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cell adaptor protein (BCAP) promotes recruitment of multiple
SH2/SH3 proteins including GRB2
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B-cell adaptor protein (BCAP) is a multimodular, multifunc-
tional signal transducer that regulates signal transduction path-
ways in leukocytes, including macrophages, B-cells, and T-cells.
In particular, BCAP suppresses inflammatory signaling by Toll-
like receptors (TLRs). However, how BCAP itself is regulated
and what its interaction partners are is unclear. Here, using
human immune cell lines, including THP-1 cells, we character-
ized the complex phosphorylation patterns of BCAP and used a
novel protein complex trapping strategy, called virotrap, to
identify its interaction partners. This analysis identified known
interactions of BCAP with phosphoinositide 3-kinase (PI3K)
p85 subunit and NCK adaptor protein (NCK), together with pre-
viously unknown interactions of BCAP with Src homology 2
(SH2) and SH3 domain-containing adaptor proteins, notably
growth factor receptor-bound protein 2 (GRB2) and CRK-like
proto-oncogene, adaptor protein (CRKL). We show that the
SH3 domain of GRB2 can bind to BCAP independently of BCAP
phosphorylation status, suggesting that the SH2 domains medi-
ate interactions with activated receptor tyrosine kinase com-
plexes including the CD19 subunit of the B-cell receptor. Our
results also suggested that the PI3K p85 subunit binds to BCAP
via SH3 domains forming an inactive complex that is then acti-
vated by sequential binding with the SH2 domains. Taken to-
gether, our results indicate that BCAP is a complex hub that
processes signals from multiple pathways in diverse cell types of
the immune system.

Toll-like receptors (TLRs)2 recognize a wide range of micro-
bial ligands as well as danger-associated self-molecules as part

of the innate immune response in vertebrates (1). Inflammatory
TLR signaling promotes microbial clearance and initiates the
adaptive immune response. The function of TLRs has mainly
been studied in myeloid cells, such as macrophages and den-
dritic cells. However, they are also widely expressed in lymph-
oid cells, where they play an important role in B and T lympho-
cytes. In vitro, TLR stimulation leads to B-cell proliferation and
differentiation into antibody secreting cells (2). In vivo, TLR
signaling contributes to T-independent antibody responses (3,
4) and autoimmune-related pathologies (5, 6).

In these B-cell pathologies, cross-talk has been observed
between the B-cell receptor (BCR) and TLR pathways (7). How-
ever, the molecular mechanisms and pathways of TLR signaling
in B-cells are not fully understood. TLR7 and TLR9 have been
shown to signal from the same compartments as BCRs, where
dual engagement of BCR and TLR receptor can occur mediated
by nucleic acid antigens (8). Recently, it was proposed that syn-
ergistic BCR/TLR signaling may be part of a supercomplex con-
trolling oncogenic signaling in two major subtypes of diffuse
large B-cell lymphomas (DLBCL) (9).

These findings are substantiated by the fact that TLRs and
BCR share a common pool of adaptor proteins and kinases. In
particular, the tyrosine kinases SYK, LYN, and BTK play impor-
tant roles in B-cell development and activation. All three
kinases have also been associated with TLR signaling (10 –12).
Most TLR receptors and several adaptor proteins are reported
to be tyrosine phosphorylated, although the kinases responsible
and the functional importance remain unclear (13).

Adaptor proteins shared between the TLR and BCR path-
way include TAK1 and DOCKS8, B-cell scaffold protein with
ankyrin repeats (BANK1), and B-cell adaptor protein (BCAP)
(10, 14, 15). Among these, BCAP is a versatile adaptor protein
with roles in both myeloid and lymphoid cells, spanning multi-
ple signaling pathways. It is a dimeric, multimodular protein
with Toll/interleukin 1 receptor domains (TIRs) as well as
ankyrin repeats, proline-rich regions, and canonical tyrosine
phosphorylation motifs. In B-cells, BCAP links CD19 and
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cross-linked BCR to phosphoinositide 3-kinase (PI3K) signal-
ing (16, 17). Additionally, this adaptor protein is implicated in
calcium signaling as it associates with and controls phospho-
lipase C-�2 (PLC-�2) activity (18). In T cells, BCAP couples
PI3K activity and signaling by the interleukin 1 receptor (IL-
1R), thereby regulating pathogenic Th17 cell differentiation
(19). BCAP also negatively regulates TLR signaling via multi-
typic interactions with receptor and adaptor TIRs in macro-
phages, dendritic cells, and natural killer cells. This leads to the
activation of PI3K (20, 21). The mechanism of negative regula-
tion likely involves the metabolism of phosphatidylinositol
lipids by PI3K and PLC-�2 causing the depletion of the phos-
phatidylinositol (4,5)-diphosphate (PIP2) pool in the plasma
membrane. The Mal/TIRAP adaptor protein binds to PIP2 and
this interaction is necessary for signal transduction by the TLRs
(23, 24).

