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Abstract 

Background:  Substantial research is underway to develop next-generation interventions that address current 
malaria control challenges. As there is limited testing in their early development, it is difficult to predefine interven‑
tion properties such as efficacy that achieve target health goals, and therefore challenging to prioritize selection of 
novel candidate interventions. Here, we present a quantitative approach to guide intervention development using 
mathematical models of malaria dynamics coupled with machine learning. Our analysis identifies requirements of 
efficacy, coverage, and duration of effect for five novel malaria interventions to achieve targeted reductions in malaria 
prevalence.

Methods:  A mathematical model of malaria transmission dynamics is used to simulate deployment and predict 
potential impact of new malaria interventions by considering operational, health-system, population, and disease 
characteristics. Our method relies on consultation with product development stakeholders to define the putative 
space of novel intervention specifications. We couple the disease model with machine learning to search this multi-
dimensional space and efficiently identify optimal intervention properties that achieve specified health goals.

Results:  We apply our approach to five malaria interventions under development. Aiming for malaria prevalence 
reduction, we identify and quantify key determinants of intervention impact along with their minimal properties 
required to achieve the desired health goals. While coverage is generally identified as the largest driver of impact, 
higher efficacy, longer protection duration or multiple deployments per year are needed to increase prevalence 
reduction. We show that interventions on multiple parasite or vector targets, as well as combinations the new inter‑
ventions with drug treatment, lead to significant burden reductions and lower efficacy or duration requirements.

Conclusions:  Our approach uses disease dynamic models and machine learning to support decision-making and 
resource investment, facilitating development of new malaria interventions. By evaluating the intervention capabili‑
ties in relation to the targeted health goal, our analysis allows prioritization of interventions and of their specifications 
from an early stage in development, and subsequent investments to be channeled cost-effectively towards impact 
maximization. This study highlights the role of mathematical models to support intervention development. Although 
we focus on five malaria interventions, the analysis is generalizable to other new malaria interventions.
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Background
Significant efforts to deploy malaria interventions world-
wide have led to considerable progress and have reduced 
global malaria prevalence in Africa by half over the 2000 
to 2015 period [1]. Reductions were achieved through a 
diverse range of interventions including mass distribu-
tion of insecticide-treated mosquito nets, indoor residual 
spraying, rapid diagnosis, as well as artemisinin-based 
combination therapies. However, since 2015 progress has 
stalled, and several countries have seen an increase in 
malaria incidence of over 40% [2]. Current interventions 
and malaria control programs are facing major challenges 
due to lack of funding, increases in drug and insecticide 
resistance and diagnostic-resistant parasites, as well as 
supply chain and deployment difficulties [3, 4]. Strategic 
investment and timely development of novel interven-
tions is crucial to maintain the progress made and to 
advance towards malaria elimination [2, 5]. Two recent 
reports issued by the World Health Organization (WHO) 
[6] and the Lancet Commission [7] emphasize the need 
for novel malaria products, calling for a sustained invest-
ment in research and development (R&D).

Consequently, the malaria product development space 
has steadily expanded over the last 15 years. Novel prod-
ucts are diverse, ranging from therapeutic and immuno-
logical interventions, such as drugs and vaccines, to new 
vector control tools. Here we provide an overview of 
these novel interventions and explore the properties for a 
subset of key interventions.

With over 13 new drug compounds in early clini-
cal development [2, 8], new antimalarial therapies will 
hopefully be available in the next 5 years [9]. Neverthe-
less, emergence of drug resistance remains a threat for 
novel drugs, advocating for products that ensure sus-
tained protection. Several malaria vaccine candidates are 
under development [10, 11], and after 30 years including 
phase 3 clinical trial and pilot implementation [12–14] 
the RTS,S/AS01 vaccine has potential to avert mortality 
in children in combination with other interventions [15–
17], including as seasonal prevention [18]. Several other 
vaccines are in phase 2 clinical studies, such as R21 which 
demonstrated a clinical efficacy of up to 77% [19]. More 
recently, biological alternatives to vaccines include pas-
sive immunization with injectable small molecules [20] 
or monoclonal antibodies [21–23]. Conferring protec-
tion against malaria during several months and being safe 
to administer during pregnancy, monoclonal antibodies 
are seen as potential interventions for seasonal malaria 
chemoprevention and protection for certain risk groups, 

with first human trials of monoclonal antibodies ongoing 
[7, 23].

Vector control has seen active development over the 
past years, with over 10 different categories of novel 
products aiming to reduce both indoor and outdoor mos-
quito biting [24–26]. These include new insecticides [27], 
vector traps [28, 29], as well as genetically-altered mos-
quitoes that will eradicate mosquito populations (called 
‘gene drives’) [30, 31]. Furthermore, improved housing 
has been shown to significantly reduce indoor mosquito 
biting [32, 33], and effective house traps or lures are 
being developed to supplement traditional indoor inter-
ventions [34].

Malaria products under development are defined 
through Target Product Profiles (TPPs), which consti-
tute a vital reference for dialogue between various stake-
holders (listed in the “Methods” section) to guide R&D 
investments. TPPs are dynamic documents used dur-
ing the development of a cutting-edge medical product, 
defining its required characteristics to fulfill an unmet 
health need [35]. Given the large amount of malaria 
interventions currently in the development pipeline, a 
systematic approach is essential to inform development 
decisions and prioritization of novel interventions to 
ensure a sustainable investment of resources and a fast 
pace of innovation. Currently, there is no approach sys-
tematically incorporating quantitative evidence and the 
aforementioned operational aspects in malaria product 
development (including intervention deployment, effi-
cacy, duration, decay, and public health impact) from 
early development stages.

Mathematical models of malaria transmission dynam-
ics can be used to bridge this gap, as they quantitatively 
estimate the impact of interventions while including con-
siderable evidence of disease progression and transmis-
sion, host immunity, as well as environmental or health 
system dynamics and their interaction with interventions 
[36] (Fig. 1). These models have been used extensively to 
estimate the impact of malaria interventions and to opti-
mize intervention packages for specific geographies [37, 
38]. Here an established individual-based malaria-trans-
mission model, OpenMalaria [37, 39–43], has been used 
to simulate epidemiological disease and intervention 
dynamics to project the impact on public health, as has 
been employed to conduct several consensus modeling 
and validation studies [37, 41–43].

