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Advances in technology have made it convenient to obtain a large amount of single

cell RNA sequencing (scRNA-seq) data. Since that clustering is a very important step

in identifying or defining cellular phenotypes, many clustering approaches have been

developed recently for these applications. The general methods can be roughly divided

into normal clustering methods and integrated (ensemble) clustering methods which

combine more than two normal clustering methods aiming to get much more informative

performance. In order to make a contrast with the integrated clustering algorithm, the

normal clustering method is often called individual or base clustering method. Note

that the results of many individual clustering methods are often developed to capture

one aspect of the data, and the results depend on the initial parameter settings, such

as cluster number, distance metric and so on. Compared with individual clustering,

although integrative clustering method may get much more accurate performance, the

results depend on the base clustering results and integrated systems are often not

self-regulation. Therefore, how to design a robust unsupervised clustering method is still

a challenge. In order to tackle above limitations, we propose a novel Ensemble Clustering

algorithm based on Probability Graphical Model with Graph Regularization, which is

called EC-PGMGR for short. On one hand, we use parameter controlling in Probability

Graphical Model (PGM) to automatically determine the cluster number without prior

knowledge. On the other hand, we add a regularization term to reduce the effect deriving

from some weak base clustering results. Particularly, the integrative results collected

from base clustering methods can be assembled in the form of combination with

self-regulation weights through a pre-learning process, which can efficiently enhance the

effect of active clusteringmethods while weaken the effect of inactive clusteringmethods.

Experiments are carried out on 7 data sets generated by different platforms with the

number of single cells from 822 to 5,132. Results show that EC-PGMGR performs better

than 4 alternative individual clustering methods and 2 ensemble methods in terms of
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accuracy including Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI),

robustness, effectiveness and so on. EC-PGMGR provides an effective way to integrate

different clustering results for more accurate and reliable results in further biological

analysis as well. It may provide some new insights to the other applications of clustering.

Keywords: single-cell, ensemble clustering, probability graphical model, graph regularization, non-negativematrix

factorization

1. INTRODUCTION

Cells are considered as the most basic functional units of an
organism (Rosvall and Bergstrom, 2017). The identification of
cell types has a great impact on the discovery of novel cells and
the study of cell function (Trapnell et al., 2014a; Reid et al., 2018).
In fact, the expression levels of most genes vary widely among
different cell types in different cells. Bulk-RNA sequencing (RNA-
seq) is a technology that averages the expression levels across
many cells from different cell types, which may conceal some
meaningful expression information (Trapnell et al., 2014b; Yang
et al., 2018). Comparatively, single-cell RNA sequencing (scRNA-
seq) characterizes the heterogeneity of cells, and is able to
identify novel cell types, predict cell fate, and classify tumor
subpopulation from a finer resolution perspective (Jia et al., 2017;
Treutlein et al., 2014). Clustering is a very important step in
the above applications. With the clustering results in hand, it is
convenient and meaningful to analyze different expressions in
down stream.

Thus, a lot of clustering techniques including individual
clustering and ensemble clustering are proposed for cell
clustering with scRNA-seq. Examples include t-Distributed
Stochastic Neighbour Embedding algorithm (t-SNE) by k-means
clustering (Dominic et al., 2015), Seurat (Satija et al., 2015),
SIMLR (Wang et al., 2017), SC3 (Kiselev et al., 2017), and
SCANPY (Wolf et al., 2018). The results of these clustering
methods vary due to different settings of distance metric and
initial input of probably cluster number and so on. For example,
the result of SC3 depends highly on the input setting of
cluster number. However, in practical scientific research, the
number of optional clusters is usually unknown before the
simulation (Deng et al., 2011; Liu et al., 2017). Thus, it is a
big challenge to determine the cluster number when there is no
prior information about cell types. Some methods are proposed
to solve this problem. Rosvall and Bergstrom (2007) proposed
an information-theoretic framework for resolving community
structure in complex networks. The mutual information between
description and network would be maximized to divide the
complex network into different modules so that the number
of community would be determined. Tan et al., constructed
a Probability Graphic Model (PGM) framework to introduce
an automatically determined function to compute the optimal
number of clusters. Compared with the traditional algorithms,
PGM doesn’t suffer from the resolution limit and is fast enough
for large data sets.