Two key modes of interaction enable these regulatory func-
tions of BCAP. First, three proline-rich regions facilitate SH3
domain interaction, with Nck1/2 as the single known binding
partner (25). Second, ubiquitous tyrosine phosphorylation
mediates SH2 domain interactions. Several studies have shown
the importance of phosphorylation at YXXM motifs in BCAP
(16, 20, 21, 23, 26, 27). However, the kinases responsible for
BCAP tyrosine phosphorylation in various cells types have not
been fully determined. The kinase c-Abl phosphorylates BCAP
at several non-YXXM sites (28). Phosphorylation by c-Abl
potentially provides binding sites for PLC-�2, nonreceptor
tyrosine kinases (PTKs), or novel SH2 domain containing inter-
action partners.

In chicken B-cells, SYK and to a lesser extent BTK contribute
to BCAP tyrosine phosphorylation, whereas LYN-deficient
B-cells showed an increase in BCAP phosphorylation (16). LYN
was later found to be essential for BCAP phosphorylation
downstream of mouse CD19, ectopically expressed in chicken
B-cells (27). In this context, the absence of LYN could be res-
cued by a related Src kinase Fyn. Overexpression in HEK293T
cells suggests that SYK plays a role in the phosphorylation of

YXXM motifs in BCAP (29). Later, it was shown that in
HEK293T cells BCAP binds both SYK and LYN, indicative of
LYN phosphorylation of BCAP (23, 27). In macrophages, how-
ever, SYK is not required for BCAP phosphorylation and asso-
ciation with PI3K (21). Given these somewhat conflicting
reports, it remains unclear which kinases are responsible in
whichcellularcontextandorganism.Moreover,theprecisephos-
phorylation sites on BCAP, including the YXXM motifs, are yet
to be determined.

Our goal is to shed light on the distinct molecular pathways,
associated adaptor proteins, and kinases that mediate the
BCAP BCR and TLR cross-talk. Here we show that BTK, SYK,
LYN, and casein kinases contribute to BCAP hyperphosphory-
lation. Using a virotrap protein interaction screen we have
identified Grb2 as a novel BCAP-interaction partner that asso-
ciates via SH3 domain interactions. Taken together with other
proteins identified in the interaction screen, such as PI3K, Nck,
CRKL, and casein kinases, our results reveal that BCAP func-
tions as a complex immune signaling hub. We were able to map
the interactions of Grb2 and several previously known BCAP
partners at the single domain level, revealing a central role for
SH2 and SH3 domain interactions.

Results

BCAP is hyperphosphorylated in mammalian cells

To investigate the phosphorylation state of BCAP we used
Western blotting to probe several cell types including macro-
phages and B-cells. In all cases, endogenous BCAP appears as
multiple bands (Fig. 1A). The bands corresponding to the long
splice isoform of BCAP (BCAP-L) extend from the expected
molecular mass of around 90 kDa to greater than 100 kDa (16,
20, 26). Likewise, when BCAP is expressed in HEK293-derived
Expi293F cells, a similar pattern is observed (Fig. 1B). Incuba-
tion of cell extracts with �-phosphatase shows that the
observed changes in electrophoretic mobility are caused
entirely by phosphorylation (Fig. 1, A and B). Further Western

Figure 1. BCAP is hyperphosphorylated in B-cell, macrophages, and Expi293F cells. A, lysates from THP-1 and Ramos cells were dephosphorylated with
�-phosphatase and immunoblotted for BCAP. B, His-Avi-tagged BCAP expressed in Expi293F cells was purified and dephosphorylated with �-phosphatase
before immunostaining for tyrosine and serine phosphorylation. C, phosphorylation sites of BCAP expressed in Expi293F cells were determined by phospho-
peptide mapping. BCAP was digested with trypsin, chymotrypsin, Asp-N, and Glu-C prior to MS.
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blot analysis revealed that both tyrosine and serine/threonine-
linked phosphates are present in BCAP. In addition, MS analy-
sis of the BCAP protein purified from HEK293T cells identifies
phosphorylated serine and threonine residues and six phospho-
tyrosines (Fig. 1C).

BCAP is readily phosphorylated by BTK and to a lesser extent
SYK and LYN

To determine the kinases responsible for BCAP hyperphos-
phorylation, an in vitro kinase assay was performed using
recombinant dephosphorylated BCAP. After �-phosphatase
treatment, purified BCAP was incubated with SYK, LYN, and
BTK. Under these conditions, nonreceptor tyrosine kinases
SYK, LYN, and BTK were able to phosphorylate BCAP, but
BTK is by far the most efficient (Fig. 2A). Phosphorylation by
SYK and LYN was substantially less relative to BTK although
LYN phosphorylation of BCAP still resulted in a partial band
shift when probed for tyrosine phosphorylation. To validate the
specificity of the assay, other kinases were included in the experi-
ments, but TYK2 and ITK, a member of the TEC kinases, were not
able to phosphorylate BCAP under these conditions (Fig. 2A).

