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Under pathophysiological conditions, aberrant mitochondrial dynamics lead to the
different types of neuronal death: excessive mitochondrial fission provokes apoptosis
and abnormal mitochondrial elongation induces necrosis. However, the underlying
mechanisms how the different mitochondrial dynamics result in the distinct neuronal
death patterns have been elusive. In the present study, status epilepticus (SE)
evoked excessive mitochondrial fission in parvalbumin (PV) cells (one of GABAergic
interneurons) and abnormal mitochondrial elongation in CA1 neurons in the
rat hippocampus. These impaired mitochondrial dynamics were accompanied by
mitochondrial translocations of active caspase-3 and high mobility group box 1
(HMGB1) in PV cells and CA1 neurons, respectively. WY14643 (an activator of
mitochondrial fission) aggravated SE-induced PV cell loss by enhancing active
caspase-3 induction and its mitochondrial translocation, which were attenuated by
Mdivi-1 (an inhibitor of mitochondrial fission). Mitochondrial HMGB1 import was
not observed in PV cell. In contrast to PV cells, Mdivi-1 deteriorated SE-induced
CA1 neuronal death concomitant with mitochondrial HMGB1 translocation, which
was abrogated by WY14643. These findings suggest that SE-induced aberrant
mitochondrial dynamics may be involved in translocation of active caspase-3
and HMGB1 into mitochondria, which regulate neuronal apoptosis and necrosis,
respectively.
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INTRODUCTION

Mitochondria play an essential role in bioenergetics and respiratory functions for cell
viability. Furthermore, mitochondria are dynamic organelles, which continuously change
their morphologies (referred to as dynamics) to maintain their functionality in response to
extra- and intracellular circumstances by two counteracting processes of fusion (elongation)
and fission (fragmentation). Furthermore, imbalance of mitochondrial dynamics lead to the
distinct neuronal death under stressful conditions (Youle and Karbowski, 2005; Parone et al.,
2008; DuBoff et al., 2012; Kim et al., 2014; Kim and Kang, 2017): Excessive mitochondrial
fission provokes the impaired mitochondrial function triggering apoptosis. In contrast,
improper segregations and localizations of mitochondria induced by aberrant mitochondrial
elongation lead to necrosis (Parone et al., 2008; DuBoff et al., 2012; Kageyama et al., 2012).
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In the hippocampus, dentate hilar neurons and
CA1–3 pyramidal cells are extremely vulnerable to status
epilepticus (SE, a prolonged seizure activity), although dentate
granule cells are resistant. Furthermore, SE-induced neuronal
death shows the heterogeneous patterns (Ordy et al., 1993;
Mathern et al., 1995; Wittner et al., 2001; Kim et al., 2011;
Ryu et al., 2011). Briefly, SE leads to programed necrosis
in CA1 neurons (Kim et al., 2014; Ko et al., 2015; Hyun
et al., 2016), and caspase-3 dependent apoptosis in loss
of parvalbumin (PV) cell (one of GABAergic fast-firing
interneurons in the dentate gyrus; Kang et al., 2006; Kim and
Kang, 2017). Interestingly, the properties of mitochondrial
dynamics in response to SE are also distinct from each
neuronal subpopulation. SE provokes aberrant mitochondrial
elongation in CA1 neurons (Kim et al., 2014; Hyun et al.,
2016), but it propels excessive mitochondrial fragmentation
in PV cell (Kim and Kang, 2017). However, the underlying
mechanisms how the different mitochondrial dynamics
lead to the distinct neuronal death patterns have been
elusive.

High mobility group box 1 (HMGB1, a non-histone
DNA-binding protein), is immediately released from the
nucleus to the cytoplasm undergoing necrosis and involved
in giant mitochondrial formation (Scaffidi et al., 2002; Faraco
et al., 2007; Gdynia et al., 2010). Furthermore, mitochondrial
HMGB1 transport facilitates and deteriorates programed
necrotic CA1 neuronal death induced by SE (Hyun et al., 2016).
Similar to HMGB1, active (cleaved) caspase-3 translocate from
cytosol to mitochondria and disintegrates mitochondrial
functions during apoptosis (Chandra and Tang, 2003).
Therefore, pertinent questions are raised whether mitochondrial
dynamics influence mitochondrial translocations of active
caspase-3 and HMGB1, and whether their mitochondrial
translocations are practically involved in the distinct neuronal
death induced by SE.