In order to obtain a relatively stable clustering result, some
scientists devote to combine two or more clustering methods

to get a much more accurate result (Duan et al., 2016). Ou-
Yang et al.’s work (2013), they proposed a weighted ensemble
clustering based on Bayesian non-negative matrix factorization
(EC-BNMF) to detect the protein complexes. Recently, Yang et al.
(2018) proposed an ensemble method for single cell clustering
called SAFE (Yang et al., 2018). The algorithm combines the base
results into a hypergraph and applies three different hypergraph
partitioning algorithms to compute the final result. Moreover,
Huh et al. (2020) improved this algorithm via introducing
more basis clustering methods to improve the final performance
named SAME. Despite considerable successes, performance of
ensemble methods are still usually influenced by the base
method’s performance and the quite different basis clustering
results will also affect the final integration results. Although EC-
BNMF proposed in Ou-Yang et al. (2013) can automatically
optimize the values of weights and deliver better results, the
updating of iteration is time consuming. Therefore, how to
tackle these limitations and design a robust emsemble clustering
algorithm is still a big challenge.

In order to solve the above challenging problems, we propose
an Ensemble Clustering based on Probability Graph Model with
Graph Regularization (EC-PGMGR). It integrates several single-
cell clusteringmethods in a self-regulation weighted combination
form through PGM with graph regularization to produce a
more accurate and informative result. In this way, EC-PGMGR
can effectively reduce the limitation deriving from the base
clustering results by the graph regularization to balance the
relationship between the original information and the base
clustering result. Besides, EC-PGMGR also can automatically
determine the optimal number of the clusters through the PGM
as well, which is more feasible in practical problems.

2. MATERIALS AND METHODS

We propose an ensemble clustering method consisting of
four steps: data preprocessing, results integration, graph
regularization and parameter estimation. Here, we briefly sketch
the framework in Figure 1. Firstly, for preprocessing, the scRNA-
seq data set is normalized by some classical technologies,
and then dealt through some individual clustering methods.
Secondly, every clustering result deriving from different base
clustering algorithm is transformed into an uniform format.
Then, we assemble base clustering results in a form of weight
combination through a pre-learning process. After that, in
order to effectively integrate clustering result from individual
method and adjust the influence of the base clustering method,
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FIGURE 1 | The flowchart of EC-PGMGR. It comprises of preprocessing, results integration, graph regularization and parameter estimation four steps. Normalized

scRNA-seq data is first input into individual clustering methods to generate cluster results, then single results are integrated into a weight combination form, which

serves as initial input to EC-PGMGR. Finally, the final clustering result can be obtained by the estimated parameters in EC-PGMGR.

parameter estimation and graph regularization are employed for
the integration data and the raw normalization data, respectively.
Finally, via iterative updating, the final clustering result can be
obtained by the estimated parameters in EC-PGMGR.

2.1. Data Acquisition and Preprocessing
The data exploited in this work consists of seven different
single-cell data sets (Baron et al., 2016) which have “gold-
standard” (deemed as true clusters) cluster labels assigned to each
single cell. Baron-human1, Baron-human2, Baron-human3, and
Baron-human4 are four human pancreatic islets data sets, while
Baron-mouse1 and Baron-mouse2 are mouse pancreatic islets,
and PBMC is human Peripheral blood mononuclear cell. Cells
are barcoded by using the in-drop platform and 10X Genomics
platform, respectively. The statistics of seven benchmark data sets
are listed in Table 1. The preprocessing is divided into two steps.
Firstly, the original scRNA-seq data is unified to be normalized
by some standardized methods, such as CPM, FPKM, TPM, and
etc. Secondly, the normalized expression data are considered
as input data to different base clustering methods to return
clustering labels.