Virotrap protein interaction screens identify novel BCAP-
binding partners

To further elucidate the interaction network of BCAP and
to identify molecular mechanisms of BCR and TLR cross-
talk, we performed a virotrap interaction screen (30). A
fusion protein between the HIV-1 GAG protein and BCAP
was expressed in HEK293T cells, resulting in the budding of
virus-like particles (VLPs) that contain the BCAP bait con-
struct as well as potential new interaction partners. Mass
spectrometry analysis of the VLPs revealed three different
groups of potential BCAP-interaction partners (Fig. 3). The
first group includes the PI3K regulatory subunits p85 �/�
and the adaptors Nck1 and -2, known binding partners of
BCAP that interact via SH2 and SH3 domains. In addition,
Grb2 and CRKL, SH2 and SH3 domain adaptor proteins that

play a role in immunity and B-cells signaling were identified.
The SH2 domain of Grb2 has previously been predicted to
interact with BCAP based on sequence specificity (16). Addi-
tionally, previous MS-based interaction studies found BCAP
in a Grb2 interaction screen, suggesting an SH3 domain-de-
pendent association (31).

A second group of proteins detected by virotrap have not
previously been linked to BCAP or BCR signaling. These
include annexin A6, several variants of casein kinase (CSNK1/
2), TOM1, and UEVLD. Annexins play a role in glucocorti-
coid-mediated innate immune responses and inflammation.
Annexin A6 does not contain protein interaction domains
that would explain a direct interaction with BCAP. However,
other Annexin family proteins bind Grb2 (32). Casein
kinases are ubiquitous serine and threonine kinases involved
in numerous cellular functions including cell cycle progres-
sion, apoptosis, and transcription, as well as viral infection.
Casein kinases phosphorylate substrates containing acidic
residues C-terminal to the serine or threonine substrates.
Indeed prediction algorithms indicate several residues in
BCAP that are likely substrates of casein kinases and these
residues are phosphorylated in BCAP purified from
Expi293F cells (Table S1). Furthermore in vitro kinase assays
show that CSNK2A1 but not CSNK1A1 or GSK-3 phosphor-
ylate BCAP (Fig. 2B). It is therefore likely that CSNK2A1
contributes to the serine and threonine phosphorylation
pattern found in BCAP. The role of these modifications
remains unknown and further research is required to under-
stand their mechanism of regulation.

The third group of proteins identified by virotrap are com-
ponents of the ESCRT-III complex. As these have a role in viral
budding, they are likely artifacts (30, 33). Notably, absent in the
screen are TIR domain containing interaction partners of
BCAP, such as MyD88, MAL, and SARM. This is likely due to
the N-terminal GAG fusion blocking potential TIR domain
interactions.

Figure 2. BCAP is phosphorylated by BTK, LYN, and SYK. Purified BCAP, dephosphorylated BCAP (�-BCAP), and myelin basic protein (MyBP) were phos-
phorylated with (A) tyrosine kinases SYK, LYN, BTK, TYK2, and ITK, or (B) serine kinases CSNK1A1, CSNK2A2, and GSK-3.
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Grb2 is a novel BCAP-interaction partner

To further characterize the novel interaction partners iden-
tified in the virotrap screen, we expressed BCAP with Grb2 and
CRKL in HEK293T cells. Co-immunoprecipitation experi-
ments reveal that FLAG-Grb2 but not FLAG-CRKL co-immu-
noprecipitates with Myc-BCAP (Fig. 4A). This association was
not dependent on the 374YPNT motif. These results show that
the interaction of BCAP and Grb2 is likely direct, whereas that
of CRKL is indirect. This seems plausible given that CRKL is
known to bind the PI3K p85 subunit (34, 35). An advantage of
the virotrap method is that it can detect multiple indirect inter-
actions but the extent of these compared with direct binding in
any screen is difficult to quantify (30).

To obtain domain level resolution of the interactions
between BCAP and Grb2, CRKL, p85, and PLC-�2, in vitro
pulldown assays were performed. GST fusion proteins corre-
sponding to full-length Grb2, but not to the Grb2 SH2 domain
alone, co-purified with BCAP irrespective of its phosphoryla-
tion state (Fig. 4B). Thus, the SH3 domain rather than the SH2
domain mediates association of Grb2 with BCAP. Interestingly,
this implies that the 374YPNT motif is not a binding site for the
Grb2 SH2 domain even though peptide array data suggests that
the SH2 domain interacts with this motif, and MS shows phos-
phorylation in HEK293T cells (Figs. 1C and 5B). This contra-
diction can be explained by the accessibility of the phosphoty-
rosine motif. A homology model of the BCAP ankyrin domain
reveals that although Tyr-374 is somewhat exposed, the other
amino acids of the motif form part of an �-helix that is buried in
the core of the ankyrin-fold, and therefore not accessible for
interaction with the SH2 domain (Fig. S1).