Due to absence of data at early intervention develop-
ment stages and computational limitations in exploring 
a highly combinatorial parameter space of presumed 
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intervention characteristics, models have mainly been 
used at late stages of intervention development. To date, 
models have only been minimally applied in directing the 
design of new interventions, or in understanding how 
intervention-specific, epidemiological, and systems fac-
tors jointly contribute to impact. Model investigations 
are usually informed by scenario analysis accounting for 
delivery and target age groups, as well as with properties 
of the new intervention pre-defined or informed by late 
clinical trials [41, 44, 45]. In these constrained scenarios, 
the detailed disease and intervention dynamics captured 
by the model tends to obscure the complex relationships 
between intervention parameters, operational factors, 
health outcomes, and public health impact [46]. Exhaus-
tive scenario analyses are computationally expensive, ren-
dering the full exploration of all possible interventions, in 
conjunction with all possible delivery scenarios, combi-
natorically infeasible. Previous approaches using disease 
models to inform TPPs have tackled the combinatorically 
complex parameter space by only exploring a discrete, 
constrained set of parameters [47–49]. These approaches 
have provided insightful knowledge and have empha-
sized the importance of using disease models for defin-
ing TPPs. Nevertheless, they have provided a constrained 
view of intervention specifications. Here, we propose 
a different approach (Fig.  2), where epidemiological 

models guide development of novel disease interventions 
designed to achieve quantified health goals from the early 
stages, placing the end goal of public health impact at the 
center of decision-making.

We covered a diverse spectrum of interventions in the 
malaria development space, pertaining to (1) anti-infec-
tive monoclonal antibodies, (2) anti-infective vaccines, 
(3) transmission-blocking vaccines, (4) outdoor attrac-
tive targeted sugar baits, and (5) eave tubes. We used our 
approach to understand the link between intervention 
characteristics and resulting impact, and to define the 
requirements of these interventions in terms of coverage, 
efficacy, and impact duration to reach desired prevalence 
reduction goals, contingent on operational constraints 
(Fig. 2). We show how modelling can support the devel-
opment process, and introduce a framework that quan-
titatively defines malaria product characteristics within 
TPPs. Our approach illustrates how modelling enables 
translation of R&D efforts into potential impact.

Methods
The approach introduced here combines infectious dis-
ease modeling with machine learning to understand 
determinants and define quantitative properties of target 
product profiles of new malaria interventions. In sum-
mary, we undertook an iteratively engaged exchange 

Fig. 1  Simulation of malaria transmission dynamics with OpenMalaria: model schematic. Key components specified in the model are displayed 
on the top row including vector, intervention, case management, and human host-specific factors. Below, a detailed representation of the 
intrinsic modelled mosquito feeding and host transmission cycles is provided. The dashed, orange arrows mark the action and targets of the 
modelled interventions in this study, as indicated below the arrows. ATSBs stands for attractive targeted sugar baits. A detailed overview of model 
assumptions and parameters is provided in the “Methods” section and Additional file 1: Sect. 1 and Tables S1.1‒S1.3
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with malaria product development stakeholders to 
define desired outcomes and likely delivery use-cases of 
new malaria interventions. We then used mathematical 
models combined with machine learning to perform a 
directed search of the entire space of intervention pro-
files, to define properties of new interventions towards 
achieving the desired health goals. We used Gaussian 
processes (GPs) [50] to generate computationally light 
emulators that work in combination with the established 

OpenMalaria model of malaria dynamics. These emula-
tors accurately captured the non-linear relationships 
between properties of deployed interventions, opera-
tional factors, and resulting health outcomes. They 
allowed efficient sensitivity analyses of intervention and 
health system parameters on predicted public health 
impacts at low computational cost. Furthermore, by cou-
pling emulators with nonlinear optimization techniques, 
we constructed a predictive framework that identified 

Fig. 2  Overview of the approach to quantitatively define TPPs for novel malaria interventions. A Schematic description of the proposed 
model-based, quantitative framework to guide malaria product development. Results for applying this framework to guide development of five 
novel malaria interventions are provided for a range of simulated, true median PfPR2–10 (before intervention deployment), and schematically 
described in subsequent figure panels. B Global sensitivity analysis for identifying the determinants of intervention impact: colors define 
intervention specifications, deployment coverage, and health system access levels varied in the analysis; the magnitude of the colored area at 
different levels of transmission (x-axis) represents the relative importance (y-axis) attributable to factors driving the observed PfPR0–99 reductions 
following intervention deployment. C Optimization of intervention properties to achieve desired health goals: the heatmap (left panel) displays, 
for a given intervention property (coverage, efficacy, or half-life), the landscape of minimum required values to achieve various target PfPR0–99 
reductions. Each row of the heatmap corresponds to a target of PfPR0–99 reduction and constitutes a minimum profile of the considered 
intervention characteristic (right panel)
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key determinants of intervention impact as well as the 
minimal intervention profiles required for achieving a 
given health goal. The methodological approach is sche-
matically outlined in Fig.  2 with a description of its 
components provided in the following sub-sections and 
complemented in Additional file 1.

Stakeholder engagement and expert group discussions
There was active engagement and regular exchanges with 
different expert groups during development of the meth-
odological framework for guiding TPPs of novel malaria 
interventions. Stakeholders involved in these discussions 
were the Bill and Melinda Gates Foundation (BMGF), the 
Innovative Vector Control Consortium (IVCC), the Pro-
gram for Appropriate Technology in Health—Malaria 
Vaccine Initiative (PATH-MVI), and the World Health 
Organization (WHO).

Guided by the BMGF, the stakeholder engagement 
process included initial meetings, interim meetings to 
define analyses, and presentations of results. The aims 
of these exchanges were (1) to create a communication 
environment with stakeholders to be able to incorporate 
their feedback to ensure realistic representation of novel 
malaria interventions and of the simulated disease trans-
mission settings in this approach (2), to continuously 
shape this methodology to enable generating the relevant 
quantitative evidence to inform TPPs of novel malaria 
interventions from early stages of product development, 
and (3) to define and refine the priority research ques-
tions to be addressed with our analysis.