Here, we demonstrate that under physiological condition
mitochondrial fission was required for caspase-3 activation.
Subsequently, active caspase-3 penetrated into mitochondria.
Following SE, mitochondrial translocations of active caspase-3
were restricted to PV cells, and facilitated PV cell loss. However,
HMGB1 preferentially permeated into elongated mitochondria
in CA1 neurons following SE. Therefore, our findings suggest
that mitochondrial imports of active caspase-3 and HMGB1 may
be involved in the abnormal mitochondrial machinery-mediated
neuronal death induced by SE.

MATERIALS AND METHODS

Experimental Animals and Chemicals
Male Sprague–Dawley (SD) rats (7 weeks old) were used
in the present study. Animals were kept under controlled
environmental conditions (23–25◦C, 12 h light/dark cycle).
Rats freely accessed to water and standard laboratory food
during the experiment. All animal protocols were approved
by the Administrative Panel on Laboratory Animal Care of
Hallym University (the authorization number of the IACUC,
Hallym 2018-2). All possible efforts were taken to avoid animals’

suffering and tominimize the number of animals used during the
experiment. All reagents were obtained from Sigma-Aldrich (St.
Louis, MO, USA), except as noted.

Intracerebroventricular Infusion
Under Isoflurane anesthesia (3% induction, 1.5%–2% for surgery
and 1.5% maintenance in a 65:35 mixture of N2O:O2), animals
were implanted a brain infusion kit 1 (Alzet, Cupertino, CA,
USA) into the right lateral ventricle on the stereotaxic frame
(1 mm posterior; 1.5 mm lateral; 3.5 mm depth to the Bregma).
The infusion kit was sealed with dental cement and connected
to an osmotic pump (1007D, Alzet, Cupertino, CA, USA). Each
osmotic pump contained: (1) vehicle; (2) Mdivi-1 (50 µM) or
(3) WY14643 (150 µM). An osmotic pump was placed in a
subcutaneous pocket between scapulas. In our previous studies
(Kim et al., 2014; Kim and Kang, 2017), the concentration of
each compound could not affect the seizure activity in response
to pilocarpine.

SE Induction
Three days after surgery, LiCl (3 mEq/kg, i.p.) was administrated
to all rats 24 h prior to pilocarpine hydrochloride treatment
(30 mg/kg, i.p.). Twenty minutes before pilocarpine or saline
(control), rats were given atropine methylbromide (5 mg/kg, i.p.)
to inhibit peripheral effects of pilocarpine. Two hours after SE
onset, diazepam (Valium; Hoffman la Roche, Neuilly sur-Seine,
France; 10mg/kg, i.p.) was administered and repeated, as needed.

Tissue Processing
At the designated time points (control, 6 h, 12 h and 3 days after
SE induction), animals were anesthetized with urethane (1.5 g/kg,
i.p.), and transcardially perfused with phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde (in 0.1 M phosphate
buffer; pH 7.4). The brains were removed and post-fixed by
the same solution for 4 h at 4◦C, and submerged overnight in
30% sucrose in 0.1 M PBS for cryoprotection. The 30 µm-thick
coronal sections were made with a cryostat, and contained in
six-well plates containing PBS. During sections, we confirmed
the intracerebroventricular location of a brain infusion kit. Only
animals showing the exact position were used in the present
study.

Immunohistochemistry and Fluoro-Jade B
Staining
After incubation with 10% normal goat serum (Vector,
Burlingame, CA, USA), section were reacted in the mixture of
primary antibodies listed in Table 1 (in PBS containing 0.3%
triton X-100) at room temperature for overnight. After washing,
sections were incubated for 1 h in a FITC (green)-, Cy3 (red)-
or AMCA (blue)-conjugated secondary antibodies (Vector,
Burlingame, CA, USA). For negative control, tissues were reacted
with pre-immune serum instead of primary antibody. Negative
control tissues did not show any immunoreactivity for primary
antibody (data not shown). To analyze the neuronal damage,
Fluoro-Jade B (FJB) staining was performed according to the
manufacturer’s instructions. Immunoreactivities were observed
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TABLE 1 | Primary antibodies used in the present study.

Antigen Host Manufacturer (catalog number) Dilution used

Mitochondrial marker (Mitochondrial complex IV subunit 1, MTCO1) Mouse Abcam (#ab14705) 1:500
Active (cleaved) caspase-3 Rabbit Cell signaling (#9664) 1:400
HMGB1 Rabbit Abcam (#ab18256) 1:100
PV Goat Swant (#PVG213) 1:100,000

using an AxioImage M2 microscope or a confocal laser scanning
microscope (LSM 710, Carl Zeiss Inc., Oberkochen, Germany).