We have also investigated how BCAP binds to the PI3K p85
subunit and PLC-�2. GST fusion proteins corresponding to
individual SH2 and SH3 domains were used in pulldown assays
with phosphorylated and dephosphorylated BCAP. This analy-
sis confirms that the N-terminal SH2 (N-SH2) domain of p85
binds BCAP in a phosphorylation-dependent manner and that
the SH3 domain binds strongly to both phospho-forms of
BCAP (Fig. 4C). The N-SH2 interaction is expected as BCAP
was initially characterized based on its affinity for the p85
N-SH2 domain (16). Failure to interact with the C-terminal
SH2 domain (C-SH2) could be due to a lack of phosphorylation
of all YXXM motifs, or because this domain has a much lower
affinity. The C-SH2 domain has a lower affinity for certain
phosphotyrosine motifs than the N-SH2 domain (36). In vivo,
this lower affinity of the C-SH2 could be compensated for
because prior binding of the SH3 and N-SH2 domain enhances
the affinity of C-SH2. PLC-�2 appears to have a similar inter-
action mechanism to p85, with a robust interaction with the
SH3 domain and N-SH2 domain, and somewhat weaker C-SH2
domain binding (Fig. 4D).

Peptide array analysis reveals complex patterns of
interactions by SH2 adaptor proteins with BCAP
phosphotyrosine motifs

We have defined the interaction patterns of p85�, GRB2,
CRKL, and PLC�2 with BCAP using peptide arrays. In this anal-
ysis, libraries of peptides with either unmodified or phosphor-
ylated tyrosine residues, corresponding to the sequence of the
short BCAP isoform, were screened for binding by adaptor SH2
domains. This analysis revealed a promiscuous pattern of bind-

Figure 3. Virotrap interaction screen reveals novel BCAP-interaction partners. HEK293T cells were transfected with GAG-BCAP and a
pMD2.G-pcDNA3-FLAG-VSV-G mix to generate FLAG-VSV-G– coated VLPs. After purification and tryptic digest, the VLP contents were analyzed by MS. A,
volcano plot of BCAP VLP contents compared with the eDHFR control. False discovery rates (FDR) � 0.05 and S0 � 1. Proteins that are significantly enriched in
either BCAP or eDHFR VLPs are highlighted in red. B, overview of significant BCAP virotrap hits sorted according to relative enrichment.
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ing by both the p85� N-terminal and C-terminal SH2 domains
with interaction sites identified in the DBB, ANK, and tail
regions of BCAP (Fig. 5 and Fig. S2). By contrast PLC-�2 bound
to only two sites, Tyr-346 in the ankyrin repeats and Tyr-570 in
the tail domain for the N- and C-terminal SH2 domains, respec-
tively (Fig. 5B). Grb2 interacts with 4 phosphotyrosines. Three
of these are in the ANK domain and do not overlap with the
p85�-binding sites (Fig. 5B). Although direct interaction of
CRKL is not observed in pulldown experiments (Fig. 4B) array
analysis identifies 5 potential phosphotyrosine-binding sites
dispersed throughout the BCAP sequence (Fig. 5B).

Discussion

In all cell types we have studied, BCAP has multiple isoforms.
We determined that phosphorylation is the basis of this phe-
nomenon and identified that BCAP is the substrate of several
kinases including tyrosine kinases BTK, SYK, and LYN. BCAP
tyrosine phosphorylation is a central part of BCAP activation
and has been observed downstream of TLR, IL-1R, and BCR
signaling complexes (16, 19, 20). Deletion of tyrosine phosphor-
ylation motifs results in loss of function phenotypes down-
stream of TLR4 activation, providing further evidence for the
importanceoftyrosinephosphorylation(21).BTKstronglyphos-
phorylated BCAP in an in vitro kinase assay and caused a band

shift equivalent to that seen in vivo (Fig. 1). Phosphorylation of
BCAP by SYK and LYN was much weaker and may be directed
to a smaller number of tyrosine motifs. Previous reports from
Matsumura et al. (29) showed that SYK phosphorylation is
mainly targeted toward three YXXM motifs. In vivo, we expect
a certain degree of redundancy between these kinases and the
precise combination of kinases acting on BCAP is likely to vary
depending on the context of the activated receptor, co-recep-
tors, and adaptor proteins. Indeed, a previous study showed
genetically that SYK signaling was not required for BCAP tyro-
sine phosphorylation or PI3K association in murine macro-
phages (21).

