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Genetic Analysis Reveals Rare Variants in T-Cell Response
Gene MR1 Associated with Poor Overall Survival after
Urothelial Cancer Diagnosis
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Simple Summary: The objectives of this study were to identify rare germline variant associations
in urothelial carcinoma of the bladder (UC) incidence and to determine its association with clinical
outcomes. Our analysis reveals that individuals with MR1 rare germline variants had significantly
worse OS than those without any, and those with ADGRL2 variants were slightly more likely to have
UC compared to a control cohort matched for age, sex, and smoking status. These associations, using
models incorporating known environmental covariates and using well-defined clinical phenotypes,
highlight several candidates for prognostic indicator genes for the differential presentation of UC.
These associations highlight several candidate genes that have the potential to explain clinical
disparities in UC and predict UC outcomes.

Abstract: Urothelial carcinoma of the bladder (UC) is the fifth most common cancer in the United
States. Germline variants, especially rare germline variants, may account for a portion of the disparity
seen among patients in terms of UC incidence, presentation, and outcomes. The objectives of this
study were to identify rare germline variant associations in UC incidence and to determine its
association with clinical outcomes. Using exome sequencing data from the DiscovEHR UC cohort
(n = 446), a European-ancestry, North American population, the complex influence of germline
variants on known clinical phenotypes were analyzed using dispersion and burden metrics with
regression tests. Outcomes measured were derived from the electronic health record (EHR) and
included UC incidence, age at diagnosis, and overall survival (OS). Consequently, key rare variant
association genes were implicated in MR1 and ADGRL2. The Kaplan–Meier survival analysis reveals
that individuals with MR1 germline variants had significantly worse OS than those without any
(log-rank p-value = 3.46 × 10−7). Those with ADGRL2 variants were found to be slightly more
likely to have UC compared to a matched control cohort (FDR q-value = 0.116). These associations
highlight several candidate genes that have the potential to explain clinical disparities in UC and
predict UC outcomes.

Keywords: rare variant analysis; electronic health record; biobank; bladder cancer

1. Introduction

Urothelial carcinoma (UC) is the 5th most common cancer in the United States and is
associated with a combination of genetic, environmental, and lifestyle factors [1,2]. In 2017,
60,490 men and 18,540 women in the United States were diagnosed with UC [3]. Recent
studies have attempted to understand the causes of disparities in UC presentation and
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outcome, including examining the associations between clinicopathological characteristics,
treatments, tumor biology, genetics, and referral patterns. While somatic mutation data is a
powerful tool to elucidate molecular origins of a tumor, especially compared to non-tumor
tissue, germline variant data is almost always easier to collect and also plays a key role in
clarifying molecular mechanisms of tumorigenesis. In the age of NGS in cancer, it is crucial
to elucidate, with enough rigor for replicable results, which germline variants (identified
mainly from blood) would predispose a patient to certain clinical outcomes, such as overall
survival (OS).

Rare germline variants, due to their low frequency and individually small contribu-
tions to the heritability of disease, are often not detectable even by extensive population
association studies; however, they have been found to be associated with extreme outliers of
gene expression [4]. Such germline variants, which account for a larger share of pathogenic
variants and contribute to a greater share of extreme gene expression across human tissues,
can have critical roles in influencing complex diseases and phenotypes such as differential
response to drug treatment, platelet counts, and corresponding somatic mutations in tumor
tissue [5–7]. In prior studies, the rare germline mutation burden in cancer-susceptibility
genes has been associated with clinical oncologic characteristics, such as corresponding
somatic mutations within tumors, age at diagnosis [6], and cancer incidence [8,9]. Partic-
ular to UC, cancer-specific survival and response to radical radiotherapy (RT) have been
associated with germline variants, and increasing evidence suggests that much of UC
incidence is due to genetic predisposition [10]. The objectives of this study were to identify
rare germline variants that are common in UC patients compared to matched healthy
patients with no history of cancer and to identify rare germline variants associated with
endophenotypes, such as overall survival (OS). We applied knowledge-informed biological
binning and the optimal sequence kernel association test (SKAT-O) for the analysis of
rare variant association with UC incidence between matched populations. Within the UC
cohort, we used burden-based association tests to correlate the burden of rare variants in
certain genes with pathologic characteristics and clinical outcomes, including OS.