2.2. Results Integration
Suppose that we have n single cell data points X =

{x1, x2, . . . , xn}
T , it serves as input to various base clustering

methods to return a set of labels. After that, the obtained labels are
transformed into an unified form so that it can assemble all these
results as an initial input for EC-PGMGR. Let adjacent matrix
Bp be the clustering result for base clustering method p, where
the element bij equals to 1 if cell i and cell j belong to the same
cluster while equals to 0 otherwise. Assume that there areM base

TABLE 1 | The statistics of seven benchmark data sets.

Data sets Organism Single cells Genes True clusters

Baron-human1 Human 1,937 16381 14

Baron-human2 Human 1,724 16381 14

Baron-human3 Human 3,605 16381 14

Baron-human4 Human 1,303 16381 14

Baron-mouse1 Mouse 822 14878 13

Baron-mouse2 Mouse 1,064 14878 13

PBMC Human 5,132 32738 5

clusteringmethods, the ensemble weighted representationW can
be presented by Equation (1).

W=

M
∑

p=1

upBp, (1)

where up denotes the ensemble weight showing the intensity
of contribution deriving from base clustering approach. In this
paper, up is determined in the pre-learning process, which is
calculated through internal clustering evaluation index. Firstly,
we calculate the Calinski-Harabasz index CHp for p-th clustering
approach by Equation (2).

CHp =
trace(B)

trace(W)

K− 1

N − K
, (2)
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where trace(B) =
K
∑

i=1
‖zi − z‖2 denotes the trace of distance

difference matrix between K clusters with zi =
1
|Ci|

∑

xi∈Ci

xi and

z = 1
N

N
∑

i=1
xi for N = |C1| + |C2| + · · · + |CK|. Besides,

trace(W) =
K
∑

j=1

∑

xi∈Cj

‖xi − zj‖
2. Then, we normalize the CHp to

generate up by up =
CHp

M
∑

p=1
CHp

, such that 0 < up < 1 and
M
∑

p=1
up =

1. Therefore, for an observed integrated result, W represents
an ensemble matrix which is generated from the different base
clustering results. In theory, the higher CHp is, the more effective
clustering performance is. So the ensemble results can effectively
highlight the performance of active clustering method while
weaken the performance of inactive clustering method.

2.3. Establishment of PGM
Note that, the element wij in W denotes the strength or the
probability of cell i and cell j belonging to the same cell type.W is
final represented as a binary matrix by a threshold to characterize
the relationship between cell i and j. Moreover, let hiz be the
strength of cell i belonging to cell type z. Obviously, a higher value
of hiz means that cell i may be more like the cell type z. If there
are Q types of cells (here we set Q is large enough, which can

be sparsified by the final matrix of H),
∑Q

z=1 hizhjz means that
the propensity of cell i and cell j belong to the same cell type.
Hence, we assume that wij follows the Bernoulli distribution with

the parameter 1 − e−
∑Q

z=1 hizhjz (we use f (x) = 1 − e−x to make

the value of latent variable
∑Q

z=1 hizhjz between 0 and 1). Refer
to Tan and Févotte (2013), we choose automatic determination
priors βz to delete the irrelevant columns ofH = (hiz)n×Q, where
n represents the cell number, so that the method could set the
suitable number of clusters adaptively.

P(β; a, b) =

Q
∏

z=1

P(βz; a, b) =

Q
∏

z=1

ba

Ŵ(a)
β−(a+1)z exp(−

b

βz
), (3)

where a and b are the hyperparameters. In this way, all the
elements of the zth column of H would be close to zero when βz

is small, which means that this column could be deleted from the
result adaptively. In order to alleviate the sensitivity of the value
of βz , refer to Zhang et al. (2012), we assume that each βz obeys
an inverse Gamma distribution and independent. The PGM
could be illustrated in Figure 1. By taking all these probability
distributions together, one can obtain the joint probability by
Equation (4).