The virotrap experiments presented were carried out in the
absence of innate stimulus, which indicates that the identified
interaction partners bind to BCAP in the resting state. Interest-
ingly control experiments using cells that express constitutively
active TLR4 do not identify additional interacting proteins.3
This finding is consistent with a previous study that found PI3K
pre-associated with cytosolic BCAP (21). Thus, BCAP com-
plexes are preformed and poised for recruitment to the plasma
membrane in response innate stimuli.

3 N. Gay and J. Lauenstein, unpublished data.

Figure 4. BCAP engages in SH3 domain interaction and tyrosine phosphorylation-dependent SH2 domain interactions. A, HEK293T cells were trans-
fected with Myc-BCAP, Myc-BCAP Y374F, FLAG-GRB2, and FLAG-CRKL. At 24 h post-transfection, cells were lysed and subjected to immunoprecipitation with
anti-FLAG antibody. Precipitates were split and immunostained for precipitation of FLAG-GRB2, FLAG-CRKL, and Myc-BCAP. B, purified GST-tagged GRB2, GRB2
SH2, CRKL; C, p85 N-SH2, p85 C-SH3, p85 SH3; D, PLC-�2 N-SH2, PLC-�2 C-SH2, and PLC-�2 SH3 were immobilized on GST resin. Purified BCAP and dephos-
phorylated BCAP were subsequently applied to the resin and GST-tagged bait proteins were eluted from the resin and analyzed on SDS-PAGE. E, domain
arrangement of BCAP-interacting proteins.
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The appearance of casein kinases in the virotrap screen was
unexpected, but with an in vitro kinase assay we were able to
confirm CSNK2 BCAP phosphorylation, as predicted by a phos-
phorylation site prediction tool. Casein kinases have previously
been shown to regulate PI3K signaling by phosphorylation of
PTEN (37). This activation of PI3K signaling by CSNK2A1 is
synergistic with GSK-3, which does not phosphorylate BCAP in
our in vitro kinase assay (38). Casein kinases have also been
linked to innate immunity, by phosphorylation of various pro-
teins in the NF-�B pathway (30, 39, 40). Our results now pres-
ent BCAP as a substrate of CSNK2A1, suggesting a novel point
of regulation for these serine/threonine kinases.

Our virotrap screen also identified Grb2 as a novel interac-
tion partner that binds BCAP most likely through an SH3
domain interaction. Grb2 has both SH2 and SH3 domains that
link growth factor receptors to Ras signaling, but also plays a
crucial role in TCR and BCR signaling (41). In previous MS-
based studies of the Grb2 interactome, BCAP was reported to
interact indirectly through PI3K (31). A combination of in situ
and in vitro experiments now show that Grb2 and BCAP bind
directly. Interestingly, the Drosophila BCAP orthologue Dof
couples fibroblast growth factor signaling through Grb2, indi-
cating evolutionary conservation of this pathway (42).

The interaction of Grb2 is solely dependent on the SH3
domain, leaving the SH2 domain available to bind activated
receptor complexes. A similar role has been described for
Nck1/2 that links BCAP to the BCR signalosome (25, 43). The
BCAP-Grb2 interaction may now explain how the BCAP-PI3K
complex is recruited to CD19, as Grb2 is known to bind with
CD19 through its SH2 domain (44). Through a similar mecha-
nism, BCAP might be recruited to various other activated sig-
naling complexes including RTKs and the TCR complex.

Our results also reveal the importance of other SH3 domain
interactions of BCAP (Fig. 6). Interaction with PI3K p85 is in
part mediated by the SH3 domain but weaker N-SH2 and
C-SH2 domain interactions also contribute. Based on this
information we expect that the constitutive binding of BCAP
and p85 that was reported in macrophages and confirmed in
our cell culture experiments is mediated by the p85 SH3
domain (21). Recruitment to activated receptor tyrosine
kinases complexes would lead to phosphorylation of BCAP
tyrosine motifs, enabling sequential N-SH2 and C-SH2 binding
and PI3K activation (Fig. 7). P85 is known to bind tandem phos-
photyrosine residues located a short distance apart (10 –30
amino acids) (36, 45). Our peptide array data shows that the p85
SH2 domain binds to the three C-terminal YXXM in BCAP that

Figure 5. Peptide arrays reveal binding sites for BCAP SH2 domain interactions. Binding of SH2 domains to an array of 15-amino acid-long peptides
containing BCAP tyrosine motifs. A, binding of p85 SH2 domains to BCAP YXXM motifs. Phosphotyrosine containing peptides are depicted as a gray circle. B,
binding of the SH2 domains of p85, GRB2, CRKL, and PLC-�2 to phosphorylated tyrosine motifs in BCAP. The ● symbol indicates binding of the SH2 domain to
a BCAP tyrosine motif. Motifs followed by “–” were not tested for the respective SH2 domain interaction.
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are arranged in this way (Fig. 5). For PLC-�2 we expect a similar
mechanism, where the SH3 domain is responsible for the con-
stitutive interaction observed in HEK293T cells (Fig. 7) (23). In
fact, sequential binding of the SH2 domains to release autoin-
hibition of PLC-�2 has been reported (46).