Cell Count and Measurement of
Mitochondrial Length and Mitochondrial
HMGB1 and Active Caspase-3 Intensities
Areas of interest (1 × 105 µm2) were selected in the captured
images of the dentate gyrus and the CA1 region of the
hippocampus proper (15 sections per each animal), and cell
numbers were counted. The number of FJB-positive neurons
was also counted by the same methods. For measurement of
mitochondrial length, 25 serial images (z-stack, 1 µm) were
obtained from each hippocampal section and were used for
3D-reconstruction by using ZEN lite software (Blue Edition,
Carl Zeiss Inc., Oberkochen, Germany). Thereafter, wemeasured
individual mitochondrion length (long-axis) and intensities of
mitochondrial HMGB1 and active caspase-3 in PV cells and
CA1 neurons (n = 20/section; Ko et al., 2016; Kim and Kang,
2017).

Quantification of Data and Statistical
Analysis
Student’s t-test or ANOVA were used to analyze statistical
significance. Bonferroni’s test was applied for post hoc
comparisons. A p-value below 0.05 was considered statistically
significant.

RESULTS

SE-Induced Mitochondrial Caspase-3
Transport in PV Cell, Not CA1 Neurons
Since SE leads to PV cell apoptosis via excessive mitochondrial
fission (Kim and Kang, 2017), we first investigated the
relevance between mitochondrial dynamics and mitochondrial
active caspase-3 transports. In control animals, mitochondrial
length was ∼1.25 µm in PV cells (Figures 1A,B). Active
(cleaved) caspase-3 signal was not detected in mitochondria
(Figures 1C,D). Six hours after SE, mitochondrial length in
PV cells was reduced to ∼0.29 µm (p < 0.05 vs. control;
Figures 1A,B) and ∼65% of total mitochondria showed active
caspase-3 signals (p< 0.05 vs. control; Figures 1C,D). In contrast
to PV cells, SE results in aberrant mitochondrial elongation in
CA1 neurons (Kim et al., 2014; Hyun et al., 2016). Consistent
with these reports, mitochondrial length was increased to
∼3.29 µm in CA1 neurons 3 days after SE (p < 0.05 vs. control;
Figures 2A,B). In addition, elongated mitochondria did not
show active caspase-3 signals (Figures 2A,C). These findings
indicate that SE-induced mitochondrial fragmentation may be

accompanied by mitochondrial active caspase-3 translocation in
PV cells, but not CA1 neurons.

Mitochondrial Fragmentation Is Required
for Active Caspase-3 Import
to Mitochondria
Under physiological condition, mitochondrial fission is involved
in a normal rate of cytochrome c release (Ishihara et al.,
2009). In addition, mitochondrial fragmentation is an early
apoptotic event, occurring before caspase activation (Suen et al.,
2008). Thus, inhibition of mitochondrial fragmentation prevents
release of cytochrome c and activation of caspase-mediated
signaling pathway (Frank et al., 2001; Breckenridge et al.,
2003; Lee et al., 2004; Germain et al., 2005; Barsoum et al.,
2006). Indeed, we have reported that Mdivi-1 (a mitochondrial
fission inhibitor) attenuates SE-induced PV cell apoptosis.
Therefore, it is likely that mitochondrial fission may modulate
mitochondrial active caspase-3 import leading to PV cell
apoptosis. To confirm this hypothesis, we validated whether the
regulations of mitochondrial dynamics influence mitochondrial
active caspase-3 translocation in PV cells and CA1 neurons.

In control animals, Mdivi-1 effectively elongated
mitochondrial length to >3 µm in PV cells. Following SE,
it prevented mitochondrial fragmentation, active caspase-3
induction and its mitochondrial translocation in PV cells
(p < 0.05 vs. vehicle; Figures 3A–C). Although Mdivi-1 did not
induce PV cell viability under normal condition, it mitigated
SE-induced PV cell loss 12 h after SE (p < 0.05 vs. vehicle;
Figures 3D,E).