Expression of MR1 has been shown in a variety of human cancers, and certain MR1
mutations were found to disrupt MAIT cell activation in mice [11]. MR1 molecules pro-
duced by bacteria-infected cells and cancer cells attract T-cell receptors on the T-cell surface
in humans, [12] and research has shown that surface expression of MR1 on cancer cells is
recognized by MR1-T cell clones in most human cancer types and could be a promising
target of cancer immunotherapy [13]. The decreased OS conferred by MR1 variant burden
in UC may indicate that there are more polymorphisms of MR1 than are currently known
that may impact intratumoral T-cell infiltration and disease progression. In this study,
variants in ADGRL2 and MR1 were found to be suggestively associated with UC incidence
and significantly with OS after UC diagnosis, respectively. Further eQTL analysis on
the rare variants in MR1 was performed to glean insights into the functional impact on
gene expression.

2. Materials and Methods
2.1. Geisinger MyCode/DiscovEHR Study Participants

Between January 2001 and May 2017, 2190 confirmed cases of UC were diagnosed
and identified (ICD-O-3 C670-C679) at the Geisinger Health System. Of those, 464 patient-
participants (diagnosed with UC) consented to genetic sequencing as part of the Geisinger
MyCode Community Health Initiative. The DiscovEHR study, a cohort with electronic
health records (EHR) linked to the Geisinger MyCode biobank in collaboration with Regen-
eron Genetics Center [14], provided exome sequencing and SNP array data. As urothelial
carcinoma or transitional cell carcinoma is the most common type of UC (>90%), only those
histologies were included. Eighteen patients with non-urothelial or non-transitional cell
carcinoma histology were excluded to refine the phenotype. To identify germline variant
associations, knowledge-informed biological binning along with optimal Sequence Kernel
Association Testing (SKAT-O) were used to apply logistic regression to get p-values of
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association for genes in which rare variants are predicted to have a statistically significant
effect on UC incidence (Figure 1).
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Figure 1. Schematic overview of the association study to identify genetic correlations between germline variants and
urothelial carcinoma (UC) endophenotypes. For the classic GWAS, PLINK files from the single nucleotide polymorphisms
(SNP) array were used; for the rare variant association, WES sequencing was used to identify rare variants and BioBin used
to bin them into biologically relevant gene bins for association testing using either a burden-based or dispersion-based test.
For the association study of germline variants with UC incidence, the germline variants found in the UC cohort (n = 446)
were compared to a matched non-cancer cohort (n = 892).

Patient-level data extracted from the EHR included Charlson comorbidity index (CCI),
smoking status (ever smoker/never smoker), UC diagnosis date, first recurrence, age at
diagnosis, grade, histology, vital status, and date of death. Individuals were checked for
discordance between reported and genetic sex. Given that age, sex, and smoking status
are known to impact UC incidence, patients in the UC cohort (n = 446) were matched by
these attributes to two control patients who had been identified in the EHR as having no
diagnosis of cancer of any type (n = 892) for a total of 1338 genotyped individuals for the
rare variant association test with UC incidence. All of the genotyped individuals were
genetically determined to have European ancestry (with 100% of patients mapping to either
CEU, TSI HapMap3 populations, or both), reflective of the patient population of Geisinger
Health System (98% of the MyCode cohort were of European ancestry). All the data used
in this study were de-identified, thus were exempt from the IRB review. We received
approvals from Geisinger MyCode Governing Board and TCGA to conduct the study.

