion products are hazardous for the environment as well as human health, e.g., due to
their mutagenic, genotoxic and cancerogenic potential.[4–11] Moreover, the adverse effects of
fossil fuel emissions are more and more recognized to impact the global climate.[12]

To reduce the dependency on fossil fuels, they are increasingly replaced by or supplemented
with renewable energy carriers, such as biomass-derived fuels, so called biofuels. The introduc-
tion of new biofuels is promoted by governmental support, e.g., the European Union, which
established a target of at least 10% for energy from renewable sources of the total energy con-
sumption by 2020 (2009/28/EC).[13] The resulting increase in the development and use of bio-
fuels is also under critical discussion. Important topics under consideration are the energy
yield of biomass-derived fuels, cost efficiency, competition with food production, greenhouse
gas emissions, impact on water resources and land use changes.[14–25]

The ecotoxicological aspects of biofuels, however, are often neglected. Biofuel regulation is
so far confined to criteria such as sustainability, land use and CO2-emissions, whereas the tox-
icity of biomass-derived fuels is not explicitly considered.[13] Therefore, purpose-designedfuel
molecules will be introduced in the existing infrastructure in significant amounts without pre-
vious insight into their potential hazardous effects.However, ecotoxicological in vitro bioassays
could be applied for rapid and inexpensive screening of certain environmental aspects of biofu-
els. In a literature review conducted by Bluhm et al.,[26] a considerable lack of data on the
ecotoxicological hazard potential of biofuels was elucidated, and ecotoxicological studies were
recommended to accompany the development of biofuels following the concept of ‘Green Tox-
icology’. This approach postulates an economic value in accompanying ecotoxicological assess-
ment for (chemical) product development in the way that early decisions against pursuing
further development of a given potential product can save financial resources.[27] It represents
a novel approach compared to previous chemical design processes that are often limited to
Life-Cycle Analysis (LCA) or mathematical screening tools for assessing persistence or spatial
range.[28,29]

Bioassays detect adverse effects of single compounds and complex chemical mixtures on a
variety of test organisms, including animals, plants, fungi and bacteria. They allow evaluating
effects of complex samples even though none or only few compounds are known or present at
very low concentrations. With regard to their limit of detection and their sensitivity, bioassays,
such as the 7-ethoxyresorufin-O-deethylase (EROD) assay, can even compete with GC-MS
analytical procedures.[30,31] Thus, they are ideally suited for the investigation of newly devel-
oped biofuel candidates as well as complex fossil fuels.[31] These complex fuel mixtures, how-
ever, require special preparation before they can be tested. So called water-accommodated
fractions (WAFs) can be used for an investigation of fossil fuels. WAFs contain the soluble part
of the investigated fuel sample, which accounts for the majority of toxic effects caused by fossil
fuels in aquatic systems[32] and are therefore a commonly applied approach for investigation
of fuel samples.[4,33] Unlike water soluble fractions (WSFs),[34–36] no further physical han-
dling, such as filtration or centrifugation of the samples is conducted to avoid uncontrolled
chemical loss or change in the sample composition. Additionally, a passive dosing approach
can be applied for improved exposure control of hydrophobic organics and their mixtures. A
biocompatible polymer is here loaded with the test substance and then used as a partitioning
donor for controlling exposure concentrations in the test systems even for low solubility and
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volatile constituents of the gasoline and diesel fuels. Their continuous resupply into the test
medium enables a constant exposure of the test organism throughout the entire test cycle.[37]
However, since the value of information obtained by a single bioassay is limited, the application
of different bioassays,[38] sometimes in combination with chemical analysis, is often per-
formed.[39,40] In a previous study, ecotoxicological in vitro bioassays were identified as suit-
able tools for an ecotoxicological investigation of biofuel fermentation samples,[41] but further
modifications are required for the testing of biofuel candidate substances.

Within the interdisciplinaryGerman Cluster of Excellence “Tailor-made fuel from Bio-
mass” (TMFB) of the German Research Foundation (DFG), ecotoxicological bioassays were
applied for the first time as part of the development process of novel biofuel molecules. These
first experiments should give insight into required modifications of the bioassay protocols, and
deliver a first assessment of the ecotoxicological hazard potential of these potential biofuels.
Moreover, as part of an environmentally conscious and sustainable design process within the
TMFB, they allow the identification of potential harmful fuel candidates at an early stage of the
development and can be useful for an early selection of low hazard biofuel candidates for fur-
ther development.[27] In vitro cytotoxicity tests are commonly applied as rapid and reproduc-
ible biotests[42–46] that can be used in a preliminary screening for the identification of toxic
samples, or for defining required modifications of the test design. They can give a first insight
into the acute toxic potential of a sample and are often applied prior to mechanism-specific
bioassays. In this regard, the Neutral Red retention (NR) assay is ideally suited for this study
and the investigation of nearly unknown substances, such as biofuel candidates, due to its rela-
tively simple and easily modifiable test design. It is commonly applied for the detection of cyto-
toxic effects before investigating a sample in mechanism-specific bioassays.[31,47,48] These
assays, such as the EROD assay, give insight into the toxic mechanisms of the investigated bio-
fuel samples, such as the induction of the aryl-hydrocarbon receptor (AhR). These cellular
changes that can be detected by the EROD assay are often first warning signals for an environ-
mental disturbance.[49] Both bioassays were applied using the liver-derived cell line RTL-W1
(Oncorhynchus mykiss), which is considered as a sensitive tool for the investigation of the toxic
potency of environmental contaminants or mechanism specific endpoints, such as EROD
activity.[30,50]

Many studies identified levulinic acid, hydroxymethylfurfural or furfural as very promising
platform chemicals for future fuel production.[51–54] In the present study, three promising
substances with good combustion properties, ethyl levulinate (EL), 2-methyltetrahydrofuran
(2-MTHF) and 2-methylfuran (2-MF)[55–57] were investigated for their hazard potential. To
allow a comparison to the fossil fuels they are supposed to replace, their ecotoxicity was com-
pared to a fossil gasoline fuel (G), a fossil diesel fuel (D) as well as an established biodiesel (BD;
rapeseed oil methyl ester, RME).