Experimental procedures

Cell culture

THP-1 cells and Ramos (RA 1, ATCC) were maintained in
RPMI 1640 medium (supplemented with 10% fetal bovine
serum, L-glutamine, 100 units/ml of penicillin, and 100 mg/ml
of streptomycin; all from Invitrogen). THP-1 cells were differ-
entiated to macrophages using 10 ng/ml of phorbol 12-myris-
tate 13-acetate (Sigma) for 12 h, followed by rest for 24 h in
complete RPMI 1640 medium.

HEK293T cells (ATCC) maintained in Dulbecco’s modified
Eagle’s medium (supplemented with 10% fetal bovine serum,
L-glutamine, 100 units/ml of penicillin, and 100 mg/ml of strep-
tomycin; all from Invitrogen). Expi293F cells (Thermo Fisher
Scientific) were maintained in Expi293 Expression media at
37 °C, 8% CO2 and 140 rpm.

Constructs

Constructs (47) for bacterial expression were generated by
ligation-independent cloning (48) into pMCSG10 plasmid
(DNASU) containing a His-GST-TEVcl tag (Table S2). For
expression in mammalian cells, plasmids were cloned using re-
striction enzymes and primer sequences contained the respec-
tive tags (Table S2). The pMET7-GAG-PQS1-RAS plasmid
used in the cloning of pMET7-GAG-BCAP was derived from
pMET7-GAG-RAS (Addgene number 80604) containing a
unique quantification peptide as previously described (47).

Virotrap

Virotrap experiments were performed essentially as de-
scribed (30) with a minor modification in the transfection con-
ditions and using an alternative data analysis strategy. In brief,
10 million authenticated HEK293T cells were seeded the day
before transfection in T75 bottles. After 24 h cells were trans-
fected with 6.4 �g of pMET7-GAG-BCAP bait construct, or
with 3.75 �g of a pMET7-GAG-eDHFR control construct. For
single step purification, a one-half ratio of expression vectors
for VSV-G and FLAG-VSV-G was co-transfected in the cells
(for a total of 1.1 �g). Transfection mixtures were normalized
with mock vector (pSVsport). The supernatants containing
Virotrap particles were harvested 40 h after transfection and
cleared by centrifugation and filtering (0.45 �m). Supernatants
were then incubated with MyOne Streptavidin T1 beads loaded
with BioM2 antibody. Two h after binding, beads containing
Virotrap particles were washed, and particles were released by
competition with FLAG-peptide. After removal of the beads,
samples were processed with Amphipols and digested using
trypsin. After acidification, peptides were analyzed by LC-MS
using a Thermo Scientific Q Exactive hybrid quadrupole-Or-
bitrapmassspectrometer.Analysiswasperformedonthreeinde-
pendent transfections for BCAP and control experiments.

MS analysis, peptide identification, data visualization, and
phosphopeptide mapping

The peptide mixtures were first loaded on a trapping column
(made in-house, 100 �m inner diameter � 20 mm, 5-�m beads,
C18 Reprosil-HD, Dr. Maisch, Ammerbuch-Entringen, Ger-
many). After flushing from the trapping column, the sample
was loaded on an analytical column (made in-house, 75 �m
inner diameter � 150 mm, 5-�m beads, C18 Reprosil-HD, Dr.
Maisch) packed in the nanospray needle (PicoFrit SELF/P Pic-
oTip emitter, PF360-75-15-N-5, New Objective). The samples
were loaded and separated with a linear gradient from 98% sol-
vent A� (0.1% formic acid in water) to 40% solvent B� (0.08%
formic acid in water/acetonitrile, 20/80 (v/v)) in 30 min at a
flow rate of 300 nl/min. This was followed by a 15-min wash
reaching 99% solvent B�. The Q Exactive instrument was oper-
ated in data-dependent, positive ionization mode, automati-
cally switching between MS and MS/MS acquisition for the 10
most abundant peaks in a given MS spectrum. The source volt-
age was 3.4 kV, and the capillary temperature was 275 °C. One
MS1 scan (m/z 400 –2000, AGC target 3 � 106 ions, maximum
ion injection time 80 ms) acquired at a resolution of 70,000 (at
200 m/z) was followed by up to 10 tandem MS scans (resolution
17,500 at 200 m/z) of the most intense ions fulfilling the defined
selection criteria (AGC target 5 � 104 ions, maximum ion injec-
tion time 80 ms, isolation window 2 Da, fixed first mass 140 m/z,
spectrum data type: centroid, minimum AGC target 1000,
intensity threshold 1.4 � 104, exclusion of unassigned, 1, 5– 8,
and �8 charged precursors, peptide match preferred, exclude
isotopes on, dynamic exclusion time 12 s). The higher collision
dissociation energy was set to 25% normalized collision energy and
the polydimethyl cyclosiloxane background ion at 445.120025 Da
was used for internal calibration (lock mass).