In contrast to Mdivi-1, WY14643 (an activator of
mitochondrial fission; Lundgren et al., 1990; Zolezzi et al.,
2013; Kim et al., 2014) led to mitochondrial fragmentation in
PV cells under normal condition. In addition, it resulted in
mitochondrial active caspase-3 transports in ∼24% of total
mitochondria (p < 0.05 vs. vehicle; Figures 4A–C). Following
SE, WY14643 facilitated active caspase-3 translocation into
mitochondria, thus ∼80% of total mitochondria showed
active caspase-3 signals (p < 0.05 vs. vehicle; Figures 4A,C).
Furthermore, WY14643 deteriorated SE-induced PV cell loss
12 h after SE (p < 0.05 vs. vehicle; Figures 4D,E), while it did not
induce PV cell loss under normal condition.

Similar to PV cells, Mdivi-1 increased mitochondrial length
in CA1 neurons of control- and post-SE animals (p < 0.05 vs.
vehicle; Figures 5A,B). Mdivi-1 did not result in active caspase-3
induction and its mitochondrial translocation in CA1 neurons
(Figures 5A,C). Although Mdivi-1 did not lead to CA1 neuronal
death, it exacerbated SE-induced CA1 neuron degeneration
3 days after SE (p < 0.05 vs. vehicle; Figures 5D,E).
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FIGURE 1 | Excessive mitochondrial fission and active caspase-3 induction in parvalbumin (PV) cells 6 h after status epilepticus (SE). SE rapidly induces
mitochondrial fragmentation and translocation of active capase-3 to mitochondria in PV cells of vehicle-treated animals. (A) Representative photos of mitochondria
(Mito, green) in PV (red) cells. Rectangles in merge panels (left) indicate the zoom areas for the high magnification photos (right). Bar = 5 (left panels) and 1.5 (right
panels) µm. (B,C) Quantification of the mitochondrial length in PV cells (B) and the fraction of active caspase-3 positive mitochondria in total mitochondria (C) in PV
cells following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗p < 0.05 vs. control animals (Cont);
n = 7, respectively). (D) Representative photos of active caspase-3 (red) positive mitochondria (Mito, green) in PV (blue) cells. Rectangles in merge panels (left)
indicate the zoom areas for the high magnification photos (right). Bar = 5 (left panels) and 1.5 (right panels) µm.
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FIGURE 2 | Aberrant mitochondrial fusion in CA1 neurons 3 days after SE. SE results in mitochondrial elongation and sphere formation in CA1 neurons of
vehicle-treated animals. Active caspase-3 is not transported into mitochondria. (A) Representative photos of mitochondria (Mito, green) and active caspase-3 (red)
signals in CA1 neurons. Rectangles in merge panels (left) indicate the zoom areas for the high magnification photos (right). Bar = 5 (left panels) and 1.5 (right panels)
µm. (B,C) Quantification of the mitochondrial length (B) and the fraction of active caspase-3 positive mitochondria in total mitochondria (C) in CA1 neurons following
SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗p < 0.05 vs. control animals (Cont); n = 7,
respectively).

In control animals, WY14643 led mitochondrial
fragmentation in CA1 neurons. It also induced
mitochondrial active caspase-3 imports in ∼19% of total
mitochondria (p < 0.05 vs. vehicle; Figures 6A–C).
However, WY14643 did not induce CA1 neuronal death
under physiological condition (Figures 6D,E). Following SE,
WY14643 attenuated mitochondrial elongation in CA1 neurons
(p < 0.05 vs. vehicle; Figures 6A–C) and SE-induced
CA1 neuronal death (p < 0.05 vs. vehicle; Figures 6D,E),
although ∼18% of total mitochondria showed active caspase-3
signals (Figures 6A–C). Taken together, these findings indicate

that mitochondrial fission may play an important role in active
caspase-3 induction and its mitochondrial imports in PV cells
and CA1 neurons under normal conditions, although it did not
lead to cell death. Furthermore, it is likely that active caspase-3
transports into mitochondrial may be relevant to PV cell loss,
but not CA1 neuronal death following SE.

Mitochondrial HMGB1 Import in
CA1 Neurons, Not PV Cell, Induced by SE
In various cells, nucleocytopalsmic HMGB1 release is observed
during necrosis (Scaffidi et al., 2002; Faraco et al., 2007;
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FIGURE 3 | Effects of Mdivi-1 on mitochondrial dynamics, active caspase-3 translocation and PV cell loss following SE. Mdivi-1 attenuates mitochondrial
fragmentation, active caspase-3 transport into mitochondria and PV cell loss induced by SE. (A) Representative photos of mitochondria (Mito, green) and active
caspase-3 (red) in PV (blue) cells. Bar = 5 µm. (B,C) Quantification of the mitochondrial length (B) and the fraction of active caspase-3 positive mitochondria in total
mitochondria (C) in PV cells following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs.
control- (Cont) and vehicle-treated animals, respectively; n = 7, respectively). (D) Quantification of the number of PV cells 12 h after SE. Open circles indicate each
individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control- (Cont) and vehicle-treated animals; n = 7, respectively).
(E) Representative photos of PV cells 12 h after SE. Bar = 100 µm.