The exchanges with the stakeholders were coordinated 
and guided by BMGF through regular meetings as fol-
lows. First, there was an initial convening with all stake-
holders to frame the key study questions, to establish a 
network for iterative dialogue and to inform the partners 
about OpenMalaria, its components, features, and valid-
ity of assumptions. At these meetings, there were over 15 
participants from BMGF, IVCC, PATH-MVI, and Swiss 
TPH. The health goal of malaria prevalence reduction in 
all ages was chosen during this meeting, as well as the 
five malaria interventions on which to focus our analysis. 
Second, several one-to-one iterative meetings were held 
with each stakeholder to define the way the five chosen 
interventions are implemented in OpenMalaria and to 
define relevant aspects to consider for their deployment 
(e.g., targets in the malaria transmission cycle, shape of 
decay, mass deployment, assessing impact at early and 
late follow-up), as well as putative ranges of their char-
acteristics. We consulted with BMGF and PATH-MVI to 
refine the modeled vaccines, monoclonal antibodies, and 
drugs, and with IVCC to refine attractive targeted sugar 
baits and eave tubes. The set of simulated transmission 
settings (seasonality, indoor biting) were also defined 

during these meetings. Interim meetings were held with 
several stakeholders where we presented proof-of-con-
cept and intermediate analyses. These meetings ensured 
building trust and a high level of confidence from our 
stakeholders in this analysis, while shaping the research 
questions. Additional context describing the iterative 
expert group discussions are provided in Additional 
file 1: Sect. 1.1

Establishment of the open‑source model
We used OpenMalaria v38.0 [39, 40], an established 
open-source stochastic, individual-based model to sim-
ulate malaria epidemiology and transmission dynam-
ics across humans and mosquitoes in various settings 
with an overview in Fig.  1 and fully described in Addi-
tional file  1: Sect.  1.2 and Tables S1.1‒S1.3, with source 
code available from https://​github.​com/​Swiss​TPH/​
openm​alaria/. The OpenMalaria model was calibrated 
and validated in previous studies using historical epi-
demiological data [39, 40, 51], and this calibration was 
used for this study (as fully described in Additional file 1: 
Sect.  1.2.1‒1.2.2, including model components, core 
parameters and mosquito cycle dynamics in Additional 
file 1: Tables S1.1‒S1.3).

Description of simulation experiments
The simulated human population size in this analysis 
was 10,000 individuals, with its age structure informed 
by health and demographic surveillance data for Ifa-
kara, Tanzania [52]. It is assumed that no infections 
were imported over the entire study period. Health sys-
tem characteristics, mosquito entomological parameters 
driving infection patters, and seasonal exposure patterns 
are described in Additional file 1: Sects. 1.2.1‒1.2.4, Figs. 
S2.1‒S2.3, and Tables S1.1‒S1.3. Parasite infections in 
simulated hosts are simulated individually and disease 
effects such as immunity, infectiousness to mosquitoes, 
morbidity, or mortality are tracked. Setting-specific 
characteristics include demographics, mosquito species 
entomological profiles are explicitly modelled and a wide 
range of human and vector interventions can be applied. 
Various health outcomes are monitored over time, 
including Plasmodium falciparum prevalence of infec-
tions (PfPR), uncomplicated clinical or severe disease, 
hospitalization, and malaria mortality. Model assump-
tions have been described and validated with field data in 
previous studies [39, 53].

Definition of intervention profiles, their impact and health 
goals
We built a standardized representation for each malaria 
intervention and modelled each intervention by iden-
tifying their action on parasite or vector targets during 

https://github.com/SwissTPH/openmalaria/
https://github.com/SwissTPH/openmalaria/
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the malaria transmission cycle (orange arrows in Fig. 1). 
Accordingly, each intervention was defined by its target, 
the ranges of the deployment coverage, initial efficacy, 
half-life, or duration of effect as well as the type of effi-
cacy decay (see Additional file  1: Sect.  1, Fig. S2.2 and 
Table 1 for detailed intervention specifications). For sim-
plification, the words ‘half-life’ and ‘duration’ are used 
interchangeably to describe the longevity of an interven-
tion effect. The simulated malaria transmission settings 
were defined by the yearly entomological inoculation rate 
(EIR), seasonality level, access to treatment, as well as 
proportion of indoor mosquitoes. Descriptions of quan-
tification of the efficacy of a given therapeutic or immu-
nologic intervention, as well as definitions of intervention 
targets (as shown in Fig.  1) are provided in Additional 
file  1: Sect.  1.2.3. Each intervention or combination of 
interventions was applied as mass intervention target-
ing to all ages equally, along with continuous case man-
agement. Additional file  1 also provides descriptions of 
deployment of mass intervention packages (Additional 
file 1: Sect. 1.2.3), how the input the EIR was translated to 

PfPR2–10 (Additional file 1: Sect. 1.2.4), as well as defini-
tions of intervention impact and health goals (Additional 
file 1: Sect. 1.2.5).

Disease model emulator with Gaussian processes
As it was computationally intensive to simulate an 
exhaustive number of simulations to explore the entire 
parameter space for diverse combinations of inter-
ventions, settings, and deployments, machine learn-
ing techniques and kernel methods were applied. A full 
description of how the model emulator was built with 
Gaussian processes is provided in Additional file  1: 
Sect.  2.1, along with a description of how the training 
dataset was built for each intervention and setting (Addi-
tional file 1: Sect. 2.2) and how emulators were trained on 
this dataset (Additional file 1: Sect. 2.3).

Identifying impact determinants through sensitivity 
analysis
To estimate the contribution of each model input and 
its interactions with the other inputs to the variance of 

Table 1  Description and ranges of OpenMalaria simulation interventions and transmission settings

Interventions and transmission settings were defined through consultation with product development stakeholders. Parameters varied within the OpenMalaria 
simulations include characteristics of applied malaria interventions (see Additional file 1: Fig. S2.2 for visual ranges of these parameters), as well as malaria 
transmission setting characteristics.

EIR entomological inoculation rate, PfPR0–99 prevalence of Plasmodium falciparum malaria in all ages,   PfPR2–10 prevalence of Plasmodium falciparum malaria in 2-to-10-
year-olds

Intervention Coverage Initial efficacy Half-life or duration 
(years)

Decay type

Preventing infection

Simulated malaria 
intervention proper‑
ties

Anti-infective vaccine 0–1 0.3–0.95 0.5–5 Weibull (k = 0.8)
(Sigmoidal)

Anti-infective monoclonal antibody 0–1 0.3–0.95 0.167–0.667 Weibull (k = 3)
(Biphasic)

Blood stage clearance

Antimalarial drugs 0–1 0.8–1 0–0.1667 Exponential

Transmission blocking

Vaccine 0–1 0.3–0.95 0.5–5 Weibull (k = 0.8)
(Biphasic)

Preprandial killing effect (affects indoor mosquito biting)

Eave tubes 0–1 0.3–0.99 0.5–5 Weibull (k = 3)
(Sigmoidal)

Preprandial and postprandial killing effect (affects outdoor mosquito biting)

Attractive targeted sugar baits 0–1 0.7–0.99 0.167–0.667 Step

Simulated malaria 
transmission settings

EIR range: 1–25, representing a PfPR0–99 of 13–88% and a PfPR2–10 of 7.2–74.0%

Case management (baseline scenario) range: 0–0.8, corresponding to a probability range of seeking care within 5 days from the 
onset of fever of 0–0.5
Seasonality levels
1. High seasonal setting with one transmission peak over a year
2. Perennial setting with constant yearly transmission

Proportion of indoor-biting mosquitoes, out of total indoor and outdoor biting mosquitoes:
3. High (0.8)
4. Medium (0.5)
5. Low (0.2)
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the model outcome, a global sensitivity analysis based 
on variance decomposition [54] was conducted. A com-
plete description of the sensitivity analysis process can be 
found in Additional file 1: Sect. 4.1.