The aim of this study was to investigate the Neutral red retention and EROD activity of
potential biofuels as well as identify essential modifications of in vitro tests systems for the
investigation of the toxicological potencies of biofuels by means of the NR assay and the EROD
assay. Furthermore, we want to compare toxicological effects of these potential biofuels to
those of established reference fuels. For the investigation of these reference fuels, a WAF
approach and a passive dosing approach with silicone O-rings were compared.

Material & Methods

2.1 Fuel samples

The three biofuel candidates EL, 2-MTHF and 2-MF were purchased from Sigma-Aldrichwith
a purity of at least 99%. More information are shown in Table 1.
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Diesel fuel (ultra low sulphur diesel) and gasoline fuel (unleaded)were purchased from
Shell Deutschland Oil GmbH (Hamburg, Germany) and RME biodiesel was kindly provided
by ADM Hamburg AG (Hamburg, Germany).

2.2 Cell culture of the permanent cell line RTL-W1

Cytotoxicity and AhR agonist activity were investigated using the permanent cell line RTL-W1
derived from rainbow trout (Oncorhynchus mykiss).[50] Cells were maintained in 75 cm2 cell
culture flasks in L-15 (Leibovitz; Sigma-Aldrich)medium supplemented with 9% fetal bovine
serum (FBS; Biowest, Nuaillé, France) and 1% penicillin/streptomycin solution (Pen/Strep,
with 10,000 units penicillin and 10 mg streptomycin per ml in 0.9% NaCl; Sigma-Aldrich).
RTL-W1 cells were kept in darkness at 20°C. Cells were passaged once a week in a ratio of 1:2
using 1x trypsin/EDTA (Sigma-Aldrich).

2.3 Preparation of the reference fuels: WAFs & passive dosing

Cytotoxicity of the reference fuels was investigated using water accommodated fractions
(WAFs) and a passive dosing approach. For investigations of AhR agonism, only WAFs were
used. WAFs for each reference fuel were prepared by low energymixing (overhead shaker;
Reax 20, Heidolph Instruments GmbH & Co. KG, Schwabach, Germany) in 1 L amber glass
bottles (Duran Group GmbH, Wertheim/Main, Germany) with a headspace volume of approx-
imately 135 ml. 1–100 g/L gasoline (G-WAF), 0.01–100 g/L diesel (D-WAF) and 100 g/L bio-
diesel (BD-WAF) were prepared. Different concentrations were prepared directly and not by
dilution of the highest concentration, since the petroleumhydrocarbon concentrations do not
change linearly.[60,61] After mixing for 24 h the suspensions were transferred into 1 L separa-
tion funnels and allowed to settle overnight before draining the WAFs from the separation fun-
nels. Additionally, a process control (ProCo) consisting of 1 L ultrapure water was prepared
identically. An overviewof the generated WAFs is given in Table 2. The concentrations 100 g/

Table 1. Overview of the potential biofuels.

Biofuel CAS# LogKow* Solubility [g/L] Vapour pressure [mm HG]

Ethyl levulinate 539-88-8 0.288 152[58] 0.208**

2-Methyltetrahydrofuran 96-47-9 1.354 140[59] 97.344**

2-Methylfuran 534-22-5 1.910 3** 156.25**

*estimated using EPI suite Kowwin v1.68

**SRC Physprop database, August 2016

doi:10.1371/journal.pone.0163862.t001

Table 2. Number of independent replicates and concentrations for each generated WAF.

Fuel amount per 1000 ml water [g] Gasoline Diesel Biodiesel

100 1 3 3

50 3 - -

25 2 - -

12.5 2 - -

6 1 - -

3 1 - -

1 1 - -

0.1 - 2 -

0.01 - 1

doi:10.1371/journal.pone.0163862.t002
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L diesel, 100 g/L biodiesel, as well as 50 g/L gasoline were tested in three replicates in both bio-
assays. Lower concentrations were tested in fewer replicates, since no effects were detected in
higher concentrations.

For passive dosing, loaded silicone O-rings were placed in the wells of a 96 well plate, where
they served as donor for maintaining exposure throughout the test.[62,63] O-rings with an
outer diameter of 6.46 mm (Altec Products Limited, Cornwall, UK) were pre-cleaned by soak-
ing once overnight with ethyl acetate (>99%; Sigma-Aldrich) and three times, each overnight,
with methanol (>99%; Sigma Aldrich). To completely remove methanol from the rings, they
were washed three times, each overnight, with water.[62] They were then loaded by direct
immersion within a loading solution (Table 3) consisting of a sample (G, D or BD) and virgin
olive oil (manufactured mechanically, without additives) as the diluent at a ratio of 6 O-rings
per 4 ml loading solution at 200 rpm and 20°C for 72 h. As a process control, O-rings were
loaded with olive oil. After loading, O-ring surfaces were thoroughly wiped dry using a lint-
free tissue paper.

The loaded O-rings were used to pre-equilibrate the L-15 medium (3 rings/2 ml) under test
conditions for 24 h. The loaded rings were also used for exposure control throughout the test.
The loading with diesel (D100, D50, D25, D12.5), gasoline (G50, G25, G12.5) and 100% biodie-
sel (BD100) had made the O-rings swell, and these swelled O-rings could be fitted in the wells
without touching the bottom of the well. O-rings loaded with 50% biodiesel (BD50) were also
tested with short wires (BD50-wire) placed at the bottom of each well to prevent a direct cell
contact of the BD-loadedO-rings and the cells.

2.4 Cytotoxicity: Neutral Red Retention (NR) assay

Cytotoxicity was investigated by means of the NR assay according to Borenfreund[64,65] and
modifications by Keiter et al.[42] and Klee et al.[66] Further modifications were required
depending on the investigated sample and are stated below.