P(W,H,β) = P(W;H)P(H;β)P(β; a, b). (4)

2.4. Graph Regularization
Since the ensemble way is to integrate all the different results
to a consistent one, the final result may be influenced by the
base results. There would not be any better ensemble results if
the base results are not good enough. Considering this problem,

we use graph regularization to balance the relationship between
ensemble results and original data. Similar to Deng et al.
(2011), we firstly find the K nearest neighborhood for every cell.
Specifically, if cell i is one of the KNN of cell j or cell j is the
KNN of cell i, we set vij = vji = 1, while vij = 0 otherwise.
Secondly, we compute the degree di =

∑n
i=1 vij, and generate

a diagnose matrix D = (dij) = diag(d1, d2, ..., dn). Thirdly, we
define the graphical Laplacian matrix L = D−V . Then the graph
regularization term is written by Equation (5)

R1 =
1

2

n
∑

i=1

n
∑

j=1

(hiz − hjz)
2vij. (5)

Finally, we obtain the optimal result by minimizing the objective
function with the regularization term R1 by Equation (6).

min
U,H,β

(−logP(W,H,β)+ αR1)

= min
U,H,β

(−logP(W;H)− logP(H;β)− logP(β; a, b)+ αR1),

(6)
here α ∈ IR is the regularization parameter. The details of the
construction of PGM and the graph regularization are listed in
Supplementary Equations (1)–(8).

2.5. Parameters Estimation
In order to obtain the final results, we need to update H and β

alternately. Similar to the solution way in Ou-Yang et al. (2013),
we use the multiplicative updating rules to get H = (hiz) and
β = (βz) described in Equations (7) and (8), respectively.

hiz ←
1

2
hiz +

1

2
hiz ×

n
∑

j=1
wij

1

1− exp(−
Q
∑

z=1
hizhjz)

hjz + α
n
∑

j=1
vijhjz

n
∑

j=1
hjz +

hiz

2βz
+ α

n
∑

j=1
dijhjz

,

(7)

and

βz ←
2b+

∑n
i=1 h

2
iz

n+ 2a+ 2
. (8)

To sum up, we iteratively update H, β above until they satisfy
a stopping criterion. Let βnew and βold be the vector of β at the
current and previous iterations, respectively. The algorithm is
stopped whenever ‖βnew − βold‖F < ρ, Here, we set the value of
ρ to be 1e − 5. Furthermore, we limit the calculation procedure
to a maximum of 100 iterations for practical purposes. That is,
we stop iterating when ‖βnew − βold‖F < ρ or the number of
iterations reach 100. In order to avoid a local minimum, we repeat
the algorithm 50 times with random initial input ofH and choose
the result that outputs the lowest value of objective function (8).

2.6. Final Clusters Determination
By using the update way described above, we could get the
clustering matrix H∗ which is the final updating result of H.
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We obtain the optimal number of clusters C which represent
the number of columns of the biggest element. The details of
EC-PGMGR are presented in Algorithm 1.

Algorithm 1 | Ensemble Clustering based on Probability Graphic
Model with Graph Regularization (EC-PGMGR).

Input: X: scRNA-seq data; Q: Maximum number of cluster
cell types; a, b: Hyperparameters related to β distribution
function; ρ: Iteration stop threshold; α: Graph regularization
term parameter.

Output: H∗: Final cluster matrix; C: Cell types.
1: Input sc-RNA seq data into base clustering methods to

generate cluster labels and calculate CH index by Equation
(2) and get weight by the normalized way described in section
2.2.

2: Construct the transform matrix Bp (p = 1, 2, ...,M)
respectively and calculate the observed matrix W by
Equation (1).

3: Using the KNN on the original data to obtain every
single cell’s K nearest neighborhood to compute the KNN
neighborhoodmatrixV and the Laplacianmatrix L = D−V .

4: Initialize base matrix H.
5: UpdateH and β according to iterative update rule Equations

(7) and (8).
6: Calculate the value of objective function Equation

(6) (The detailed objective function is listed in
Supplementary Equation 8.