Finding minimal intervention properties
The trained GP models for each transmission setting and 
intervention were used within a general-purpose optimi-
zation scheme to identify minimum intervention prop-
erties that reach a defined PfPR0–99 reduction goal given 
operational and intervention constraints. The calcula-
tions for finding the minimal intervention properties are 
provided in Additional file 1: Sect. 5.1.

Results
Establishment of the approach to quantitatively define 
the framework guiding malaria product development
We developed a disease model and machine learning 
approach to quantitatively define malaria interventions. 
Our approach consists of three components: “Disease 
modelling”, “Machine learning”, and “Target product 
profiles” (Fig.  2). The “Disease modelling” component 
of our approach included the results of iterative consul-
tations with product development experts to build sen-
sibly informed TPP simulation scenarios, i.e., to define 
the breadth, range, and intervention profiles to simulate 
with OpenMalaria for the five malaria interventions con-
sidered, as well as a public health goal to optimize (see 
“Methods” and Additional file 1: Sect. 1 for a description 
of the iterative stakeholder engagement process). Follow-
ing the expert discussions, the public health goal chosen 
in this study was to reduce the prevalence of Plasmodium 
falciparum malaria (denoted as PfPR0–99 when evaluated 
for all ages and PfPR2–10 when evaluated for 2‒10-year-
old) between years one and three following deployment 
(Fig.  3A). Table  1 summarizes the results of the stake-
holder discussions to set-up the OpenMalaria simulation 
scenarios and presents a comprehensive description of 
all subsequent intervention characteristics explored in 
this study, as well as the simulated malaria transmission 
settings.

We used a previously published calibration of the 
OpenMalaria model (Figs. 1 and 3A, and Additional file 1: 
Sect. 1 and Tables S1.1‒S1.3), which reflects demograph-
ics, epidemiology, entomology, health system access, and 
seasonality (Additional file  1: Fig. S2.1) for a catchment 
area in Tanzania [55]. Intervention impact was assessed 
through predicted reduction in PfPR0–99, correspond-
ing to true infection prevalence and not patent [detected 
with a diagnostic such as rapid diagnostic test (RDT) or 
polymerase chain reaction (PCR), Fig. 3A and Additional 
file  1: Figs. S2.3 and S3.1–S3.4]. The simulated settings 
covered a broad spectrum of transmission and mosquito 

biting behavior archetypes relevant for attaining general 
guiding principles in the early development phase of new 
malaria interventions. A comprehensive set of simulated 
scenarios was built by uniformly sampling the param-
eter space defined by intervention and transmission set-
ting characteristics (defined in Fig.  2A and detailed in 
Table 1). These scenarios were simulated with OpenMa-
laria, yielding an extensive database of disease outcomes 
for the defined scenarios.

In the machine learning part of the approach (illus-
trated in the “Machine learning” panel of Fig.  2A), the 
database of simulated scenarios and corresponding 
outcomes (PfPR0–99 reductions following intervention 
deployment) was used to train predictive models for the 
OpenMalaria simulation results (for an example of simu-
lated PfPR0–99 time series with OpenMalaria see Fig. 3A 
and Additional file 1: Fig. S3.1). A Heteroskedastic Gauss-
ian process (GP) model was trained for each intervention 
and transmission setting (see detailed training procedure 
in Additional file 1: Sect. 2.3). Trained GP models accu-
rately captured the dependencies between the disease 
model input parameters and the output intervention 
impact (Fig.  3B and C) and were able to reliably pre-
dict the reduction in PfPR0–99 attributable to any input 
intervention characteristics in a given malaria transmis-
sion setting. Precisely, the correlation between true and 
predicted PfPR0–99 reduction on out-of-sample test sets 
exceeded 95% while the absolute mean error was below 
3% for all trained GP models (Fig.  3B and Additional 
file  1: Figs. S4.1‒S4.3 and Table  S4.1). As a result, the 
trained predictive GP models acted as emulators of the 
detailed modelled parameter dynamics and non-linear 
relationships within the individual-based mathematical 
model of malaria transmission (Fig.  3C and Additional 
file 1: Figs. S4.5‒S4.6) and could predict the disease out-
come for the given health goal and for any set of input 
parameters.

Due to the significantly less intensive computational 
requirements of our emulator-based approach com-
pared with OpenMalaria, we could reduce the analysis 
execution time by several orders of magnitude. This 
allowed us to conduct global sensitivity and optimiza-
tion analyses, which required a large number of param-
eter set evaluations and would otherwise not have 
been possible (Fig. 3D and Additional file 1: Fig. S4.7). 
Thus, the trained GP emulators could be efficiently 
and promptly used in downstream analyses to explore 
the multi-dimensional space of intervention proper-
ties to design TPPs of new malaria interventions (panel 
“Target product profiles” in Fig. 2A), i.e., to identify the 
drivers of their impact and their quantitative prop-
erties in meeting the health goals previously defined 
(Fig.  2B and C). Specifically, through global sensitivity 
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analysis, we identified the key determinants of inter-
vention impact (Fig.  2B). In addition, we performed a 
constrained search for intervention and delivery pro-
files (TPPs) that maximized impact under a particular 
health goal, given concrete, expert-informed, opera-
tional constraints such as possible deployment cover-
age, or feasible intervention properties such as efficacy 
or duration of protection (Fig.  2C). Results of these 
analyses are detailed in the following sections and 
illustrated for seasonal transmission settings with high 
indoor mosquito biting. Results for the other simulated 
transmission settings (perennial settings and for other 
mosquito biting patterns) are provided in the supple-
ment (additional sensitivity analysis results presented 
in Additional file  1: Figs. S5.1‒S5.2, additional optimi-
zation results presented in Additional file 1: Figs. S6.1‒
S6.6 and S7.1‒S7.5) and summarized in Table 2.