2.2. DiscovEHR Study Variant Data (SNP Array and Exome Sequencing)

Despite making up the bulk of the human genome’s genetic variation, rare variants,
which are predicted to have larger phenotypic effects than common variants, are not
represented or tagged by SNP arrays that comprise the bulk of GWAS studies conducted
thus far. To extract rare variant calls from Geisinger MyCode exome sequencing data,
Illumina sequenced reads were aligned against the human genome reference sequence
38 using the Burrows–Wheeler Aligner (BWA). Then, Genome Analysis ToolKit (GATK)
was used for local indel assignment, base-quality-score calibration, and variant discovery
according to the GATK best practices. With a minimum read depth of 20, we applied
thresholds for variant calling as previously described [14]. To account for the known effect
of environmental factors on UC incidence, covariates in the rare variant models used for
association included age, sex, and smoking status.

2.3. Knowledge-Driven Binning Approach for Rare Variant Association Analysis

BioBin was used to perform a rare variant association analysis by binning variants
into biological features (e.g., genes) and performing selected burden tests (regression or
Wilcoxon rank-sum) or dispersion tests (Sequence Kernel Association Test, SKAT) on
those features. BioBin uses an internal biological data repository known as Library of
Knowledge Integration (LOKI), which integrates multiple public databases including NCBI
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Entrez Gene, UCSC Genome Browser, Protein families (Pfam), Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome, etc. To examine the effect of rare variants, BioBin
was used to aggregate variants into various biological features such as genes, pathways,
protein families, evolutionarily conserved regions (ECRs), and regulatory regions using
an internal repository of public databases [15]. The main utility of BioBin is direct access
to a comprehensive knowledge-guided binning approach for multiple biological features.
As more novel rare variants within exonic regions continue to be discovered as more
individuals are sequenced with NGS technology, the need to elucidate the function of
these rare variants continues to grow, especially given a major portion of natural germline
genetic variations is rare.

Our knowledge-driven binning approach was applied to bin these rare variants, whose
functions are not well characterized, into well-characterized biological features. The BioBin
binning strategy involves clustering rare variants in a defined region together, that region
being defined by biological reference in a known database. The association test is then
performed on the pattern of the variants in the region—A burden-based test considers the
variants to have an additive effect, while a kernel-based test (also called a dispersion-based
test) can consider different directions of the effect of each rare variant in a gene. Both tests
were used in the study of bladder cancer incidence and only the burden-based test was
used for association with overall survival.

Rare variants (minor allele frequency, MAF < 0.05) were binned by genes, KEGG
pathways, protein families, regulatory regions, and evolutionarily conserved regions
(Figure 1, Supplementary Table S1). The liberal MAF threshold of 0.05 was selected
to include more variants and binned variants were weighted inversely proportional to
their MAF using Madsen and Browning weighting [16] (Supplementary Figure S1). An
association test was then performed between phenotype (e.g., UC diagnosis) and the
dispersion metric of variants in each gene. To test the association between rare variants
and UC incidence, we applied the optimal test in an extended family of SKAT tests, which
is referred to as SKAT-O [17]. If the region tested has a large fraction of causal rare variants,
the burden test would likely be more powerful. Otherwise, a variance-component test like
SKAT would be. SKAT-O optimally combines burden tests (regression or the Wilcoxon rank-
sum) and dispersion tests (SKAT) to test the association between rare variants (MAF < 0.05)
and phenotype—in this case, UC incidence and UC survival. The resulting p-value of
association was corrected using false discovery correction by Benjamini and Hochberg [18].
In addition, functional exonic rare variants (nonsynonymous, predicted loss-of-function)
were extracted from the exome sequencing data using annotations given by Ensembl
Variant Effect Predictor [19] were obtained from the Variant Call Format (VCF) file and
SKAT-O re-applied to these subsets to refine the analysis. Kaplan–Meier survival curves
were constructed for rare-variant possession and wild-type cohorts and compared using
Python package lifelines and R package survival. To test for a significantly different
survival outcome, amongst rare-variant possessing cohorts, we used the log-rank test with
a chi-squared null distribution and an alpha of 0.99. All p-values were multiple-testing
corrected using false discovery rate (FDR). Variant visualization tools used for figures
included MuPIT [20] and Lollipops [21].