7: Repeat step 4 and step 5 until the iteration stop rules are
achieved.

8: Return H as H∗.
9: Calculate Ci = argmaxH∗i. and obtain C.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

In order to validate the performance of EC-PGMGR, the
comparative experiments are employed on seven benchmark data
sets through SAFE R package (Yang et al., 2018). All calculations
and simulations are carried out by using MATLAB on a PC
with 3.2G Hz Intel Core i5 CPU, 8GB RAM, and windows 10
64-bit ultimately.

3.1. Evaluation Metric
Since all these data sets have the gold-standard labels, we
choose the Adjusted Rand Index (ARI) and Normalized Mutual
information (NMI) as the evaluation index to measure the
performance. The definitions are presented by Equations (9) and
(10), respectively.

ARI =

∑

i,j

(nij
2

)

− [
∑

i

(ai
2

)
∑

j

(bj
2

)

]/
(n
2

)

1
2 [

∑

i

(ai
2

)

+
∑

j

(bj
2

)

]− [
∑

i

(ai
2

)
∑

j

(bj
2

)

]/
(n
2

)

, (9)

NMI =

2×
∑

i,j pij log
pij

pi × pj

−
∑

i pi log pi −
∑

j pj log pj
, (10)

where n is the total number of cell; ai and bj represent the number
of cells in estimated cluster i and in true cluster j, and nij is the
number of cells shared by estimated cluster i and true cluster j.
Besides, pij = nij/n, pi = ai/n and pj = bj/n. Both ARI and
NMI range from 0 to 1, higher the scores reflect the effective and
informative clustering result.

3.2. Model Specification
In this section, we introduce the settings of normalization
method, individual clustering method for preprocessing and the
settings of parameters in the new proposed model.

3.2.1. Initial Settings in Preprocessing
Counts Per Million mapped reads (CPM) is used as a normalized
method, reads count are divided by the total reads count and the
result is multiplied by 1,000,000. Thus, the prepared scRNA-seq
data sets are considered as input to four (p = 4 but not limited to
that) commonly-used individual clusteringmethods SC3 (Kiselev
et al., 2017), CIDR (Li et al., 2017), Seurat (Satija et al., 2015), and
t-SNE+k-means (Dominic et al., 2015). The results generated by
these base methods are shown in Table 2.

3.2.2. Initial Settings in EC-PGMGR
In EC-PGMGR, there are five parameters Q, a, b, α and Wt

(threshold to filter W) need to be predefined. Q is the initial
setting of number of cell type, which can be shrinked through
other settings. Note that the true cluster number ranges from 5 to
14 of our experimental data sets, here we set Q to be 25. Besides,
we set Wt to be 0.5, which means that two cells are classified
into on category (wij = 1) if more than half of the methods
considering the two cells to be in a class. Observing that the
shape hyperparameter a affects the optimization of the objective
function Equation (6) only through the updating rule Equation
(8), thus the influence of a is moderated by the number of nodes
n. Therefore, we fix a = 1 and vary the value of b to find the
best result for each data set. Another key parameter is α which
control the effect of graphical regularization term R1, themodel is
degraded into EC-PGM when α = 0. Finally, the key parameters
that affect the performance of EC-PGMGR are b and α.

In order to fully understand how these two parameters affects
the performance, we vary the values of b and α for each data
set, and compare the performances in terms of NMI (Figure 2)
and ARI (Supplementary Figure 2) with respect to two reference
sets. For each data set, the pair of parameters is grid-searched
in the range of b (b ∈ {0.1, 0.2, · · · , 0.6}) and α (α ∈

{50, 150, 250, 350, · · · , 950}). As shown in Figure 2, for a fixed
value of α, the NMI increases initially and decrease after reaching
themaximum as the value of b increases, and this is true for all the
data sets. Thus, we can find from Figure 2 that the optimal result
are obtained when b = 0.3 and α = 650 for Baron-human1,
b = 0.5 and α = 750 for Baron-human2, b = 0.4 and α = 950
for Baron-human3, b = 0.5 and α = 850 for Baron-human4,
b = 0.1 and α = 950 for Baron-mouse1 and b = 0.4 and α = 950
for Baron-mouse2. In the following, unless otherwise stated, the
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TABLE 2 | The number of clusters generated by different methods.