The plate layout was identical for each sample. The outer wells of the plates were used as
cell-free and medium-free blanks to measure the background fluorescence intensity. Six nega-
tive control wells containing only L-15 medium were placed on both sides of the samples on
each plate, respectively, resulting in a total of 12 negative control wells. As a positive control, 40
mg/L 3,5-dichlorophenol (DCP) was tested in six wells.

2.4.1 Exposurewith biofuels. For investigation of the potential biofuels EL, 2-MTHF, and
2-MF, seven test concentrations were prepared in glass test tubes by diluting the substances in
supplemented L-15 Leibovitzmedium and transferred in six replicates on a 96-well plate. Sam-
ple dilutions in glass tubes were prepared 2x-concentrated with consideration of later dilution
with cell suspension. Final test concentrations are shown in Table 4. Due to their aggressiveness
towards plastics, investigation of 2-MF and 2-MTHF took place in 96-well glass plates (Hellma
Analytics, Müllheim/Baden,Germany), while EL was tested in a 96-well plastic (polystyrene)
plate (TPP Techno Plastic Products, Trasadingen, Switzerland). No differences in cell growth

Table 3. Overview of the loading solutions applied for the loading of the O-rings. D = diesel, G = gasoline, BD = biodiesel

Fuel concentration in the loading solution Fuel tested Volume fuel [ml] Volume olive oil [ml]

100 % D,BD 4 0

50 % G, D, BD 2 2

25 % G, D 1 3

12.5% G, D 0.5 3.5

Process Control - 0 4

doi:10.1371/journal.pone.0163862.t003
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or cytotoxicity of EL were observed in preliminary experiments comparing glass and plastic
plates (S1 Fig). Moreover, Hamilton syringes were used instead of microliter pipettes with plas-
tic tips. EL was tested in three independent replicates; 2-MTHF and 2-MF were tested in four
independent replicates.

2.4.2 Exposurewith reference fuels. Reference samples were prepared as described above.
WAFs were supplemented with 13.8 g/L L-15 Leibovitzmedium (powder, Sigma-Aldrich), 9%
FBS and 1% penicillin/streptomycin solution and were added to 96-well plastic plates in six
replicates with 175 μl per well. In consideration of a further dilution due to the addition of cell
suspension, the initial WAFs were diluted by 21.25% and, thus, resulting in a dilution of
78.75% of the initial WAF. All WAFs were tested in twelve technical replicates. The process
control was tested in six technical replicates. In total, three independent replicates have been
conducted.

For passive dosing, 12 loadedO-rings of each sample concentration and 150 μl of pre-equili-
brated L-15 medium were transferred into 12 wells of a 96-well plate (~2 h after seeding of the
cells) For the process control, 6 O-rings and 6 wells were used. Diesel and biodiesel were tested
in a 96-well plastic plate, whereas gasoline was tested in a 96-well glass plate, due to gasoline-
loaded O-ring damaging the well-surface. Negative and positive controls were applied as
described for the potential biofuels. Each passive dosing concentration with the exception of
BD50-wire was tested in three independent replicates. Only one replicate (six technical repli-
cates) of BD50-wire has been tested to confirm the influence of the direct cell-ring contact on
cell viability.

2.4.3 Cell seeding. For cell seeding, confluent RTL-W1 cells in cell culture flasks were
trypsinizedby using 1x Trypsin (Sigma-Aldrich). To attain a final volume of 200 μl per well
and a final cell concentration of 2 x 105 cells per ml in each well, 100 μl of a cell suspension
adjusted to 4 x 105 cells per ml were transferred to each well containing a potential biofuel,
50 μl of a cell suspension adjusted to 8 x 105 cells per ml were transferred to each well later con-
taining a loaded O-ring, and 25 μl of a cell suspension adjusted to 16 x 105 cells per ml were
transferred to each well containing a WAF of a reference fuel. To reduce diffusion of substances
to adjacent wells, plates were sealed with a membrane (clear adhesive polyester sealing tape;
Thermon Electron LED GmbH, Langenselbold, Germany). Cells were exposed for 48 h at
20°C.

2.4.4 Evaluation and data treatment. After exposure, medium and O-rings were dis-
carded and cells were incubated for 3 h with a 0.005% Neutral red (3-Amino-7-dimethyla-
mino-2methylphenanzine, Sigma-Aldrich) solution. After washing and dye extraction the
absorbance of incorporatedNeutral red was photometrically measured for determination of
cell viability at a wavelength of 540 nm and a reference wavelength of 690 nm using a multi-
mode microplate reader (TECAN infiniteM200; Tecan Austria GmbH, Grödig, Austria).

For data treatment, the mean of the blanks was subtracted from each value and the median
of the first negative control was considered as 100% cell viability. A test was defined valid if the
median of the viability of both negative controls did not vary by more than 20%. For EL, 2-MF,
and 2-MTHF, concentration-response curveswere fitted with a nonlinear ‘log(agonist) vs.
response–Variable slope’ regression (Eq 1) using GraphPad Prism 6.02 (GraphPad Inc., San

Table 4. Final nominal test concentrations in [g/L] of the potential biofuels in the NR assay using RTL-W1 cells.

Substance Conc. 1 Conc. 2 Conc. 3 Conc. 4 Conc. 5 Conc. 6 Conc. 7

EL 25.400 12.700 10.160 7.620 5.080 2.540 1.016

2-MTHF 43.000 21.500 10.750 5.375 2.687 1.343 0.672

2-MF 2.730 1.365 0.683 0.341 0.171 0.085 0.043

doi:10.1371/journal.pone.0163862.t004
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Diego, USA).

x ¼ C �
�
log10

ðB � AÞ
ðy � AÞ

� 1
�
=D ð1Þ

where x is the concentration, y is the percentage of cell viability, A is the Bottom plateau value,
B is the Top plateau value, C is the LogEC50, and D is the unitless Slope factor of the curve.
Concentrations resulting in cell viability of 50% and 80% were calculated (NR50/80-values) for
each replicate. Furthermore, hydrocarbon (HC) concentrations of the biofuel NR50-values
were assumed by calculating the percentage of hydrogen and carbon from the NR50-value. Sub-
sequently, the mean of the three or four NR50-values for each substance was calculated. For the
reference fuels, cell viability of the controls and each sample was normalized against the first
negative control.