2.4. eQTL Analysis

Variants found to be associated with survival outcome were queried in the Genotype-
Tissue Expression Project (GTEx) portal to predict genotype-tissue expression using ex-
pression quantitative trait loci (eQTL). An eQTL is a locus that explains a change in gene
expression caused by a given variant. GTEx can calculate the p-value and Normalized
Effect size (NES) of a potential eQTL in multiple tissues to assess the impact of a variant
on the expression of a given gene. In this case, the influence of rare variants in MR1 and
ADGRL2 on the corresponding gene product’s expression levels was investigated through
eQTL analysis in GTEx to assess the predicted impact in multiple human tissues.
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3. Results
3.1. Phenotypic Data

Patient and tumor characteristics of the DiscovEHR UC study population are given
in Table 1. The median age of the 446 UC patients in DiscovEHR was 69.5 years, 20.9%
were women, and 67.7% were smokers, in line with the overall UC cohort of Geisinger [22].
100% of the cohort identified as White, and this was reconfirmed genetically, with every
member of the UC cohort mapping to the “Utah residents of European Ancestry” (CEU)
population or “Toscana Italians” (TSI) population or both. The majority of individuals were
diagnosed with Grade IV urothelial carcinoma (n = 233, 52.2%); the exhibited histology
was most frequently papillary transitional cell carcinoma (n = 186, 41.7%). At the time
of analysis, 315 patients (70.6%) remained alive and 131 patients (29.4%) were recorded
as deceased. Most of the cohort exhibited non-muscle invasive bladder cancer (NMIBC)
defined as stage < T2 (n = 321, 72%).

Table 1. Clinical phenotypic variables of the urothelial cancer cohort within DiscovEHR study derived from the electronic
health record (EHR) data.

All in Cohort Males (%) Females (%)

Age at Diagnosis

<50 21 (4.7%) 14 (66.7%) 7 (33.3%)

50–59.9 66 (14.8%) 57 (86.4%) 9 (13.6%)

60–69.9 135 (30.2%) 98 (72.5%) 37 (27.4%)

70+ 224 (50.2%) 184 (82.1%) 40 (17.9%)

Sex 446 353 (79.1%) 93 (20.9%)

Race White 446 (100%)

Smoking Status
Smoking 302 (67.7%) 257 (85.1%) 48 (14.9%)

Nonsmoking 144 (32.3%) 97 (67.4%) 45 (32.6%)

Grade

Grade I 42 (9.4%) 32 (76.2%) 10 (23.8%)

Grade II 117 (26.2%) 88 (75.2%) 29 (24.8%)

Grade III 29 (6.5%) 24 (82.8%) 5 (18.2%)

Grade IV 233 (52.2%) 190 (81.5%) 43 (18.5%)

Other 25 (5.6%) 19 (76.0%) 6 (24.0%)

Stage

Ta 213 (47.8%) 163 (76.5%) 50 (23.5%)

Tis 9 (2%) 6 (66.7%) 3 (33.3%)

T1 99 (22.2%) 81 (81.8%) 18 (18.2%)

T2 42 (9.4%) 34 (81.0%) 6 (19.0%)

T3 17 (3.8%) 13 (76.4%) 4 (23.6%)

T4 7 (1.6%) 6 (85.7%) 1 (14.3%)

Unknown 59 (13.2%) 50 (84.7%) 9 (15.3%)

Vital Status
Alive 315 (70.6%) 246 (78.1%) 69 (21.9%)

Deceased 131 (29.4%) 107 (81.7%) 24 (18.3%)

Recurrence
None or Unknown 425 (95.3%) 334 (73.1%) 90 (26.9%)

1+ 21 (4.7%) 18 (85.7%) 3 (14.3%)
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3.2. Gene-Based Rare Variant Binning Associations with UC Diagnosis Using a Control Group