Impact of malaria interventions and the importance 
of their characteristics
Following simulation with OpenMalaria of deployment 
of each of the studied interventions through mass admin-
istration campaigns over several years (see “Methods”), 
we analyzed the predicted distributions of reduction in 
true PfPR0–99. We found that, in general, when aiming for 
substantial, prompt reductions in prevalence for this par-
ticular health target, vector control was by far the most 
impactful intervention across all settings. Conversely, 
monoclonal antibodies, anti-infective and transmission-
blocking vaccines had a more pronounced impact in 
low-transmission settings compared to endemic set-
tings (Fig.  4A and Additional file  1: Figs. S3.1–S3.4 and 
Table  2). Figure  4A displays the reductions of PfPR0–99 
for all the five interventions in a seasonal malaria trans-
mission setting, with high indoor mosquito biting, for 

Fig. 3  Training predictive Gaussian process emulators of simulated intervention impact with OpenMalaria. Examples are shown for attractive 
targeted sugar baits (ATSBs); results for other interventions are shown in Additional file 1: Figs. S3.1 and S4.2‒S4.7 and Table S4.1. A Simulated 
malaria PfPR0–99 time series at EIR = 10 where ATSBs were deployed at a coverage of 70% and had an efficacy of 70%. Results are shown for three 
intervention half-life levels. The dotted lines indicate when interventions were applied (beginning of June). The effect of the interventions was 
assessed by evaluating the yearly average PfPR0–99 reduction in all ages relative to the year prior to deployment (first grey block). Two outcomes 
were assessed, depending on whether the average prevalence was calculated over the year following deployment (immediate follow-up), or 
over the third year following deployment (late follow-up). B Correlation between simulated true (horizontal axis) and predicted (vertical axis) 
PfPR0–99 reduction with a GP emulator trained to predict the immediate impact of ATSBs. The GP emulator was trained in a cross-validation scheme 
(distribution of the Pearson correlation coefficient r2 shown in the boxplot) and validated on an out-of-sample test set (r2 left upper corner and 
grey diamond lower right corner of the boxplot). C Relationship between each normalized input parameter and the resulting PfPR0–99 reduction 
predicted with the trained GP emulator. Each parameter was in turn varied within its defined ranges (Table 1) while other parameters were set to 
their average values. D Estimated CPU execution time for varying sizes of input parameter sets evaluated with OpenMalaria (black) and with the 
trained GP emulator (grey)
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both immediate follow-up (during the year after inter-
vention deployment) and late follow-up (during the 
third year after intervention deployment). Accordingly, 
at immediate follow-up, attractive targeted sugar baits 
achieved a median PfPR0–99 reduction of 96% in low 
transmission settings (PfPR2–10 ≈ 7%) decreasing to a 
median PfPR0–99 reduction of 49% in high transmission 
settings (PfPR2–10 ≈ 59%). Similarly, eave tubes reduced 
PfPR0–99 by 98% (median value) in low transmission set-
tings, decreasing to 43% reduction (median value) in high 
transmission settings. Monoclonal antibodies yielded the 
smallest impact compared to all the five tested interven-
tions, reducing PfPR0–99 by 54% (median value) in low 
transmission settings to only 4.5% (median value) in high 
transmission settings. Anti-infective vaccines reduced 
PfPR0–99 by 70% (median value) in low transmission set-
tings and by 17% (median value) in high transmission set-
tings. Transmission-blocking vaccines reduced PfPR0–99 
by 86.5% (median value) in low transmission settings and 
by 8% (median value) in high transmission settings. At 
long follow-up, long-lasting eave tubes maintained the 
high reductions in prevalence, ranging from 99% (median 

value) in low transmission settings to 23% (median value) 
in high transmission settings. Attractive targeted sugar 
baits, anti-infective and transmission-blocking vaccines 
led to similar reductions (e.g., 79.5% median reduction 
for anti-infective vaccines in low transmission settings 
and 9% in high transmission settings), while monoclonal 
antibodies only achieved a maximum of 41.5% median 
PfPR0–99 reduction in the low transmission settings, 
decreasing below 1% reduction in high transmission 
settings.

Sensitivity analysis indicated that the impact of these 
interventions on malaria prevalence was driven by differ-
ent characteristics of their efficacy profiles, deployment 
strategies, or access to care for treatment of clinical cases, 
for short- and long-impact follow-up. Across a large pro-
portion of the simulated scenarios, for all parasite and 
vector targets and interventions, deployed interven-
tion coverage was overwhelmingly the primary driver of 
impact, especially in low-transmission settings (Fig. 4B–F 
and Additional file 1: Figs. S5.1–S5.2). For immunological 
interventions, the impact of short-term passive immu-
nizations such as monoclonal antibodies relied on their 

Table 2  Key findings of our quantitative approach guiding target product profiles of new malaria interventions

Intervention Summary of analysis results

Immunological interventions
-Anti-infective monoclonal antibodies
-Anti-infective vaccines
-Transmission-blocking vaccines

Key determinants of impact
(Fig. 4, Additional file 1: Fig. S5.1)
-The main driver of intervention impact was coverage
-The second determinant of intervention impact depended on intervention half-life. For interventions with 
short half-lives such as monoclonal antibodies, the half-life was the second driver, while for long-term inter‑
ventions such as vaccines, efficacy played a key role
-As opposed to long-term vaccines whose impact was mainly driven by coverage and efficacy, interven‑
tions with short half-lives (e.g., anti-infective monoclonal antibodies) relied on case management to prevent 
resurgence
-The various biting patterns of mosquitoes did not influence the intervention determinants of impact

Optimal intervention profiles
(Fig. 5, Additional file 1: Fig. S6.1‒S6.4 and S7.1‒S7.3)
-As opposed to vaccines, anti-infective monoclonal antibodies required high efficacy and deployment cover‑
age while achieving limited reduction in PfPR0–99 with very little impact in perennial settings
-Increasing the deployment frequency for anti-infective monoclonal antibodies from once to twice per year, 
extended the landscape of feasible health targets mainly in seasonal settings
-Combination with a blood-stage drug proved more impactful compared with increasing the deployment 
frequency for anti-infective monoclonal antibodies, extending the achievable health goals in perennial set‑
tings as well

Vector control interventions
-Attractive targeted sugar baits
-Eave tubes

Key determinants of impact
(Fig. 4, Additional file 1: Fig. S5.2)
-As with short-term immunological interventions, attractive targeted sugar baits relied on case management 
to prevent resurgence
-Limited difference between key drivers for attractive targeted sugar baits in different mosquito biting settings 
was observed because mosquitoes sugar feed before biting indoors or outdoors
-It was observed that intervention properties of eave tubes rather than health system access were larger driv‑
ers of impact in high indoor biting settings, as mosquitoes in those settings will be more likely to contact the 
eave tube