Figure 6. Overview of the BCAP SH2 and SH3 domain interactome. A,
overview of the SH2 and SH3 domain-containing interaction partners of BCAP
as described in the literature. B, updated BCAP interactome representing
novel GRB2 and CRKL associations and detailing individual SH2 and SH3
domain interactions on BCAP. The model also includes kinases responsible
for serine phosphorylation and tyrosine phosphorylation, which is required
for SH2 domain interactions.
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All MS data were searched using MAXQUANT (version
1.5.7.4) against the human SwissProt database (Jan 2017; com-
plemented with GAG, VSV-G, and eDHFR sequences) with 4.5
and 20 ppm tolerance on precursor and fragment mass, respec-
tively, with trypsin/P settings allowing up to two missed cleav-
ages and with methionine oxidation and N-terminal acetylation
formation as variable modifications. Minimum peptide length
was set to 7, and maximum peptide mass was 4600 Da. PSM
FDR and protein FDR were set to 0.01. Minimum peptides and
minimum razor � unique peptides were set to 1. The searches
were performed together with the corresponding control sam-
ples to allow matching of MS spectra between runs. Contami-
nants and identifications against the REVERSE database were
removed in the PERSEUS (version 1.5.5.3) analysis after the
log2 transformation of the non-normalized protein LFQ ratios.
Only proteins identified in all three samples of the BCAP or
eDHFR conditions were retained for further analysis. Default
PERSEUS settings were used for missing value imputation from
a normal distribution. A two-sided t test was performed with
multiple testing correction using 1000 randomizations. FDR
was set at 5% with the S0 curve set at 1.

For phosphopeptide mapping, BCAP purified from Expi293F
cells and dephosphorylated BCAP were separated on SDS-
PAGE. Digestion with trypsin, chymotrypsin, Asp-N, Glu-C,
and subsequent MS was performed at the CCPcore MS facility
(University of Cambridge, Department of Biochemistry) and
the VIB Proteomics Core (VIB, Ghent). The MS proteomics
data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository (22)(data set identifier to be
confirmed).

Co-immunoprecipitation in HEK293T cells

For transfection, HEK293T cells were transfected around
70 – 80% confluence using JetPEI (Polyplus Transfection SA)
according to the manufacturer’s recommendation. 3 �g of plas-
mid DNA was transfected per well in a 6-well plate, and when
required pcDNA3.1 was to ensure 3 �g of DNA was transfected.
24 h after transfection, cells were washed with PBS and lysed
with 300 �l of Tris immunoprecipitation buffer (20 mM Tris,
150 mM NaCl, 0.5% Nonidet P-40, 1 mM EDTA, pH 8.0), which
was supplemented with 50 mM NaF, 5 mM orthovanadate, 60
mM �-glycerophosphate, and 1� protease inhibitor mixture
(Calbiochem). The lysate was incubated for 30 min at 4 °C with

agitation. After centrifugation, the supernatant was collected
for Western blotting or immunoprecipitation with anti-FLAG
M2 beads (F2426, Sigma) according to the manufacturer’s rec-
ommendation. The whole cell lysate and immunoprecipitation
samples were analyzed by Western blotting using anti-FLAG
M2 (F3165, Sigma), anti-Myc (9B11, Cell Signaling Technol-
ogy), and anti-mouse IgG-horseradish peroxidase (A9044;
Sigma).

Protein expression and purification

Recombinant His- or GST-tagged proteins were expressed in
Escherichia coli strain Rosetta2 (DE3) (Merck Chemicals) and
subsequently purified from soluble lysates. His-tagged proteins
were lysed in Tris lysis buffer (50 mM Tris, 150 mM NaCl, and 30
mM imidazole, pH 7.5). For purification Ni-NTA beads were
used and His-tagged proteins were eluted in lysis buffer con-
taining 500 mM imidazole. GST-tagged proteins were lysed in
PBS and purified with GSH beads, and eluted with 10 mM

reduced GSH. After affinity purification, His- and GST-tagged
proteins were subjected to size exclusion with a HiLoad 16/600
Superdex 200-pg column equilibrated in size-exclusion buffer
(20 mM Tris, 150 mM NaCl, 1 mM tris(2-carboxyethyl)phos-
phine, and 5% glycerol, pH 7.5).