Kim et al., 2014). Furthermore, translocation of HMGB1 to
mitochondria may facilitate and deteriorate necrotic
CA1 neuronal death (Hyun et al., 2016). Thus, we explored
whether mitochondrial HMGB1 transports also influence
SE-induced PV cell loss. In control animals, HMGB1 expression
was restricted to the nuclei in PV cells. Six hours after
SE, nuclear HMGB1 intensity was reduced in PV cells
(p < 0.05 vs. control; Figures 7A,B). However, few
fragmented mitochondria contained HMGB1 signals in
PV cells (Figures 7A,C). In CA1 neurons, SE induced
HMGB1 signal in elongated mitochondria with reduction
in nuclear HMGB1 level (p < 0.05 vs. control; Figures 8A–C).

These findings suggest that mitochondrial translocations of
HMGB1 may be relevant to SE-induced necrotic CA1 neuronal
death.

SE-Induced Mitochondrial Elongation
Accelerates Mitochondrial
HMGB1 Translocation
The remaining issue is whether mitochondrial dynamics also
affect HMGB1 translocation to mitochondria in PV cells and
CA1 neurons following SE. In the present study, Mdivi-1 and
WY14643 did not lead to nuclear HMGB1 release in PV
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FIGURE 4 | Effects of WY14643 on mitochondrial dynamics, active caspase-3 translocation and PV cell loss following SE. WY14643 deteriorates mitochondrial
fragmentation, mitochondrial active caspase-3 transport and PV cell loss induced by SE. (A) Representative photos of mitochondria (green) and active caspase-3
(red) in PV (blue) cells. Bar = 5 µm. (B,C) Quantification of the mitochondrial length (B) and the fraction of active caspase-3 positive mitochondria in total
mitochondria (C) in PV cells following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs.
control-(Cont) and vehicle-treated animals, respectively; n = 7, respectively). (D) Quantification of the number of PV cells 12 h after SE. Open circles indicate each
individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control-(Cont) and vehicle-treated animals, respectively; n = 7,
respectively). (E) Representative photos of PV cells 12 h after SE. Bar = 100 µm.

cells under physiological condition (Figures 9, 10). Mdivi-1
attenuated SE-induced nucleocytoplasmic HMGB1 translocation
in PV cells (p < 0.05 vs. vehicle; Figures 9A,B). Mdivi-1 did not
result in mitochondrial HMGB1 imports in PV cells of post-SE
animals (Figures 9A,C). Although WY14643 could not abrogate
nuclear HMGB1 release in PV cells (Figures 10A,B), it did not
induce mitochondrial HMGB1 imports in PV cells of post-SE
animals (Figures 10A,C).

Under normal conditions, both Mdivi-1 and WY14643
did not affect nuclear HMGB1 localization in CA1 neurons
(Figures 11, 12). In post-SE animals, Mdivi-1 did not prevent

nuclear HMGB1 export in CA1 neurons (Figures 11A,B).
Furthermore, it enhanced SE-induced mitochondrial
HMGB1 transport in CA1 neurons (p < 0.05 vs. vehicle;
Figures 11A,C). However, WY14643 effectively attenuated
nuclear HMGB1 release and its mitochondrial translocation
(p < 0.05 vs. vehicle; Figures 12A–C). These findings indicate
that mitochondrial dynamics may not participate in nuclear
HMGB1 export and its mitochondrial translocation in both
PV cells and CA1 neurons under normal conditions, but
aberrant mitochondrial elongation may facilitate mitochondrial
HMGB1 transport in CA1 neurons following SE.
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FIGURE 5 | Effects of Mdivi-1 on mitochondrial dynamics, active caspase-3 translocation and CA1 neuronal death following SE. Mdivi-1 aggravates mitochondrial
elongation and CA1 neuronal damage without altered mitochondrial active caspase-3 transport 3 days after SE. (A) Representative photos of mitochondria (Mito,
green) and active caspase-3 (red) in CA1 neurons. Bar = 5 µm. (B,C) Quantification of the mitochondrial length (B) and the fraction of active caspase-3 positive
mitochondria in total mitochondria (C) in CA1 neurons following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars
indicate SEM (∗,#p < 0.05 vs. control-(Cont) and vehicle-treated animals, respectively; n = 7, respectively). (D) Quantification of the number of fluoro-jade B (FJB)
positive CA1 neurons following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control-
(Cont) and vehicle-treated animals, respectively; n = 7, respectively). (E) Representative photos of FJB positive CA1 neurons 3 days after SE. Bar = 100 µm.