Optimal intervention profiles
(Figs. 3 and 6, Additional File 1: Figs. S6.5, S6.6, S7.4, and S7.5)
-Increasing deployment frequency from once to twice per year for attractive targeted sugar baits resulted in a 
significant increase in intervention impact and less requirements in terms of coverage and half-life
-Increasing efficacy of attractive targeted sugar baits did not have a significant impact
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deployment coverage and the health system (Fig. 4B and 
Additional file  1: Fig. S5.1). In contrast, for long-acting 
interventions such as vaccines, impact was driven by 
deployment coverage and efficacy (Fig.  4C and  D and 

Additional file 1: Fig. S5.1). Highly efficient vector control 
interventions such as attractive targeted sugar baits had a 
strong effect on prevalence (Fig. 4A), and their duration 
of effect was the most important determinant (Fig.  4E 

Fig. 4  Effects of novel malaria interventions on PfPR0–99 and their key drivers of impact. A Distribution of obtained reduction in PfPR0–99 across the 
simulated scenarios with OpenMalaria following deployment of various malaria interventions under development (shown with different colors) 
for a range of simulated transmission settings (specified by median true PfPR2–10 rounded values, x-axis). Each boxplot displays the interquartile 
range (box), the median value (horizontal line), the largest and smallest values within 1.5 times the interquartile range (whiskers), and the remaining 
outside values (points) of the PfPR0–99 reduction values obtained across all the simulations for each given setting. The remaining panels present 
the results of global sensitivity analysis showing, across the same simulated PfPR2–10 settings, the contribution of intervention characteristics to the 
resulting PfPR0–99 reduction for anti-infective monoclonal antibodies (B), anti-infective vaccines (C), transmission-blocking vaccines (D), attractive 
targeted sugar baits (E), and eave tubes (F)
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and Additional file 1: Fig. S5.2). The immediate impact of 
long-term vector control interventions such as eave tubes 
was driven by deployment coverage, while their half-life 
was a key determinant for preventing resurgence (Fig. 4F 
and Additional file 1: Fig. S5.2). Determinants of impact 
were identified for both immediate and late follow-up 
when interventions were applied once per year for three 
years. A detailed description of the determinants of 
impact affecting the effectiveness of each intervention is 
provided in Table 2 (rows labelled “Key determinants of 
impact”).

Minimal requirements of novel malaria interventions 
to achieve a defined health goal
For the five aforementioned malaria interventions, we 
explored their optimal properties for a broad set of 
PfPR0–99 reduction targets, creating landscapes of inter-
vention profiles according to their minimal character-
istics across various transmission settings (Fig.  5 and 
6 and Additional file  1: Figs. S6.1‒S6.6 and S7.1‒S7.5). 
These landscapes provide a comprehensive overview of 
the intervention potential capabilities and limitations in 
achieving a desired health goal. As opposed to an anti-
infective monoclonal antibody which required high effi-
cacy and duration to achieve large PfPR0–99 reductions 
in only a limited number of settings (Fig. 5A and B and 
Additional file 1: Figs. S6.1 and S6.2), attractive targeted 
sugar baits that kill mosquitoes also achieved a wider 
range of target PfPR0–99 reductions in high-transmission 
settings (Fig.  6A and B and Additional file  1: Fig. S6.5). 
Similarly, while anti-infective and transmission-block-
ing vaccines had comparable requirements in achieving 
similar PfPR0–99 reduction targets in settings with lower 
transmission (PfPR2–10 < 30%), anti-infective vaccines 
showed a higher potential and reached additional targets 
in high-transmission, endemic settings (Fig. 5C–F).

For a detailed overview of landscapes of interven-
tion profiles for all simulated settings and interventions 
see Additional file  1: Figs. S6.1‒S6.6. These landscapes 
together with results of the sensitivity analysis offer an 
evidence-based prioritization of resources during prod-
uct development. We found that while both efficacy and 
half-life were important for immediate prevalence reduc-
tions with monoclonal antibodies, their effect was limited 
in preventing resurgence and was only supported by high 
case-management levels (Figs.  4 and 5 and Additional 
file  1: Figs. S5.1 and S6.1‒S6.2). Conversely, the efficacy 
of anti-infective vaccines determined their immediate 
impact, whereas half-life of effect had greater impor-
tance for achieving and maintaining PfPR0–99 reductions 
(Figs. 4 and 5 and Additional file 1: Figs. S5.1, S6.3, and 
S6.4).

Our analysis showed that coverage was a primary driver 
of impact (Fig. 4B‒F and Additional File 1: Figs. S5.1 and 
S5.2). This has important implications for interventions 
requiring multiple applications to achieve high efficacy, 
indicating that it is of crucial importance to target both 
vulnerable populations and the proportion of the popula-
tion missed by the intervention. While, for some inter-
ventions, high coverage deployment might be difficult or 
impossible to achieve, our analysis showed that this can 
be alleviated by increasing the deployment frequency or 
through deploying combinations of interventions, which 
may also have cost implications (Figs.  5B, D, F, 6B and 
Additional file 1: Figs. S6.1‒S6.5 and S7.1‒S7.4).

We found that combining several interventions target-
ing different stages in the transmission cycle can strongly 
affect the minimum requirements of a putative new 
intervention, potentially increasing the impact of an oth-
erwise weaker intervention. For an anti-infective mono-
clonal antibody with an initial half-life of 4 months that 
is deployed at a coverage of 60% reflecting completion of 
multiple doses, achieving 80% prevalence reduction was 
impossible when deployed once yearly for three years 
(Fig.  5A, and Additional file  1: Fig. S6.1). Furthermore, 
achieving the aforementioned health goal required an 
efficacy of over 80% when the intervention was deployed 
twice per year for three years (Additional file  1: Fig. 
S6.2). However, when monoclonal antibody deployment 
was coupled with a short half-life blood-stage parasite 
treatment such as dihydroartemisinin-piperaquine or 
artemether-lumefantrine, its minimum required efficacy 
was considerably reduced for both delivery frequencies 
(Fig. 5B and Additional file 1: Figs. S6.1, S6.2, and S7.1). 
Conversely, if an initial efficacy of 85% for the monoclo-
nal antibody was assumed, its minimal required half-life 
could be reduced if this intervention was deployed in 
combination with a blood-stage parasite-clearing drug 
(Fig. 5B and Additional file 1: Figs. S6.1, S6.2, and S7.1). 
These results partly motivated the current development 
of anti-infective monoclonal antibodies; use-cases will 
likely include deployment with existing or new antima-
larial treatment.