His-Avi-TEVcl-BCAP (FL) was expressed in Expi293F cells.
Cells were transfected at a density of 4 � 106 cells/ml with 1.5
�g/ml of plasmid DNA and 6 �g/ml of linear PEI Max (Poly-
sciences). 24 h post-transfection, fresh medium was added to
the culture to double the volume and cells were harvested 3
days post-transfection by centrifugation. For lysis, cell pellets
were resuspended in Tris lysis buffer, supplemented with 50
mM NaF, 5 mM orthovanadate, 60 mM �-glycerophoaphate, and
1� protease inhibitor mixture (Calbiochem). After affinity
purification using Ni-NTA beads, the sample was treated with
TEV protease to remove the His-Avi tag. Part of the sample was
simultaneously treated with �-protein phosphatase (p0753;
New England Biolabs) according to the manufacturer’s recom-
mendations. After affinity purification proteins were subjected
to size exclusion with a HiLoad 16/600 Superdex 200 pg column
equilibrated in size-exclusion buffer buffer.

GST Pulldown assays

For in vitro pulldown assays, 50 �g of GST-Grb2 and GST-
CRKL, and 100 �g of GST-Grb2-SH2, GST-p85-N-SH2, GST-

Figure 7. Constitutive SH3 domain interactions facilitate rapid SH2 domain binding upon BCAP tyrosine phosphorylation. Stepwise binding model for
the SH2 and SH3 domain-containing BCAP-interaction partners p85 and PLC-�2. The PI3K p85 or PLC-�2 SH3 domains constitutively interact with BCAP
proline-rich regions (Pro). The preformed complex can then rapidly engage in N-SH2 domain interaction upon BCAP tyrosine phosphorylation. High-affinity
N-SH2 interactions facilitate the binding of lower-affinity C-SH2 domain interaction resulting in full activation of PI3K and PLC-�2.
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p85-C-SH2, GST-p85-SH3, GST-PLC-�2-N-SH2, GST-PLC-
�2-C-SH2, and GST-PLC-�2-SH3 were loaded onto 100 �l of
GSH beads equilibrated with PBS. After washing the samples
with PBS, 50 �g of BCAP (FL) and dephosphorylated BCAP
(FL) were applied to the column. Following three wash steps
with PBS, samples were eluted using 10 mM reduced GSH and
analyzed on SDS-PAGE.

Peptide array

Peptide arrays spanning the BCAP YXXM motifs and other
tyrosines were synthesized on cellulose membranes (JPT Pep-
tide Technologies). Arrays were activated in methanol and
blocked in a solution of 2.5% BSA and 0.05% Tween 20 in TBS
(TBS-T). Arrays were then incubated with 5 �g/ml of GST-
p85-N-SH2, GST-p85-C-SH2, GST-Grb2, GST-CRKL, GST-
PLC-�2-N-SH2, or GST-PLC-�2-C-SH2 overnight and trans-
ferred to nitrocellulose blotting membranes via sequential
blotting according to the manufacturer’s recommendation.
Bound proteins were detected by chemiluminescence with
anti-GST (MA4 – 004; Thermo Fisher Scientific) followed by
anti-mouse IgG-HRP (A9044; Sigma).

Kinase assay

For the in vitro kinase assays, 2 �g of dephosphorylated
BCAP (FL) or 100 �g of dephosphorylated myelin basic protein
(31314; Active Motif) were diluted in 500 �l of kinase buffer (50
mM HEPES, 10 mM MgCl2, 0.01% BRIJ35, 1 mM EGTA, and 150
�M ATP, pH 7.5). Upon adding 60 pmol of SYK (PV3857;
Thermo Fisher Scientific), LYN (PV6448; Thermo Fisher Sci-
entific), BTK (PV3363; Thermo Fisher Scientific), TYK2
(PV4790; Thermo Fisher Scientific), ITK (PV4193; Thermo
Fisher Scientific), CSNK1A1 (PV3850; Thermo Fisher Scien-
tific), or CSNK2A1 (PV3248; Thermo Fisher Scientific), the
samples were incubated at 30 °C for 30 min. The reaction was
stopped using 4� SDS loading dye, and the samples were ana-
lyzed using Western blotting. For chemiluminescence detec-
tion, anti-BCAP (AF4857; R&D Systems), anti-phosphoty-
rosine (Ab179530; Abcam), anti-phosphoserine (Ab9332,
Abcam), anti-rabbit IgG-HRP (A0545; Sigma), and anti-goat
IgG-HRP (A5720; Sigma) were used.
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