Data sets True clusters SC3 CIDR Seurat t-SNE+k-means SAFE SAME EC-PGMGR

Baron-human1 14 20 8 11 10 15 9 11

Baron-human2 14 18 7 10 8 7 7 8

Baron-human3 14 31 4 13 8 8 8 7

Baron-human4 14 14 6 9 5 5 7 6

Baron-mouse1 13 15 13 9 4 5 6 9

Baron-mouse2 13 15 6 9 12 14 8 9

PBMC 5 361 8 12 8 349 4 7

FIGURE 2 | Performance of EC-PGMGR on 6 benchmark data sets with respect to different values of b and α measured in terms of the NMI score. The x-axis

denotes the value of α, the y-axis denotes the value of b, and the z-axis denotes the value of the NMI. (A) Baron-human1. (B) Baron-human2. (C) Baron-human3. (D)

Baron-human4. (E) Baron-mouse1. (F) Baron-mouse2.

final results are obtained with these optimal values of parameters
for the 6 data sets.

3.3. Results and Analysis
We carry out some comparative experiments on six data
sets to validate the performance of EC-PGMGR in terms of
effectiveness, robustness with the variation of cluster number Q
and the basis method. Besides, some biological explanations are
presented to evaluate the rationality of the new proposed model.

3.3.1. Robustness of Selection of Initial Setting

Cluster Number Q
One of contributions of EC-PGMGR is that the cluster result is
not influenced by the initial setting of the cluster number. Note
that, Q denotes the initial setting of the cluster number, and C
denotes the type of final cluster result calculated by using EC-
PGMGR. As shown in Figure 3A and Table 2, the variations of

ARI are gentle on data sets except of Baron-human2 and Baron-
mouse 2 with the Q ranging from 15 to 45 with 5 step. Besides,
as shown in Figure 3B, the final cluster number C is stable at a
little range from 7 to 11 although the initial settingQ ranges from
15 to 45 with 5 step, as well. Therefore, the experiment proves
that our EC-PGMGR can automatically calculate the optimal
cluster result which does not depend on the setting of the initial
value of Q.

3.3.2. Robustness of Selection of Basis Clustering

Algorithm
The aim of ensemble clustering is to improve the stability,
robustness, and accuracy of the final results by integrating
multiple clustering results. The limitation of many ensemble
clustering is that the final cluster result depends on the selection
of the basis cluster methods. In order to validate the robustness
of EC-PGMGR, we do some comparative experiments from two
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FIGURE 3 | Performance of EC-PGMGR on 6 benchmark data sets with Q. (A) Results on ARI of EC-PGMGR on 6 benchmark data sets with Q ranges from 15 to

45. (B) Results of final cluster number C on 6 benchmark data sets with Q ranges from 15 to 45.

FIGURE 4 | (A) The performance of different combination of basis cluster on Baron-mouse1. (B) Assessing the robustness of EC-PGMGR when varying the number

of clusters for SC3 results and holding the other three individual methods constant in Baron-human1. Different k will influence the results of SC3.

aspects: (1) Consider various number of base cluster methods. (2)
Adjust the results of base cluster method.

Ref to SAME (Huh et al., 2020), we firstly select the number
of base cluster method, and calculate the results for different
clustering method. As Figure 4A depicted, we find that the
clustering performance doesn’t change too much when the
number of base clustering methods increasing. For example,
in Baron-mouse1, we choose the best basis clustering method
as each combination of ensemble clustering with EC-PGMGR
and the result stays stable when the number of basis methods
increases. Secondly, because it is convenient to adjust the results
of method of SC3 by setting different parameters, we choose to
take the experiments on all data sets and set the initial cluster
number k (k from 15 to 20 with 1 step size for Baron-human1,
Baron-human2, Baron-human3, Baron-human4; k from 10 to
15 with 1 step size for Baron-mouse1, Baron-mouse2) for SC3
clustering method to observe whether the difference generated
by SC3 would affect the results of EC-PGMGR. Figure 4B shows