Using SKAT-O, and including smoking, age, and sex as covariates, we identified a
gene, ADGRL2, of suggestive significance in exome-wide gene-based association analysis
with UC incidence (SKAT-O p-value = 7.32 × 10−6, FDR q-value = 0.11797) (Table 2). In
addition, those patients with at least one variant in ADGRL2 exhibited slightly better
survival after diagnosis with UC (log-rank p-value = 0.0177). After filtering rare variants
by VEP impact factor of 3, no genes reached genome-wide significance (SKAT-O FDR
q-value < 0.05) (Supplementary Table S1). Similarly, after filtering variants by ClinVar
annotation of pathogenic, no genes were found to be significant (Supplementary Table S2).

Out of 446 UC patients, 130 (29.4%) had at least one variant in ADGRL2. 100 of these
patients were male, and 30 were female, and there was no sex-based difference in ADGRL2
variant incidence (Supplementary Table S5). Out of the 892 people in the control group
with no history of cancer of any type who were matched to the UC cohort 2:1 using age, sex,
and smoking status, 216 (21.8%) had a variant in ADGRL2. Only 59.4% of UC individuals
with ADGRL2 variants were smokers, a lower rate than the rest of the UC cohort (those
harboring no ADGRL2 variants were 71.2% smokers). ADGRL2 variant carriers were less
likely to smoke, and as smoking is known to negatively impact overall survival (OS),
they featured better survival outcomes as a group. Individuals with UC who had at least
one variant in ADGRL2 tended to feature slightly better OS than those with no variants
(log-rank p-value = 0.0177). When known ADGRL2 variants were used to query GTEx for
bladder tissue eQTLs, ADGRL2 was not found to have sufficient expression in the bladder
to calculate eQTLs. 22 of the variants found were annotated as missense or regulatory
region variants by VEP and 13 of the variants were predicted to occur in the Latrophilin
Cytoplasmic C-terminal region of ADGRL2 (Figure 2). None of the variants in ADGRL2
had been annotated with an IMPACT of HIGH, indicating that none had a previous known
loss-of-function role (Supplementary Table S3).
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Table 2. Results of rare germline variant analysis for UC incidence by gene using dispersion metrics
sequence kernel association test (SKAT) and optimal-SKAT (SKAT-O), with SKAT-O p-value adjusted
for false discovery rate.

Bin Num_Loci SKAT_Logistic SKAT-O FDR

ADGRL2 59 0.000385 7.32 × 10−6 0.11797

ARHGAP4 67 0.000129 6.53 × 10−5 0.460917

INSRR 70 4.01 × 10−5 8.58 × 10−5 0.460917

EMX2 9 0.000203 0.000203 0.59549

PAICS 19 0.000125 0.000262 0.59549
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Table 2. Cont.

Bin Num_Loci SKAT_Logistic SKAT-O FDR

CHPF 50 0.000118 0.00027 0.59549

CCDC155 35 0.000138 0.000282 0.59549

NTRK1 133 0.000129 0.000307 0.59549

GNL2 28 0.000332 0.000332 0.59549

3.3. Gene-Based Binned Rare Variant Associations with Survival and Age of Diagnosis

Individuals who had rare variants in MR1 exhibited significantly poorer Kaplan–Meier
survival outcomes in the burden-based survival analysis of rare variant carriers in the
DiscovEHR UC cohort (Figure 3a). The 42 UC patients with rare germline variants in
MR1 exhibited poorer overall survival than the patients without these variants (log-rank
p-value = 3.46 × 10−7), with a median OS of 69 weeks, or 1.33 years after diagnosis with
UC. compared to a median of 199 weeks, or 3.83 years for those patients without variants in
MR1. Patients with MR1 variants did not exhibit significantly higher Charlson Comorbidity
Index (CCI)—average 7.94 for those with no variants and 8.12 for those with rare variants.
Variants in MR1 were not associated with bladder cancer incidence in the matched control
group analysis (unadjusted p-value = 0.422), and the age at diagnosis was not significantly
different (mean 69.1 years for those with variants, mean 71.0 years for those with no
variants), even though significantly worse OS for MR1 variant-carriers was observed. The
Cox proportional hazards model of MR1 variant carriers implicated MR1 variant carrier
status as being more impactful than smoking status or sex in predicting survival outcome
(Table 3, Supplementary Table S6, Supplementary Figures S3 and S6).