When coupled with a short half-life blood-stage para-
site treatment, requirements of coverage, efficacy and 
half-life were also reduced for anti-infective and trans-
mission blocking vaccines to achieve targeted reduc-
tions of PfPR0–99 (Fig. 5C–F and Additional file 1: Figs. 
S6.3, S6.4, S7.2, and S7.3). In particular, for high-trans-
mission settings (PfPR2–10 > 30%), given an RTS,S-like 
half-life of seven months, both anti-infective and trans-
mission-blocking vaccines could not achieve a defined 
prevalence reduction goal of 70% if deployed singly 
(Figs. 5D and F). This was the case for any deployment 
coverage given an initial efficacy of 85%, as well as for 
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Fig. 5  Estimated optimal intervention TPPs for immunological interventions. The heatmaps in panels (A), (C) and (E) display, for each intervention 
property (coverage, efficacy, or half-life), the landscape of minimum required values to achieve various target PfPR0–99 reductions (y-axis) across 
different simulated transmission settings (true PfPR2–10 rounded values, x-axis). Each row of the heatmap corresponds to a target of PfPR0–99 
reduction and constitutes the minimum required profile of the considered intervention. For a health goal of 70% PfPR0–99 reduction (dotted line 
on each heatmap), panels (B), (D), and (F) present in detail how the minimum profile changes with transmission intensity. Each intervention 
characteristic was minimized in turn, while keeping other characteristics fixed (values marked on each panel where c = coverage, e = efficacy, and 
h = half-life). The simulated access to treatment, corresponding to a probability of seeking care within 5 days, was 25%. TPP = Target Product Profiles, 
mos = months
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any efficacy given a 60% deployment coverage. Com-
bining vaccine deployment with a blood-stage drug 
not only significantly expanded the achievable health 
targets in high-transmission settings, but also reduced 
vaccine properties requirements. Our analysis revealed 
that anti-infective vaccines had a higher potential 
than transmission-blocking vaccines, requiring less 
performance and achieving higher prevalence reduc-
tions targets in higher transmission settings. When 
combined with blood-stage parasite treatment, the 
coverage, efficacy, and half-life requirements of anti-
infective vaccines were lower compared with those of 
transmission-blocking vaccines for the same prevalence 

reduction targets (Fig.  5 and Additional file  1: Figs. 
S6.3, S6.4, S7.2, and S7.3).

We also showed that a modified deployment schedule 
could reduce requirements for properties of some inter-
ventions. For highly efficacious attractive targeted sugar 
baits, higher coverage and half-life were required when 
implemented once per year for three years compared 
with accelerated delivery of twice per year for three years 
(Fig.  6A and B). Except for high-transmission settings 
(PfPR2–10 > 41%), a required efficacy of 70% was sufficient 
to attain the desired health goal for the majority of set-
tings, for both delivery schedules (Fig.  6A and B, and 
Additional file 1: Figs. S6.5 and S7.4). This result was also 

Fig. 6  Estimated optimal intervention TPPs for vector control interventions. The heatmaps in panels (A) and (C) display, for each intervention 
property (coverage, efficacy, or half-life), the landscape of minimum required values to achieve various target PfPR0–99 reductions (y-axis) across 
different simulated transmission settings (true PfPR2–10 rounded values, x-axis). Each row of the heatmap corresponds to a target of PfPR0–99 
reduction and constitutes the minimum required profile of the considered intervention. For a selected health goal of 60% PfPR0–99 reduction 
(dotted line on each heatmap), panels (B) and (D) present in detail how the minimum profile changes with transmission intensity. Each intervention 
characteristic was minimized in turn, while keeping the other characteristics fixed (values marked on each panel where c = coverage, e = efficacy, 
and h = half-life). The simulated access to treatment, corresponding to a probability of seeking care within 5 days, was 25%. TPP = Target Product 
Profiles
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reflected in the sensitivity analysis (Fig. 4E). Accordingly, 
the variation in intervention efficacy, across its investi-
gated ranges, had little importance in driving the inter-
vention impact. This suggests that, once a vector control 
intervention, such as attractive targeted sugar baits, has 
achieved a high killing efficacy (here ≥ 70%), a next step 
of optimizing other intervention characteristics, such as 
deployment coverage or duration, would lead to higher 
impact.

Our comprehensive analysis was applied to explore 
determinants of impact and required profiles of interven-
tions across two seasonal settings (seasonal and peren-
nial) and three types of indoor mosquito biting patterns 
(low, medium, and high). A detailed overview of impact 
determinants and optimal intervention profiles is pre-
sented in Additional file 1: Figs. S6.1‒S6.6 and S7.1‒S7.5, 
with additional key results summarized in Table 2.

Discussion
In this study, we introduced a quantitative framework, 
using detailed simulation models of malaria transmis-
sion dynamics that enables for the first time a quantita-
tive differentiation between operational, transmission 
setting, and intervention parameters to better under-
stand the potential impact of novel interventions against 
malaria. The framework consists of (i) a comprehensive 
disease progression and transmission simulation model 
applied on a discrete, uniformly sampled set of input 
parameters; (ii) training of a GP emulator on the sampled 
set of parameters and corresponding impact outcomes; 
(iii) using sensitivity analysis to understand drivers of 
intervention impact; and (iv) applying a non-linear con-
strained optimization algorithm to explore intervention 
operational and effectiveness characteristics meeting 
various targets and deployment use-cases specified fol-
lowing iterative consultation with product development 
experts. Our work thus builds on recent applications 
of GPs in disease modelling and burden prediction for 
malaria [56].

The value of our approach is realized through itera-
tive collaboration with product development experts, by 
providing model-based guidance throughout the devel-
opment process, and by refining feedback on model pre-
dictions as interventions progress through development. 
For malaria, where multiple interventions are in develop-
ment, it also offers an approach for product developers 
from diverse fields (such as therapeutics and insecticide 
development) to collaborate and incorporate knowledge 
of other interventions into their TPP development. The 
exchanges with stakeholders ensured a crucial discussion 
environment, guiding and supporting the methodology 
at various levels, from intervention profiling and defin-
ing relevant intervention use-cases to shaping research 

questions and subsequent analyses. Consequently, itera-
tive exchanges with stakeholders have not only shaped 
the study approach, but have proven the value of this 
methodological framework in its versatility to adapt and 
address key questions along the product development 
pathway.