the performance of EC-PGMGR when base cluster result (SC3)
changes on Baron-human1. The other results on the other data
sets are shown in Supplementary Figure 3. From the results, we
can see that our EC-PGMGR could be well-stabilized with a good
performance. Even when the results of SC3 method changes,
EC-PGMGR’s performance is still better than that of SC3. The
algorithm could balance base clustering results and original data
through graph Laplacian regularization to keep robust.

3.3.3. Effectiveness of EC-PGMGR
In order to validate the effectiveness of EC-PGMGR, we compare
our method with individual clustering methods SC3, CIDR,
Seurat, t-SNE+k-means and two ensemble clustering methods
SAFE (Yang et al., 2018) and SAME (Huh et al., 2020) in terms
of ARI and NMI. As Figures 5, 6 shown, our new proposed
EC-PGMGR (8th method) can achieve good performance on
different data sets. The base results are generated by the function
in the SAFE clustering method with its default parameters and
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FIGURE 5 | Performance on different data sets with different methods in terms of ARI. SC3, CIDR, Seurat and t-SNE+k-means are the individual methods, while

SAFE, SAME, EC-PGM and EC-PGMGR are the ensemble clustering methods. (A) Baron-human1. (B) Baron-human2. (C) Baron-human3. (D) Baron-human4. (E)

Baron-mouse1. (F) Baron-mouse2.

FIGURE 6 | Performance on different data sets with different methods in term of NMI. SC3, CIDR, Seurat and t-SNE+k-means are the individual methods, while

SAFE, SAME, EC-PGM and EC-PGMGR are the ensemble clustering methods. (A) Baron-human1. (B) Baron-human2. (C) Baron-human3. (D) Baron-human4. (E)

Baron-mouse1. (F) Baron-mouse2.
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FIGURE 7 | The performance with different methods on PBMC data set. (A) The ARI performance. (B) The NMI performance.

FIGURE 8 | The visualization of performance of different methods on Baron-human1. (A) True label. (B) EC-PGMGR. (C) SAFE. (D) SAME.
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FIGURE 9 | The heat map shows the top 50 standard deviation genes in the Baron-human1 experimental results. Each row represents the genes and each column

represents the cells.

these base clustering results are used in SAFE, SAME, EC-
PGM, and EC-PGMGR to generate an ensemble result, where
EC-PGM is degraded model with non-regularization of EC-
PGMGR. The final results validate the effectiveness of the process
of regularization. In the case of non-regularization, the average
ARI and NMI of 6 data sets are about 0.33 and 0.56, and then
they increase to 0.83 and 0.84, respectively. Besides, we also
apply the different methods on a large PBMC data set. The
comparison results are presented in Figure 7. We can see that
the SAFE method performs not well on PBMC data set while the
performance difference between SAME and EC-PGMGR is small.
We further count the clustering results deriving from different
clustering methods on the PBMC data set shown in Table 2.
We find that the result of SC3 method is not very well. With
the default parameters, the SC3 method divide cells into 361
clusters and this will influence the performance of SAFE. With
these setting, we find that even the performance of base clustering
result is not well, our method can still achieve good performance.

3.3.4. Other Analysis
For the purpose of the evaluation of the biological significance,
we do some correlation analysis among some marker genes