Table 3. Cox proportional hazards for MR1 variant carrier status, patient sex, and smoking status.

Coefficient eCoefficient Coefficient SE z p Lower 0.95 Upper 0.95

Sex −0.05 0.95 0.24 −0.20 0.84 −0.51 0.41

Smoking −0.17 0.85 0.22 −0.77 0.44 −0.60 0.26

MR1 −1.44 0.24 0.31 −4.72 <0.005 −2.04 −0.84

Two other genes were implicated in association testing between rare variant burden
and survival after diagnosis with UC. NDST1 germline variants were identified in 31 in-
dividuals who exhibited poorer OS (log-rank p-value = 1.22 × 10−5), with carriers living
a median of 47 weeks, and non-carriers living a median of 180 weeks (Supplementary
Figure S4, Supplementary Table S7). Variant-carriers in MPHOSPH9 (n = 49) were also
observed to have an inferior OS (log-rank p-value = 2.55 × 10−6) with carriers living
a median of 94 weeks, and non-carriers living a median of 201 weeks (Supplementary
Figures S5, S7 and S8, Supplementary Table S8).
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RNA-seq of 95 human individuals of 27 tissues from Human Protein Atlas, with top results including urinary bladder,
spleen, adrenal gland. (c). MuPIT visualization of MR1 protein with predicted protein impact areas from variants in MR1
found in DiscovEHR UC cohort (green) and predicted areas from TCGA (purple).

3.4. Annotations of Variants in MR1 and GTEx eQTL Analysis

One of the 13 MR1 variants found was novel, chr1-181050154-GCT-GCT. The other
12 variants had various annotations (LOW, MODERATE, MODIFIER) from VEP
(Supplementary Table S4), but none had an impact field of HIGH, indicating that these
MR1 variants were found in the DiscovEHR population had not been previously anno-
tated to have a high pathogenic effect. The 13 variants in MR1 were used to query GTEx
tissue-genotype expression portal, and the variant within MR1 found to have the greatest
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likelihood to have an impact on MR1 mRNA levels in human tissue was rs3747956. In
GTEx, rs3747956 was found to be associated with an altered expression value of MR1 in
adrenal gland tissue (n = 175) with a p-value of 1.1 × 10−12 and a Normalized Effect Size
(NES) of 0.335 (Figure 4). The spleen (n = 146) was the second-highest ranked out of the
27-tissue eQTL comparison from GTEx for rs3747956, with a p-value of 0.0025 and an NES
of 0.323. For the adrenal gland eQTL finding, those with a GG (reference, or wild-type)
genotype for SNP rs3747956 had the lowest normalized expression of MR1 (−0.144), while
those with an AA genotype had a significantly higher normalized expression of MR1 (0.405)
and those with a GA genotype had the intermediate phenotype of middling normalized
expression (0.0549) (Supplementary Figure S2).
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4. Discussion

While many possible reasons for these disparities exist ranging from referral patterns
to hormonal milieu, limited data exist on the role of sex-based germline genetic differences.
The objective of this study was to analyze germline rare variants in individuals with UC
and assess the strength of genetic associations with clinical outcomes. With the expansion
of NGS sequencing in the clinical context, the DiscovEHR study was uniquely equipped to
investigate the complex causes of these disparities in UC outcome using genetic sequencing
data combined with robust Electronic Health Record (EHR) data from a single healthcare
system in conjunction with the Regeneron Genetics Center, thereby eluding the issue of
different center data protocols, NGS capture platforms that often plague consortia analyses.
The up-to-the-date phenotypic data from the EHR allowed us to control for environmental
factors such as smoking status to distinguish the true genetic signal. Understanding rare
variants are important as they have already been implicated in disease severity. Identifying
rare variant clinical effects can be difficult due to many reasons—once rare variants are
sequenced; the rarity of such variants makes it difficult to establish an association to
any given clinical phenotype and incorporating prior knowledge to bin rare variants
advances our identification capabilities. In our cohort, we identified associations between
rare variants, and clinical outcomes in UC by using the binning technique to ensure
biological reference.