DISCUSSION

Recently, we have reported that excessive mitochondrial fissions
lead to apoptosis of PV cells in dentate gyrus following SE
(Kim and Kang, 2017), while aberrant mitochondrial elongations
evokes programed necrosis of CA1 neurons and dentate granule
cells (Kim et al., 2014; Hyun et al., 2016; Ko and Kang,
2017). Consistent with these previous studies, the present
data show that SE resulted in degenerations of PV cell and
CA1 neurons accompanied by abnormal mitochondrial fission
and fusion, respectively. Since mitochondrial dynamics are one

of the important adaptive responses to the stressful stimuli
(Chen and Chan, 2009; Rintoul and Reynolds, 2010), these
findings indicate that the distinct impairment of mitochondrial
dynamics may cause the different SE-induced cell death pattern
between PV cells and CA1 neurons. However, the present
study demonstrates that under physiological condition the
inductions of mitochondrial fission or fusion by WY14643 and
Mdivi-1 did not evoke neuronal death. Thus, it is likely that
other factors may be involved in abnormal mitochondrial
dynamics-mediated neuronal death under pathophysiological
conditions.
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FIGURE 6 | Effects of WY14643 on mitochondrial dynamics, active caspase-3 translocation and CA1 neuronal death following SE. WY14643 induces mitochondrial
fission and mitochondrial translocation of active caspase-3 in control animals. WY14643 ameliorates mitochondrial elongation and CA1 neuronal damage without
altering active caspase-3 transport 3 days after SE. (A) Representative photos of mitochondria (Mito, green) and active caspase-3 (red) in CA1 neurons. Bar = 5 µm.
(B,C) Quantification of the mitochondrial length (B) and the fraction of active caspase-3 positive mitochondria in total mitochondria (C) in CA1 neurons following SE.
Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control- (Cont) and vehicle-treated animals,
respectively; n = 7, respectively). (D) Quantification of the number of FJB positive CA1 neurons following SE. Open circles indicate each individual value. Horizontal
bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control- (Cont) and vehicle-treated animals, respectively; n = 7, respectively). (E) Representative
photos of FJB positive CA1 neurons 3 days after SE. Bar = 100 µm.

PV cell loss is one of the most acute and dramatic
events induced by SE (Soukupová et al., 2014; Kim and

Kang, 2017). PV is one of the calcium-binding proteins,
which is responsible for the fast-spiking capability of the
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FIGURE 7 | Mitochondrial fission and nuclear High mobility group box 1 (HMGB1) release in PV cells 6 h after SE. SE rapidly induces mitochondrial fragmentation
and nuclear HMGB1 release in PV cells of vehicle-treated animals. However, HMGB1 is not imported into mitochondria. (A) Representative photos of mitochondria
(Mito, green) and HMGB1 (red) signals in PV (blue) cells. Arrows in left panels indicate the zoom areas for the high magnification of right panels. Bar = 25 (left panels)
and 1.5 (right panels) µm. (B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of HMGB1 positive mitochondria in total mitochondria (C) in PV
cells following SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗p < 0.05 vs. control animals (Cont);
n = 7, respectively).

GABAergic neurons, which participate in a rapid adaptation
in response to repetitive stimuli. Thus, PV cell loss leads to
uncontrolled discharges and further epileptogenic processes
(Sloviter, 1991; Sloviter et al., 2003; Cammarota et al.,
2013; Elgueta et al., 2015). SE-induced PV cell death is
caspase-3 dependent apoptosis concomitant with mitochondrial
fragmentation (Kang et al., 2006; Kim and Kang, 2017). Excessive
mitochondrial fission by enhancing dynamin-related proteins
1 (DRP1)-serine 616 phosphorylation impairs mitochondrial
function and increases susceptibility to apoptotic stimuli
(Campello and Scorrano, 2010; Kim and Kang, 2017). This