2.5 AhR agonist activity: EROD assay

The investigation of AhR agonist activity, so called dioxin-like activity, was performed accord-
ing to Behrens et al.[67] using the EROD assay with modifications published by Seiler et al.[44]
Prior to the beginning of exposure RTL-W1 cells were seeded in 96-well plates and allowed to
grow confluent at 20°C for 72 h to prevent increased background EROD induction due to
stress. 2-MF and 2-MTHF were tested on 96-well glass plates and EL was tested on 96-well
plastic plates. Preliminary experiments revealed no differences of the cells in sensitivity for a
TCDD standard (S2 Fig). For the potential biofuels, eight test concentrations were prepared in
glass test tubes according to Table 5. As highest test concentration, the NR80-value as deter-
mined by means of the NR assay was applied.[31,47,48] WAFs were supplemented with 13.8 g/
L L-15 Leibovitzmedium (powder, Sigma-Aldrich), 9% FBS and 1% penicillin/streptomycin
solution, thus resulting in a dilution of 90% of the initial WAF. Each sample was tested in three
independent replicates and each sample concentration was tested in six technical replicates per
plate.

As a positive control, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; Sigma-Aldrich)was seri-
ally diluted (3.125–100 pM) in two replicates in L-15 medium. After discarding the growth
medium, controls and samples in medium were added to the 96-well plates in 200 μl per well.
Cell exposure was terminated after 72 h (for optimum concentration-response curves accord-
ing to Gustavson et al.[68]) by discarding the exposure medium and freezing of the cells at
-80°C for at least 1 h. Measurement of EROD induction was performed as described by Heger
et al.[41] Frozen 96-well plates were thawed and 100 μl 7-ethoxyresorufin and 50 μl NADPH
(1.2 μM and 90 μM, respectively, in phosphate buffer) were added to each well. Subsequently,
after 10 min, EROD reaction was terminated by addition of 0.54 mM fluorescamine in acetoni-
trile. Resorufinmeasurement was conducted at an excitation wavelength of 544 nm and emis-
sion of 590 nm using a multimode microplate plate reader (TECAN infiniteM200; Tecan
Austria GmbH, Grödig, Austria). Measurement of fluorescamine-boundprotein took place at
an excitation wavelength of 355 nm and an emission at 460 nm. EROD induction was

Table 5. Nominal test concentrations in [g/L] of the potential biofuels in the EROD assay using RTL-W1 cells.

Substance Conc. 1 Conc. 2 Conc. 3 Conc. 4 Conc. 5 Conc. 6 Conc. 7 Conc. 8

EL 7.112 3.556 1.829 0.914 0.406 0.203 0.102 0.051

2-MTHF 10.750 5.375 2.688 1.344 0.672 0.336 0.168 0.084

2-MF 0.546 0.455 0.364 0.273 0.182 0.091 0.046 0.023

doi:10.1371/journal.pone.0163862.t005
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determined as pmol resorufin x mg protein-1 x min reaction time-1 and normalized to the nega-
tive control.

2.6 Statistical Analyses

Shapiro Wilks test for testing of normality was performed for all samples using SigmaPlot 12.0
(Systat Software Inc., Chicago, USA). One Way ANOVA with Dunnett’s post-hoc test (with
Browns-Forsythe Test for testing of homoscedasticity)was applied for detection of significant
cytotoxic effects of the biofuels and the reference fuels as well as significant differences between
NR50-values of the three potential biofuels in the NR assay. Calculations were performed using
GraphPad Prism 6.02. Kruskal-Wallis One Way ANOVA on ranks was performed for detec-
tion of significant increased EROD induction of the biofuels and the reference fuels using Sig-
maPlot 12.0.

2.7 Chemical analyses

The dissolved organic carbon (DOC) concentrations of WAFs used for NR assay and EROD
assay were measured. Therefore, ~10 mL of each sample were filtered (PALL, Acrodisc IC,
0.45 μm PES membrane) and the pH was adjusted to<2. Measurement was performed at the
Institute for Hygiene and Environmental Medicine of the RWTH Aachen University. For pre-
equilibration experiments with the passive dosing tests, gas chromatography with flame ionisa-
tion detector (GC-FID) analysis was performed due to the smaller sample volume available
compared to the WAFs. The larger sample volume of the WAFs allowed a measurement of the
DOCcontent. O-rings were extracted directly using 10 ml n-hexane (C. Roth, Karlsruhe, Ger-
many). Extracts were evaporated using a rotary evaporator and analysed by means of GC-FID
(7820A GC System, Agilent Technologies). For calibration, an alkane standard (C8, C10, C16,
C28) was measured. A 30 m HP-5 GC column with a 320 μm ID and a 0.25 μm film was used.
The oven program was 45°C for 3 min and 8°C/min to 275°C which was held for 7 min. Carrier
gas (helium) flow rate was held at 1.5 ml/min and the detector temperature was fixed at 340°C.
Air and H2 were used as combustion gases at flows of 400 and 30 ml/min, respectively. Chro-
matograms were analysed by means of baseline integration from C10 to C28 using EZChrom
Elite Compact (ver.3.3.2, Agilent Technologies).