The DiscovEHR UC cohort was well-equipped to elucidate the role of genetic variants
in susceptibility to UC incidence and survival due to the extensive nature of EHR data and
the genetically confirmed homogeneity of the source population. Using smoking status
as a covariate in a test for incidence of bladder cancer was well-founded as smoking is
associated with a higher risk of urothelial cancer. In this case, as the smoking data are
gleaned from self-reported data in the medical record, the possibility of a discrepancy
between actual and reported smoking status exists. In this case, we considered those who
had ever reported being a smoker in any encounter as smokers and those who had never
reported smoking as non-smokers to reduce this effect. The results of any study relying on
self-reported smoking data could be biased by this.

4.1. Biological Relevance of ADGRL2

For the test for urothelial cancer incidence, comparing the control and case populations’
germline variants yielded one gene of suggestive significance, ADGRL2. 29.4% of UC pa-
tients in the Geisinger cohort had at least one germline variant in ADGRL2. In comparison,
24% of UC patients in another cohort were found to have a pathogenic germline variant
in one of 17 genes previously known to predispose to cancer [23]. ADGRL2, also called
LPHH1, PLHN1, and LPHN2 is a G-protein coupled receptor that triggers exocytosis from
neurons and neuroendocrine cells It had previously been found to be variably expressed
in breast cancer cell lines [24] and silenced by epigenetic modifications in human gastric
and colon cancers [25]. The Human Protein Atlas shows that high ADGRL2 expression is
considered an unfavorable prognostic marker in endometrial cancer, stomach cancer, and
liver cancer. Cancer cells with lower ADRGL2 expression also showed higher sensitivity to
the anti-proliferative effects of cisplatin [25]. The alternative name, LPHH1, comes from
the other known function of this receptor in humans, which is acting as a receptor with
a weak affinity for latrotoxin. A large meta-analysis of 110,517 individuals of European
ancestry implicated a variant in ADGRL2, rs10874312, as significantly associated with
kidney glomular filtration rate (eGFR) as measured by serum creatinine [26]; reduced eGFR
is known to increase the risk for renal and urothelial cancer [27]. In a study examining a
deleterious de novo ADGRL2 variant associated with microcephaly, ADGRL2 was found to
be expressed early during embryonic development; according to the ExAC consortium,
the ADGRL2 gene is loss-of-function intolerant (pLI = 1) [28]. HeLa cells overexpressing
ADGRL2 display a highly developed cytoplasmic F-actin network resulting in decreased
cell motility, intriguing given that the location of the most variants in ADGRL2 within the
latrophilin cytoplasmic C-terminal region in our cohort [28]. The Gene Ontology (GO) term
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associated with the most splice variants of ADGRL2 according to Human Protein Atlas was
GO:0004871 (signal transducer activity).

4.2. Biological Relevance of MR1

A clearly negative impact on overall survival was found for those UC persons who
possessed at least one germline variant in MR1. MR1 has been well characterized in genetic
oncology. The protein product of the gene MR1 (MHC class I-related molecule), is involved
in antigen presentation to T cells, including tumor-related antigens. MR1 is a highly
conserved major histocompatibility complex gene that is required for the development
of mucosal-associated invariant T-cells (MAIT) and other T cell populations, including
MR1-restricted T (MR1T) cells that recognize cancer cells through interaction with MR1
molecules produced by cancer cells on cell surfaces [12]. While age at diagnosis was not
significantly different for those with MR1 variants, the 42 individuals with variants in MR1
exhibited significantly poorer overall survival after UC diagnosis.