is because the released cytochrome c activates caspase-3
during mitochondrial fission (Frank et al., 2001; Breckenridge
et al., 2003; Lee et al., 2004; Germain et al., 2005; Barsoum
et al., 2006). Interestingly, the present study reveals the SE
evoked massive active caspase-3 translocation into mitochondria
of PV cells, accompanied by the reduced mitochondrial
length. Furthermore, WY14643 enhanced mitochondrial active
caspase-3 transport and deteriorated PV cell degeneration
induced by SE, which were mitigated by Mdivi-1. Since active
caspase-3 translocates into the mitochondria and disintegrates
mitochondrial functions by degradation of mitochondrial
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FIGURE 8 | Mitochondrial fusion and HMGB1 transport to mitochondria in CA1 neurons 3 days after SE. SE results in mitochondrial elongation and
HMGB1 translocation from nuclei to mitochondria in CA1 neurons of vehicle-treated animals. (A) Representative photos of mitochondria (Mito, green) and HMGB1
(red) signals in CA1 neurons. Arrows in left panels indicate the zoom areas for the high magnification of right panels. Bar = 25 (left panels) and 1.5 (right panels) µm.
(B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of HMGB1 positive mitochondria in total mitochondria (B) in CA1 neurons following SE.
Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗p < 0.05 vs. control animals (Cont); n = 7, respectively).

constituents, especially in the late stage during apoptosis
(Chandra and Tang, 2003), our findings suggest that preferential
translocation of active caspase-3 into mitochondria may facilitate
SE-induced apoptosis in PV cells, accompanied by excessive
mitochondrial fission.

Unlike PV cells, SE induces abnormal mitochondrial
elongation in CA1 neurons, in turn provokes programed
necrosis independent of caspase-3 activity (Kim et al., 2014;
Hyun et al., 2016). Impaired mitochondrial fission (aberrant
mitochondrial elongation) exerts improper segregations
of mitochondria and impaired mitochondrial transports,
which result in neuronal death by reducing bioenergetics

and respiratory function in peripheral sites of neurons
(Parone et al., 2008; DuBoff et al., 2012; Kageyama et al.,
2012; Kim et al., 2014). In the present study, SE led
to aberrant mitochondrial elongation in CA1 neurons.
Furthermore, Mdivi-1 increased the HMGB1 transport into
mitochondria in CA1 neurons, and aggravated SE-induced
CA1 cell loss. Together with data concerning mitochondrial
active caspase-3 translocation in PV cells, our findings
suggest that active caspase-3 and HMGB1 imports into
mitochondria may be one of the regulatory factors in
abnormal mitochondrial machinery-mediated neuronal death
following SE.
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FIGURE 9 | Effects of Mdivi-1 on mitochondrial dynamics and HMGB1 translocation in PV cells 6 h after SE. Mdivi-1 attenuates mitochondrial fragmentation and
nuclear HMGB1 release 6 h after SE. Mdivi-1 does not induce HMGB1 translocation to mitochondria. (A) Representative photos of mitochondria (Mito, green) and
HMGB1 (red) in PV (blue) cells. Bar = 5 µm. (B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of HMGB1 positive mitochondria in total
mitochondria (C) in PV cells 6 h after SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs.
control- (Cont) and vehicle-treated animals, respectively; n = 7, respectively).

Although nuclear HMGB1 release is an indicative of
necrosis in various cells (Scaffidi et al., 2002; Faraco et al.,
2007; Qiu et al., 2008), HMGB1 translocates into mitochondria
and regulate their functions and reorganizations (Stumbo
et al., 2008; Ito et al., 2014). Furthermore, translocation of
HMGB1 into elongated mitochondria facilitates SE-induced
CA1 neuronal death, while nuclear HMGB1 export could
not affect mitochondrial dynamics (Hyun et al., 2016). In the
present study, Mdivi-1 enhanced SE-induced mitochondrial
HMGB1 transport in CA1 neurons, while was attenuated

by WY14643. However, mitochondrial HMGB1 import
was not observed in PV cell following SE, although nuclear
HMGB1 release was detected. These findings indicate that the
mitochondrial elongation may increase HMGB1 permeability
into mitochondria. In addition, neither Mdivi-1 nor
WY14643 resulted in mitochondrial HMGB1 transports in
PV cells of control and post-SE animals. Therefore, our findings
indicate that translocation of HMGB1 into mitochondria
may be one of specific phenomena undergoing CA1 neuronal
necrosis.
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FIGURE 10 | Effects of WY14643 on mitochondrial dynamics and HMGB1 translocation in PV cells 6 h after SE. WY14643 does not affect mitochondrial
fragmentation and nuclear HMGB1 release following SE. In addition, WY14643 does not induce mitochondrial HMGB1 translocation. (A) Representative photos of
mitochondria (Mito, green) and HMGB1 (red) in PV (blue) cells. Bar = 5 µm. (B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of
HMGB1 positive mitochondria in total mitochondria (C) in PV cells 6 h after SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error
bars indicate SEM (∗p < 0.05 vs. control animals (Cont); n = 7, respectively).