of cells. We use Unified Manifold Approximation and
Projection (UMAP) (McInnes and Healy, 2018), which is a
new dimensionality reduction manifold learning technology to
visualize the results of the Baron-human1. In terms of visual
quality, the UMAP algorithm has a competitive advantage with
t-SNE, but it retains more global structure, superior operating
performance, and better scalability. As shown in Figure 8, the
visualization of three ensemble methods and the true label. We
can see that our method can achieve better result than other
two methods in Baron-human1. We see that all three ensemble
methods can achieve good clustering performance according to
the true label. In area 1, the true clustering result is defined as
beta cells, EC-PGMGR and SAMEmethod can divided well. And
in area 2, the result which generated by EC-PGMGR is closet to
the real type. Besides, Figure 9 shows the heat map of the top
50 standard deviation genes in the Baron-human1 experimental
results. It can be seen that there are clearly high-expressed genes
in the results we gathered. We queried some of these highly
expressed genes and found that REG1B, REG1A, PRSS2, CTRB2
belong to Acinar cell’s marker genes. GCG is the marker gene of
Alpha cell and G6PC3 belongs to Beta cell’s markers (Li et al.,
2016). The results illustrates that our method achieves a good
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performance in clustering. The other experiments are listed in
Supplementary Figures 4, 5, respectively.

4. CONCLUSION

We propose EC-PGMGR algorithm, an unsupervised
ensemble clustering method using PGM with graph Laplacian
regularization. Unlike conventional ensemble clustering
algorithms that treat each base clustering result equally, EC-
PGMGR is a weighted ensemble clustering algorithm which can
automatically equip with weights for different base clustering
results by a pre-learning process. Therefore, base clustering
results that obtain higher weights may be more reliable and
can be regarded as active clustering method. On the contrary,
base clustering results with lower weights may be less reliable
and they may be far away from real cases. Our EC-PGMGR
method can integrate different kinds of single cell clustering

results and obtain an optimal consensus clustering results.
Considering that the proper single cell clustering algorithm
require the number of clusters, EC-PGMGR can effectively
and adaptively optimizing the number of clusters, which is
more reasonable for practical scientific research. To avoid
the undesirable ensemble result which could be caused by
the base clustering results, graph Laplacian regularization is
used in EC-PGMGR to preserve the information of original
data, which can balance the base results and the original
information to reduce the effect deriving from some inactive
base clustering results.

We take experiments on seven single-cell data sets which
have different sizes, species, and platforms. The ARI and NMI
show that our method is better than the other comparative
methods including individual and ensemble clustering methods
on different data sets. We find that the some experimental
performances on Baron-mouse2 are always not satisfying.
Considering that the data type we use is in-drop data, there
are many zeros in its expression matrix due to some technical
reasons. Although part of zero data is the true expression of
cells, there is still some data which doesn’t reflect the real
expression level (van Dijk David et al., 2018; Svensson et al.,
2017). The zero-inflated data will influence the final clustering
results since the data is partly inaccurate. We calculate the
ratio of 0 values in each data set to find out if there are
relationships between the data and the not good performances.
Results shows that the ratio of 0 in Baron-human4 and Baron-
mouse2 is higher than the others (Baron-human1: 0.096; Baron-
human2: 0.0949; Baron-human3: 0.0978; Baron-human4: 0.1100;
Baron-mouse1: 0.0952; Baron-mouse2: 0.1220). It may explain
why the performance is not very good on Baron-mouse2. Too
much missing in the original data will influence the base cluster
results and graph regularization term. The further researches
would integrate more single-cell clustering methods and perform
preliminary screening for base clustering methods, and then
perform integrated analysis. The missing scRNA-seq data should

be filled first so that the downstream analysis could be more
accurate and reasonable. Besides, we estimate the overall time
cost of the updating process in Equations (7) and (8). The
time cost for updating H is O(n2Q), where n is the number of
cells, and Q is the number of initial clusters. The time cost for
updating β is O(nQ). Therefore the overall time cost of EC-
PGMGR is O(n2QT), where T is the number of iterations. Since
the parameter H is sparse, the real time cost is much smaller
than O(n2QT). In addition, before performing our ensemble
algorithm, we need to compute Laplacian matrix L which is
time consuming. It can be improved by some computational
techniques in the further study. As an ensemble clustering
algorithm, our model is more flexible. It is of great interest
to use this model to undertake other clustering-based tasks
such as exploring modules in gene regulatory networks and cell
signaling networks.
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