Chemical analyses of the biofuels were performed in water (GPR Rectapur1, VWR Inter-
national GmbH, Darmstadt, Germany). For the investigation of losses six wells of a 96-well
plate were filledwith 200 μl of a sample concentration. After 48 h, the volume of the six wells
was pooled for analyses using HPLC with diode-array detector (Agilent technologies 1200
series equipped with G1315C DAD SL). For biofuel analyses, 40 μL samples were injected
directly at 25°C (EL) and 40°C (2-MTHF & 2-MF). Samples were separated on a 125 x 4 mm
LiChrospher 100 RP 8 EC– 5μ column (CS Chromatographie Service,Langerwehe,Germany),
operated at a flow rate of 1 mL min-1. As mobile phase, methanol and water were used. HPLC
gradients were used as describedby Bluhm et al.[69]

Results

3.1 Cytotoxicity

3.1.1 Biofuels. The NR assay revealed significant differences in the cytotoxic potential
between the substances. The NR50-values (concentrations with 50% cell viability, lower NR50-
values indicate higher cytotoxic potential) differed significantly (p<0.05) by a factor of ~13
between 2-MF and EL and a factor of ~1.6 between EL and 2-MTHF. 2-MF showed the highest
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cytotoxic potential with an NR50-value of 0.61 g/L, while testing of EL and 2-MTHF revealed
NR50-values of 7.95 g/L and 12.45 g/L, respectively (Fig 1).

In Table 6 nominal concentrations, measured initial concentrations and measured concen-
trations after 48 h of two concentrations are shown that are enclosing the NR50-value.

Effective chemical activities for the NR assay (EA-50NR) were calculated for each compound
according to Schmidt and Mayer (2015)[70] by dividing by the respective EC50-value (Fig 1)
with the water solubility (Table 1). For each substance, the EA-50NR is well above 0.01, with EL
showing a lower EA-50NR (0.052) than 2-MTHF (0.089) and 2-MF (0.203).

3.1.2 Reference fuels. WAFs and passive dosing investigations of the reference fuels
revealed different results for WAFs in comparison to the passive dosing approach. WAFs did
not induce a cytotoxic effect in the highest concentrations (G-WAF: 50 g/L; D-WAF and
BD-WAF: 100 g/L; S3 Fig). Cell viability varied within 5% compared to the negative control
and was well within the 20% limit of test validity.

DOCmeasurement (for the undiluted WAFs!) revealed 1390 mg/L DOC in G 50 g/L, ~3
mg/L in D 100 g/L and ~8 mg/L in BD 100 g/L. For the process control, DOC concentrations
were below 1 mg/L (Table 7).

The passive dosing approach revealed significant cytotoxic effects for BD50, G50, as well as
D100 (Fig 2). Highest cytotoxicity was found for the highest gasoline concentration (G50:
21.69% ± 2.20% cell viability) followed by the highest diesel concentration (D100: 45.91% ±
6.92% cell viability). BD50 tested without wire (see Materials and Methods) revealed significant
cytotoxic effects (BD50: 70.43% ± 7.69% cell viability), even though the highest biodiesel con-
centration BD100 showed no cytotoxic effects. However, when tested with wire to prevent cell-
ring contact, BD50 revealed no cytotoxic effects.

3.2 AhR agonist activity: EROD assay

Neither the potential biofuels nor the WAFs of the reference fuels revealed any significant
dioxin-like activity. EROD induction did not exceed 2.02 ± 0.80 fold induction of the negative
control for any of the biofuel samples and 1.83 ± 0.79 for the WAFs of the reference fuels (S4
Fig and S5 Fig). Passive dosing was not investigated in the EROD assay.

Fig 1. Cytotoxic effects on RTL-W1 cells caused by EL (A), 2-MTHF (B), and 2-MF (C) determined by

the Neutral red retention assay. Data are given as means (dots) and standard deviation (SD; error bars).

The x-axes give the nominal concentrations. Each curve represents one independent replicate. The

numbers show the NR50-value for the respective sample calculated as the mean of the three or four NR50-

values determined for each replicate. Lower NR50-values indicate a higher cytotoxic potential. nEL = 3,

n2-MF,2-MTHF = 4

doi:10.1371/journal.pone.0163862.g001

Table 6. Overview on losses for each biofuel candidate. Shown concentrations are initial concentrations (t = 0h) and concentrations after t = 48 h (incu-

bation period of the NR assay). Concentrations were chosen according to the EC50-value of the biofuels. Substances were analysed under test conditions in

96-well plates diluted in water without cells. n = 1

Substance Concentration t = 0h [g/L] Concentration t = 48h [g/L]

2-MF (0.68)a 0.625 0.208

(0.34)a 0.294 0.107

EL (12.7)a 12.784 12.751

(10.16)a 10.168 10.125

2-MTHF (10.75)a 11.115 3.781

(5.38)a 5.502 2.180

anominal concentration

doi:10.1371/journal.pone.0163862.t006
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Discussion

4.1 Modifications of the Bioassays

First experiments with the NR assay revealed several challenges regarding the exposure that
have to be considered for the testing of biofuels as well as fossil fuels. Material incompatibility,
test substance volatility, and, in particular for the reference fuels, hydrophobicity were identi-
fied as potential obstacles and could possibly affect the results of ecotoxicological biotestings,
e.g. by giving false positive results or contaminating controls.

While no additional measures, such as the application of solubilizers, were needed for bio-
testing of the three potential biofuels, the reference fuels required pretreatment steps to enable
testing in bioassays. Fossil gasoline and diesel fuels consist of a mixture of known and unknown
components with differingwater solubility and Henry’s Law behaviours,[60] which compli-
cates the generation of a stable solution or concentration in an aqueous test medium. For over-
coming these challenges, the use of WAFs or the application of a passive dosing approach is
possible.[60,71] Test results demonstrated that passive dosing is an advantageous tool for
investigation of complex fuel samples due to a more reliable dosing of the petroleumhydrocar-
bons. However, physical impact of the dosing system on the test system should be prevented.

For biotesting, material compatibility was identified as an important preliminary require-
ment of biomass-derived and fossil fuels. Thus, plastic components were replaced with alterna-
tive glass or steel components, e.g., Hamilton syringes and 96-well glass plates. Neither cell
growth nor EROD induction were found to be impeded by the glass plates (S1 Fig and S2 Fig).
Besides 2-MTHF and 2-MF, gasoline revealed an increased aggressiveness towards plastics.
Precisely, gasoline-loadedO-rings were found to corrode the inner well surface when in direct
contact with plastic plates. Therefore, gasoline was also tested in 96-well glass plates. However,
this observationwas not made for any of the G-WAFs. Since well surface corrosion was only
observed at direct contact betweenO-ring and plastic, it was assumed that the corroding com-
ponents are hydrophobic compounds that remained in the O-ring in high concentration and
did not solve into the aqueous medium. Moreover, the direct contact betweenO-ring and plas-
tic enables a direct diffusion of gasoline hydrocarbons in the plastic without any indirect route
through the aqueous phase. This could probably accelerate and reinforce the deformation of
the plastic.