In the present study, under physiological condition
WY14643 resulted in mitochondrial fissions and active
caspase-3 translocations in ∼24% and ∼19% of total
mitochondria of PV cells and CA1 neurons, respectively,
although it did not induce the degenerations of these
neurons. Since mitochondrial fission regulates a normal
rate of cytochrome c release (Ishihara et al., 2009), these
findings indicate that the rate of active caspase-3 into total
mitochondria induced by WY14643 may be insufficient to evoke

PV- and CA1 neuronal death under physiological condition.
Indeed, WY14643 attenuated SE-induced CA1 neuronal
death, in spite of active caspase-3 imports in ∼18% of total
mitochondria. Following SE, furthermore, degenerating
PV cell showed active caspase-3 signals in ∼65% of total
mitochondria, which were increased to ∼80% by WY14643.
Taken together, our findings indicate that mitochondrial fission
may be required for caspase-3 activation under normal and
pathophysiological conditions, and suggest that SE-induced
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FIGURE 11 | Effects of Mdivi-1 on mitochondrial dynamics and HMGB1 translocation in CA1 neurons 3 days after SE. Mdivi-1 aggravates mitochondrial elongation
and mitochondrial HMGB1 translocation in CA1 neurons following SE. (A) Representative photos of mitochondria (Mito, green) and HMGB1 (red) in CA1 neurons
following SE. Bar = 5 µm. (B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of HMGB1 positive mitochondria in total mitochondria (C) in
CA1 neurons 3 days after SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM (∗,#p < 0.05 vs. control-
(Cont) and vehicle-treated animals, respectively; n = 7, respectively).

aberrant mitochondrial fusion in CA1 neurons may evoke
necrosis rather than apoptosis due to inability of caspase-3
activation.

Why do PV cell and CA1 neurons show the distinct patterns
of mitochondrial dynamics in response to pilocarpine-induced
SE? We could not directly address this issue. Interestingly,
the controversial effects of Mdivi-1 on SE-induced neuronal
death would be considerable. Some reports demonstrate

that Mdivi-1 attenuates neuronal loss after SE (Qiu et al.,
2013; Xie et al., 2013), similar to the case of PV cells
in the present study. However, the present study reveals
that Mdivi-1 deteriorated SE-induced CA1 neuronal death.
These discrepancies are resulted from the distinct methodology
inducing SE: 1 h-lasting SE (Qiu et al., 2013; Xie et al.,
2013) vs. 2 h-lasting models. Indeed, the differences in seizure
activity lead to the distinct consequences on SE-induced
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FIGURE 12 | Effects of WY14643 on mitochondrial dynamics and HMGB1 translocation in CA1 neurons 3 days after SE. WY14643 mitigates mitochondrial
elongation and mitochondrial HMGB1 translocation in CA1 neurons following SE. (A) Representative photos of mitochondria (Mito, green) and HMGB1 (red) in
CA1 neurons following SE. Bar = 5 µm. (B,C) Quantification of the nuclear HMGB1 intensity (B) and the fraction of HMGB1 positive mitochondria in total
mitochondria (C) in CA1 neurons 3 days after SE. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars indicate SEM
(∗,#p < 0.05 vs. control- (Cont) and vehicle-treated animals, respectively; n = 7, respectively).

neuronal death. Therefore, it is likely that the disparities
in seizure susceptibility or firing rates during ictal stage
may distinctly influence mitochondrial dynamics in different
neuronal subpopulations. To validate this hypothesis, further
studies are needed.

In conclusion, to the best of our knowledge, the present
data provide the first evidence that SE-induced aberrant
mitochondrial dynamics were involved in the mitochondrial

translocations of active caspase-3 and HMGB1 in PV cells and
CA1 neurons, respectively. Furthermore, these phenomena were
closely relevant to the differential cell death patterns of PV cell
and CA1 neurons in response to SE. Therefore, the identification
of mitochondrial permeable molecules and their preferential
events will be interesting and considerable topics to understand
the cell death mechanisms relevant to impaired mitochondrial
dynamics.
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