We posit that those individuals with MR1 variants may present unfavorable survival
because MR1′s role in cancer cell recognition by T-cells (MAIT, MR1T) [12] may be impacted
by the presence of variants in MR1; this may explain the finding that rare variants in MR1
are associated significantly with inferior OS after UC diagnosis. An MR1 knock-out study
found that all of the MR1 mutations tested severely reduced surface expression of folded
molecules in MAIT cells [29] and that there was strong evidence for MR1 having an antigen
presentation function in MAIT cells [11,29]. MR1 is overexpressed in many solid cancers,
and this overexpression is correlated with poor overall survival in glioma patients from
TCGA [23]. MR1 is required for the selection/expansion of MAIT cells. MR1 expression
and MAIT cell abundance were significantly positively correlated in four human cancers,
and that high MAIT cell abundance was in turn associated with OS and progression-free
survival with different directions of effect in different cancers [30]. There is also evidence for
MAIT cells influencing cytokine-based gut response in the gut mucosa [31]. A more recent
study highlighted the role of MR1 protein in a non-MAIT T cell receptor’s recognition and
killing of cancer cells in most human cancer types [13].

GTEx analysis of MR1 expression (RPKM) in human tissues showed that MR1 tran-
scription products showed the highest expression in the urinary bladder, adrenal gland,
and spleen out of 27 tissues [32] (Figure 3b). Similarly, the highest predicted impact of func-
tional variant rs3747956 in MR1 in the GTEx multi-tissue eQTL analysis was in the adrenal
gland and spleen—there are not yet enough samples for bladder tissue in GTEx to assess
the impact of that variant on MR1 expression in the urinary bladder. The functional impact
of all 13 variants in MR1 found in the DiscovEHR UC cohort remains to be elucidated, but it
may be that variants in MR1 may confer decreased OS by impacting the anti-tumor function
of specialized T-cells either directly or through a downstream process. Our finding that
MR1 rare variant carriers had significantly poorer overall survival (p-value = 3.46 × 10−7),
with half of those individuals having OS decreased by 1.32 years after diagnosis with UC
(despite similar age at diagnosis, histological grade distribution, CCI, and sex distribution
to non-carriers) points to the possible significant impact of genetic rare variants to predict
clinical outcome and examine causes of cancer-related mortality. In comparison, carriage
of germline variants in MRE11A was associated with worse radiotherapy outcome with
p = 0.009 [10].

Future work incorporating clinical and genetic data can elucidate the complex biologi-
cal mechanisms responsible for the differentiated clinical presentation of UC, especially the
genetic factors that may be of interest for those who may be most vulnerable to an unfavor-
able clinical outcome. An expanded understanding of the exact translational mechanism
by which possibly pathogenic rare germline variants would influence clinical outcomes is
needed to predict clinical outcomes and to better elucidate the causes of known clinical
disparities in UC presentation.
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5. Conclusions

The causes of UC incidence and differential survival outcome remain to be elucidated
especially with regard to the respective roles of genetic predisposition and environmental
exposure. Causes of the differential OS are especially important as OS is often the clinical
endpoint used to measure the efficacy of treatment after diagnosis with UC. This study
aimed to use both germline genetic data and electronic health record data to glean associa-
tion between rare germline variants with disparities in UC incidence and survival outcome.
Using knowledge-informed biological binning and SKAT-O or burden testing, we have lo-
calized key rare variant associations to genes MR1 (located in 1q25.3) and ADGRL2 (located
in 1p31.1). Those with ADGRL2 variants were slightly more likely to be diagnosed with UC
compared to a non-cancer control cohort matched for age, sex, and smoking status. Our
analysis reveals that individuals with MR1 rare germline variants had significantly worse
OS than those without any. MR1 mutations have been found to reduce surface antigen
presentation and anti-tumor response in MAIT cells, and amongst GTEx tissues, MR1
mRNA is most highly expressed in the urinary bladder. Germline variants in MR1 may
confer decreased OS by impacting the ability of MAIT cells and/or other MR1-restricted
T-cells to slow tumor progression.
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