A further potential impact on the results of potential biofuels and fossil fuels is their volatil-
ity. 2-MF and 2-MTHF are volatile organic compounds (VOC).[72] Observations in prelimi-
nary cytotoxicity tests with 2-MF and 2-MTHF indicate that volatilization might lead to cross
contamination between compounds in adjacent wells or a contamination of the controls
(observed change of the medium colour in negative control wells next to the highest samples
concentration). Therefore, test vessels had to be membrane sealed during testing. However, the
blistering of the membrane and the formation of air pockets could not be entirely prevented,

Table 7. DOC concentrations of gasoline, diesel and biodiesel WAFs. The concentrations are shown in

[mg/L]. nDiesel, Biodiesel = 2, nGasoline = 1

WAF Concentration (DOC) [mg/L]

Gasoline 50 g/L 1390.8

Gasoline 12.5 g/L 325.5

Diesel 100 g/L 3.3±0.5

Diesel 0.1 g/L 1.5±0.0

Biodiesel 100 g/L 8.2±0.1

Process Control 1.0±0.3

doi:10.1371/journal.pone.0163862.t007
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and thus very small amounts of test compounds could evaporate in, e.g., some control wells.
The concentration of this cross contamination, however, was below the limit of detection
(LOD) for HPLC analyses. It was assumed with respect to the appearance of small visible peaks
in the negative control adjacent to the highest 2-MF concentration after 48 h at the same reten-
tion time identified for 2-MF (S1 File, S2 File). Thus, this cross contamination was not consid-
ered to significantly affect the test system. However, sealing by a membrane did not prevent
losses of some potential biofuels from the 96-well plate, in particular of 2-MF or 2-MTHF.
Only ~10–35% and ~30–40% of the initial test concentration could be found in the aqueous
phase after 48 h exposure in a 96-well plate in a blank experiment for 2-MF and 2-MTHF,
respectively (Table 6). The high volatility of 2-MF and 2-MTHF (Table 1) corroborates that
most losses occur by evaporation. Therefore, a better sealing of the test vessels has to be estab-
lished. However, losses of EL were below 1% and considered to be negligible.

Since similar issues were expected for investigation of the reference fuels, test plates contain-
ing the reference fuels were sealed as well. In particular, the complex fossil gasoline fuel

Fig 2. Cytotoxic effects on RTL-W1 cells caused by G, D, and BD in a passive dosing approach. Data are given as means (bars) and

SEM (error bars) of the cell viability [%] of the negative controls. Numbers represent the concentration of a fuel the O-rings were loaded

with (e.g., 25: 25% fuel, and 75% olive oil). The dotted line represents 100% cell viability. Asterisks denote significant differences in

comparison to the negative control (p<0.05, One Way ANOVA with Dunnett’s post-hoc test). nBD50wire = 1, nG,D,BD = 3, nProCo,PC = 10, nNC =

10

doi:10.1371/journal.pone.0163862.g002
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contains a large number of volatile low molecular (<C10) hydrocarbons, and rapidly declining
petroleumhydrocarbon concentrations in the WAF experiments due to volatilization[73] are
assumed to be the main reason for the lack of any cytotoxic effects. However, passive dosing
can maintain a constant concentration of these components, because the reservoirs (silicone
O-rings) can continually compensate the losses of these volatile molecules as long as they are
not depleted.

4.2 Cytotoxicity of biofuels

Investigation of the three potential biofuels revealed significant differences in the cytotoxic
potencies. A factor of ~20 between the NR50-values of 2-MF, the most cytotoxic substance, and
2-MTHF, the least cytotoxic compound, demonstrate the variance in concentration ranges that
have to be considered for the testing of different biofuels (Fig 1). However, by calculating and
comparing the EA-50NR values, this factor is reduced to ~4. All EA-50NR values were well
above 0.01 and, thus, indicating a baseline toxicity and no excess toxicity. According to Reich-
enberg et al.[74], baseline toxicity requires a chemical activity of at least 0.01–0.1, whereas a
EA-50 value well below 0.01 would suggest a specificmode of toxic action. However, since the
EC50-values for the potential biofuels were calculated from nominal concentrations, they are
probably overestimating the actual EC50-values (and the EA-50NR values) due to the high vola-
tility of, e.g., 2-MF and 2-MTHF.

Fig 3. Overview on NR50/LC50-values (symbols) and concentration ranges (bars) for the three potential biofuels 2-MF, 2-MTHF

and EL for NR assay (cytotoxicity) and EROD assay (dioxin-like activity) and the fish embryo toxicity test (teratogenicity/

embryotoxicity; (69)). The lack of symbols indicates that no EC50 value could be obtained.

doi:10.1371/journal.pone.0163862.g003
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Unfortunately, little ecotoxicological data is available on these three substances, even though
each substance has already been applied as a fuel additive[55,56,58,75] and EL is also used as a
flavour at very low concentrations.[76] However, since many furans, such as furan, tetrahydro-
furan, dibenzofuran or menthofuran, are known to cause adverse effects on lung, liver, and kid-
ney tissue,[77–82] toxic effects, in particular induced by alkylated furan such as 2-MF, were
expected.[81] In case of 2-MF, enzymatic bioactivation by a cytochrome P450 monooxygenase
to the main intermediate acetylacrolein (AA) appears to be the major mechanism of its toxic-
ity.[83–86] The intermediate AA was found to bind rapidly to tissue macromolecules, such as
microsomal proteins[83,84] that are involved in many vital functions of the metabolism, e.g.,
the metabolization of endogenous and exogenous substances.[87]