This quantitative framework can support the develop-
ment of interventions from the beginning by generating 
evidence to inform and define evaluation criteria ensur-
ing new products meet relevant health targets, while 
considering how these products may affect disease bur-
den and epidemiology within a population. As shown 
here, this relies on iterative dialogue with stakeholders, 
to first define health targets, simulated scenarios, achiev-
able intervention properties, and operational settings. 
The modelling part of the framework incorporates all 
this information as well as relevant disease transmission 
dynamics, building an in-silico system for testing devel-
oped interventions.

Through the sensitivity analysis part of the framework, 
for the five malaria interventions considered, our analysis 
showed which intervention characteristics drive impact 
and are thus crucial in achieving the defined health 
goal. Investigating how the importance of the various 
intervention characteristics changes across transmis-
sion and follow-up provides insights on the development 
processes to be prioritized. Our findings suggest that if 
monoclonal antibodies were to support preventing resur-
gence, then R&D efforts should focus on increasing and 
establishing antibody longevity. While bringing valuable 
quantitative insights to guide product development, our 
analysis of novel malaria interventions reproduces previ-
ous findings concerning intervention characteristics that 
are key drivers of impact. Previous studies have shown 
that intervention coverage is a major determinant of 
impact in the context of mass drug administration [41], 
of vaccines [57], as well as of vector control [26]. Further-
more, this analysis reaffirms previous work showing the 
ability of vector control interventions to achieve substan-
tial reductions in malaria burden [58].

The optimization analysis part of the framework reveals 
the potential of the developed intervention and how its 
efficacy and coverage requirements change according to 
the defined health targets and deployment setting. The 
landscapes of intervention profiles help product develop-
ers gauge development and investment efforts and select 
promising products. Furthermore, our approach allows 
investigating combinations of new and existing interven-
tions, identifying alternatives to alleviate shortcomings 
such as coverage limitations. To achieve a final TPP, sev-
eral iterations of this analysis are required, to ensure that 
the optimal tradeoffs between intervention capabilities 
and target goals for a given setting are best achieved.
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Using a detailed individual-based malaria transmis-
sion model like OpenMalaria brings significant advan-
tages compared to a simpler and computationally less 
intensive Ross-MacDonald model. Individual-based 
models capture interactions between hosts, vectors, 
and parasites at the individual level, which provides a 
more realistic representation of the nonlinear transmis-
sion and epidemiological processes in the population as 
well as of the stochasticity of the modelled system [59]. 
Second, it allows a realistic implementation of interven-
tions, allowing for explicitly modeling intervention char-
acteristics relevant for defining TPPs such as deployment 
regimes, efficacy, half-life, or shape of decay as well as 
explicit action at the different stages of the transmission 
cycle. The advantage of the machine learning layer of our 
approach consists in building a simplified approximation 
of the relationships between intervention characteristics 
and resulting intervention impact. This approximation is 
very specific to the varied components across the model 
simulations (intervention characteristics, access to treat-
ment and EIR) and to the resulting PfPR0–99 reduction 
and allows significantly reducing the computational costs 
of running an individual-based model to explore the 
high-dimensional space of intervention characteristics.

Although in this analysis we used reduction of PfPR0–99 
as a health goal, this method can be applied to other con-
tinuous disease burden statistics as required (see Addi-
tional file 1: Fig. S4.4 for performance predicting malaria 
incidence reduction). The same rationale applies for 
investigating other deployment strategies, required doses 
of interventions, or additional intervention combina-
tions. However, this approach, which uses a smooth GP 
model, is not tailored for classification and categorical 
health goals. Nevertheless, it could be adapted to these 
types of outputs by replacing the GP emulator with a pre-
dictive model/alternative algorithm suited for categorical 
data, such as support vector machines. While sensitivity 
analysis would still be applicable for identifying the driv-
ers of the categorical outcomes, the optimization ques-
tions and analyses would need to be reformulated to be 
relevant for the chosen categorical outcomes.

As with all modelling studies, this approach is based 
on the model assumptions, simulation setup and param-
eterizations, thus the presented results are specific to this 
design. Furthermore, while the emulators capture not just 
the mean tendency of disease models dynamics, but also 
the inherent output variance caused by the stochasticity 
in the models [60], the estimations provided in this study 
are dependent on the performance of the trained emula-
tor. This challenge was addressed with extensive adaptive 
sampling and testing to ensure a high level of accuracy 
of the trained emulators (Fig.  3, and Additional file  1: 
Figs. S4.1‒S4.3 and Table  S4.1). Despite the intrinsic 

uncertainty, this framework is intended to provide guid-
ing principles and an efficient means of exploring the 
high dimensional space of intervention characteristics 
that otherwise would not be possible. Evidently, this anal-
ysis relies on the representativeness of model assump-
tions of disease and transmission dynamics as well as of 
expert opinion of likely intervention parameterizations 
in absence of clinical knowledge. Lastly, this analysis only 
explored a subset of use-cases, transmission settings, and 
intervention combinations. Future work should focus on 
the most likely settings and relevant use-cases as inter-
ventions are being developed and corresponding TPP 
documents are being refined.

Moving beyond the work presented in this paper, this 
framework would allow combining simulation models 
with other sources of data describing geographical vari-
ation in disease, for example, modelled health systems or 
modelled prevalence [61] and would allow incorporating 
interactions of interventions with novel interventions for 
surveillance. Clinical trials for new interventions could 
thereby be prioritized to geographical settings, where 
public health impact is likely to be maximized, and where 
appropriate, to inform decisions on achieving non-infe-
riority or superiority endpoints [62]. A significant exten-
sion would be to incorporate economic considerations 
that may affect development decisions, including both 
R&D costs, as well as implementation and systems costs 
for final deployment.

Conclusions
In this work, we provide mathematical tools for effi-
ciently and quantitatively defining the minimum profiles 
of malaria interventions, as well as delivery approaches 
required to reach a desired health goal. Our framework 
can be extended and used for any disease where a valid 
model of disease progression or natural history of disease 
is available. It can be used to direct the design of novel 
interventions and to better understand how interven-
tion-specific, epidemiological and systems factors jointly 
contribute to impact. Most immediately, this approach is 
highly relevant to define successful interventions against 
new diseases, and to support efficient, fast development 
of operational strategies.

Our framework tackles and moves beyond current 
challenges in product development. On one hand, it 
allows rigorous definition of TPPs by efficiently exploring 
high dimensional parameter spaces of disease dynamic 
models and the interventions, and on the other hand, it 
allows determinants of desired public health impact to be 
identified to inform tradeoffs between product character-
istics and use-cases.
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