Information on the processes involved in the toxicity of 2-MTHF and EL are less prevalent.
There are few studies on the toxicity of 2-MTHF and it is considered generally nontoxic to
humans.[88,89] With an NR50-value of 7.95 g/L, EL also appears to have a similar low toxic
potential as 2-MTHF (NR50-value 12.45 g/L). Since toxicity of derivates of levulinic acid, such
as EL, often depends on the length of the alkylated side chain and their hydrophobicity, EL is
considered slightly more toxic than the parent compound levulinic acid.[90] However, as could
be shown by Bluhm et al.,[69] the toxic potential of EL (LC50: 0.083 g/L) in the fish embryo tox-
icity test is significantly increased compared to 2-MF (LC50: 0.405 g/L) and 2-MTHF (LC50:
2.98 g/L) (Fig 3). For EL and 2-MTHF, acute embryotoxicity was found to be nearly two orders
of magnitude and approximately 4 times higher than cytotoxicity, respectively. For 2-MF, no
differences could be detected. Danio rerio embryos appear to be very sensitive to an exposure
with EL. However, the specificmode-of-action is not known and, thus, the difference in the rel-
ative toxicity of the three biofuel candidates cannot be completely explained. Moreover, many
fish cell lines are known to be several orders of magnitude less sensitive than fish.[91] The
increased toxicity of EL to D. rerio is most likely caused by species-specificdifferences between
D. rerio embryos and RTL-W1 cells or differences between the level of complexity (cell vs.
embryo). Applying a different and more sensitive test system, such as the RTgill-based toxicity
assays proposed by Tanneberger et al.[91], might result in an effect concentration more similar
to the LC-value determined for D. rerio embryos. Thus it could be examined if other cell line
than RTL-W1 would be favourable for a screening regarding the cytotoxic potential of biofuel
candidates in the future.

These findings highlight once more that extrapolating toxic potencies even for the baseline
toxicity of newly investigated substances on, e.g., different organisms or different levels of orga-
nisation (cell culture vs. whole organism) is limited. Therefore, further aquatic bioassays with
different test organisms and also different levels of complexity have to be considered.

4.3 Cytotoxicity of fossil fuels: WAFs & passive dosing

Gasoline and diesel fuel are known to contain a high amount of low molecular weight sub-
stances, such as monoaromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, xylene)
and polycyclic aromatic hydrocarbons (PAHs),[5,6] which are known to be highly (cyto)toxic.
[92,93] Sulphur, nitrogen and fluor-containing compounds are also present in fossil fuels, but
due to restrictive regulatory practises, these components are usually removed, e.g. by the use of
ionic liquids.[94] Due to the sample composition, significant differences between the fossil
fuels and the RME biodiesel were expected, with gasoline showing stronger toxic effects than
diesel because of a higher concentration of these toxic aromatic hydrocarbons.[6,32] Cytotoxic-
ity of fossil fuels is reported to be caused by non-specific, narcotic effects.[95–97]According to
Van Wezel et al.[98] this non-specific toxicity is the result of an increased fluidity of the cell
membrane after a certain critical body residue (CBR) is attained.
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The lack of biodiesel-WAF cytotoxicity was in good concordance with biodiesel-WSF simula-
tion experiments conducted by Leme and co-workers.[99] A similar lack of cytotoxicity was
expected for the passive dosing testing of RME biodiesel.However, no comparable studies were
available. Therefore, the significant cytotoxic effect observed for the lower biodiesel concentration
tested in the NR assay was unexpected. It was assumed to be induced by a direct contact between
the loadedO-ring and the cells. Due to a lack of O-ring swelling as observed for gasoline (G50,
G25, G12.5), diesel (D100, D50, D25, D12.5) and BD100, BD50-loadedO-rings were lying
directly on the cells.Whereas a direct contact between olive-oil loadedO-rings (= the process
control, no O-ring swelling was observed) and cells had no negative effects, BD50-loadedO-
rings might transfer fatty acid methyl esters from the O-ring into the cell membrane. Thus, mem-
brane composition and fluidity would be changed leading to functional restriction of the mem-
brane.[98] For verification of this assumption, further experiments were conductedwith
BD50-loadedO-rings and short wires (to prevent direct contact of the rings with the cells). By
this, we ensured that cytotoxic effects could have been solely induced by compounds partitioned
into the water phase. First results indicated that the water soluble compounds are not responsible
for the cytotoxic effect of BD50. Thus, the direct ring-cell-contactmight have induced the
observedeffect.However, further replicates are required to support this hypothesis.

The differences between the cytotoxicity of diesel and gasoline by the WAFs and the passive
dosing approach can be explained by their different hydrocarbon concentrations and composi-
tion in the test media. First available results revealed the hydrocarbon concentration of diesel
(~12 mg/L) for O-rings loaded with 100% diesel in pre-equilibrated medium at the beginning
of the NR assay in the passive dosing approach, which is ~4 times higher than hydrocarbon
concentrations in D-WAFs (Table 7). These differences in hydrocarbon concentrations may be
due to the different compositions of fuel components in the passive dosing and WAF approach.
WAFs contain mainly water-soluble, volatile constituents,[60] whereas the pre-equilibrated
passive dosing medium is assumed to contain more hydrophobic, long-chained petroleum
hydrocarbons in higher concentrations. This would also explain why cytotoxicity was not
induced by G-WAF: The petroleum hydrocarbon concentration in the 50 g/L G-WAF (1.39 g/
L) decreased very rapidly after the WAF generation to a very low level that induced no cytotox-
icity. Based on our results, the passive dosing appears to be advantageous regarding investiga-
tions of fossil fuels. Not only the volatile compounds can be partially replaced but also a supply
with hydrophobic compounds over the test duration is improved.

Since none of the WAF induced cytotoxicity, only results for the passive dosing approach
can be used for a comparison to the cytotoxic potencies of the three potential biofuels. D100
was found to induce 50% reduced cell viability at a measured pre-equilibrated concentration of
~12 mg HC/L at the on-set of the NR assay (data not shown), which is at least a factor ~40
lower than the most cytotoxic potential biofuel 2-MF (NR50-value: 490 mg HCcalculated /L).
However, keeping in mind the high losses of 70–90% after 48 h, this NR50-value is certainly
underestimating the actual cytotoxic potential of 2-MF. Therefore, even though the potential
biofuels appear to be less cytotoxic than the fossil reference fuels, for a detailed comparison of
different fuels, sufficient data on the behaviour of the test substances in the test medium has to
be available. In this regard, more comprehensive chemical analyses are very important, e.g. to
confirm constant exposure of the cells in the passive dosing approach at the saturation level of
the reference fuels.[100]

4.4 AhR agonist activity: dioxin-like activity

Our results showed that no dioxin-like activity was caused by the investigated biofuels. The rea-
son may be due to the molecular structure of these biofuel candidates. Traditional ligands for
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AhR-induction are described as hydrophobic, planar and/or halogenated aromatic com-
pounds,[101,102] which was obviously not met by the biofuels in this study.

Similar to the EROD results of biofuel candidates, WAFs did not cause any significant
EROD induction. The lack of any EROD activity induced by the fossil fuels is probably due to
the evaporation of volatile fuel components (see 4.1). Nogueira et al. (2013) also reported no
dioxin-like activity during the investigated period of time for biodiesel.[103]However, several
other studies reported EROD activity induced by diesel and gasoline.[103–110] In most cases,
low molecular and volatile PAHs, such as BTEX and naphthalene, were reported to induce
EROD activity,[105,106] while some studies indicate that EROD activity is not exclusively
affected by low molecular and volatile PAHs, but also by less volatile fuel compounds,[108]
other relativley soluble organic fuel-oil compounds[111] or anorganic fuel components such as
sulphur or lead.[112,113]

Differences in EROD activity are most likely due to different concentrations of solved petro-
leum hydrocarbons in the WAF or the WSF. They can be influenced by the shaking duration,
mixing energy and duration until phase separation. But also different test organisms or testing
conditions, e.g., static or semi-static exposure/ in vitro or in vivo, the origin of the investigated
fuels[114] or changes in the legal regulations that restrict concentrations of known pollutants
(benzene, sulphur etc.)[115] have to be considered for a comparison of different fossil fuels.
Therefore, for a sufficient comparison of published data, three main criteria are recommended
to be provided: (1) a solid chemical analyses method, (2) sufficient information on the origin of
the fuel and (3) if possible information about additives of the fuel.

Conclusions

In this study, two in vitro bioassays were modified to investigate the toxicological potencies of
biomass-derived fuel candidates and fossil reference fuels. The testing concentrations of these
three biofuels were within their water solubility. Thus, no additional measures such as the
application of solubilizers were required. However, for investigation of the reference fuels, pre-
treatment steps were required to enable testing in bioassays. Passive dosing was found to be
advantageous compared to the WAF approach due to a more constant petroleum hydrocarbon
concentration in the test medium. Moreover, further improvements are required, such as the
prevention of a physical impact on the test system and a reliable method for chemical analyses.
These chemical analyses are essential for a comparison of the relative toxic potency of fossil
fuels and biofuels.

For both samples, biofuels and fossil fuels, modifications on the test system regarding the
high volatility and the material compatibility are required. Evaporation of volatile biofuels or
low-molecular petroleumhydrocarbons directly affects the exposure of the test organisms.
Sample-induced deformation of the test vessel material might lead to dissolution of material
components, such as plasticisers, or physically affect the test system, e.g. by impeding cell
growth. For testing of volatile fuels, a closed system is recommended.However, the applied
polyester sealing tapes were not sufficient to prevent the evaporation of substances out of the
test system according to the results from HPLC. Therefore, different sealing systems, e.g. closed
vials with PTFE seal, might be more suitable for the testing of these volatile fuels. Material com-
patibility was addressed by replacing plastic materials, such as pipette tips and plastic plates,
with Hamilton syringes and glass plates, respectively. These modifications did not affect the
investigated test systems.

Taking the results from the passive dosing testing as a basis for a comparison of the cytotox-
icity of the samples, the biofuels appear to be less cytotoxic than diesel. For a better assessment,
more information on the test concentrations of gasoline and diesel in the passive dosing
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approach are required. Moreover, the differences in dosing methods (passive dosing vs direct
dosing) have to be taken in consideration.

Supporting Information

S1 Fig. Preliminary testing of cell growth on glass and plastic plates.Absorption of Neutral
red retained from cells grown on one plastic (black) and one glass (grey) plate. Data is shown
as the absorption at 540 nm (see 2.4.4) for both negative control rows and the positive control
row on each plate (see 2.4).
(TIF)

S2 Fig. EROD induction of cells grown on glass and plastic plates. TCDD standard curves
(3.125–100 pM) and EC25-values obtained by preliminary experiments on a plastic plate (A)
and a glass plate (B). Data is shown as the EROD induction in pmol�mg��min-1

(TIF)

S3 Fig. Cytotoxic effects on RTL-W1 cells caused byWAFs of the reference fuels.Cell
viability in [%] of the negative control for the WAFs of gasoline (50 g/L), diesel (100 g/L), biodiesel
(100 g/L), the process control (Millipore water) and the positive control (40 mg/L DCP). nG,D,BD =
3, nProCo = 4, nNC,PC = 6
(TIF)

S4 Fig. EROD induction of the three potentialbiofuels.EROD induction in fold induction of
the negative control for EL, 2-MTHF and 2-MF. n = 3
(TIF)

S5 Fig. EROD induction of theWAFs of the reference fuels. EROD induction in fold induc-
tion of the negative control for Diesel and gasoline WAFs. n = 3
(TIF)

S1 File. HPLC chromatogramof 1.365 g/L 2-MF in Millipore water after 48 h.
(TIF)

S2 File. HPLC chromatogramof a negative control (Milliporewater) after 48 h.
(TIF)
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