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ABSTRACT The complete genome sequence of Cyanobacterium sp. strain HL-69 con-
sists of 3,155,247 bp and contains 2,897 predicted genes comprising a chromosome and
two plasmids. The genome is consistent with a halophilic nondiazotrophic phototrophic
lifestyle, and this organism is able to synthesize most B vitamins and produces several
secondary metabolites.

Cyanobacteria in phototrophic microbial mats are responsible for most of the
primary production, provide fixed nitrogen and sulfur to the community, and

contribute to the structural integrity of the mat (1, 2). We present here the complete
genome sequence of the coccoid unicellular Cyanobacterium sp. strain HL-69 (CHL-69),
which was derived from a microbial mat from the magnesium sulfate-dominated
hypersaline Hot Lake in northern Washington (3, 4). CHL-69 was isolated from a Hot
Lake mat enrichment culture by streaking until axenic on Hot Lake autotroph (HLA)
medium, which is BG-11 amended to mimic Hot Lake water (5).

CHL-69 genomic DNA was extracted using a modified cetyltrimethylammonium
bromide (CTAB) protocol (5) and was sequenced by the Department of Horticulture
Genomics Lab at Washington State University in Pullman, WA, USA, on a PacBio RS
II platform, which generated 60,773 reads with a mean length of 5,905 nucleotides
(nt). De novo assembly with Hierarchical Genome Assembly Process (HGAP) (SMRT
portal version 2.2.0) (Pacific Biosciences) (6) yielded 5 unique contigs. Gaps and
sequence errors were resolved using assembled shotgun metagenome data
(Illumina HiSeq) from the enrichment culture (https://github.com/jenmobberley/
CyanobacteriumHL69). Gene prediction was performed with Prodigal (7) and through
the Rapid Annotations using Subsystems Technology (RAST) server (8), and rRNAs and
tRNAs were identified with Rfam (9). Genes were assigned functional annotation by use
of information from the RAST server (8), BlastKOALA (10), and TIGRFAMs (11).

The genome of CHL-69 consists of a circular chromosome (3,155,247 bp) with an
average G�C content of 37.8% and two plasmids, pCHL69-1 (86,432 bp) and pCHL69-2
(55,266 bp), with average G�C contents of 34.1% and 35.32%, respectively. Sequence
analysis revealed 3,039 coding sequences, 9 rRNAs, and 44 tRNAs. The chromosome
contained a putative prophage as well as a clustered regularly interspaced short
palindromic repeat (CRISPR)-cas subtype I-D system. Each plasmid contained parA and
toxin-antitoxin genes, which suggests that the plasmids are maintained at a low copy
number. Average nucleotide identity (ANI) calculations showed that the HL-69 genome
was 95.8% identical to that of the freshwater isolate Cyanobacterium sp. strain IPPAS
B-1200 (3,410,249 bp) (GenBank accession no. LWHC00000000) (12) and 82.75% iden-
tical to that of the soda lake isolate Cyanobacterium stanieri PCC 7202 (3,163,381 bp)
(GenBank accession no. CP003940) (13).

The nutritional dependencies of Cyanobacterium sp. HL-69 were revealed through
metabolic reconstruction. HL-69 contains nitrate assimilation genes but lacks nitroge-
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nase, supporting experiments showing HL-69 grows on nitrate but not dinitrogen (Y.M.
and J.K.C, unpublished data). The genome of HL-69 indicates it is auxotrophic for
vitamin B12 and is capable of salvage through an ABC transporter (btuBFCD). HL-69 is
prototrophic for B2, B6, B7, and B9; however, the presence of genes for uptake of B7

(bioY) and B9 (folT) suggests it might be conditionally syntrophic for those vitamins (14).
Consistent with CHL-69 growing under a wide range of salinity and light conditions,
stress response pathways were identified, such as biosynthesis of the osmolytes
glucosyl-glycerol (ggpS) and choline (glpQ), as well as the UV protectant mycosporine,
which may be induced by oxidative stress due to high light levels (15).

Accession number(s). This whole-genome shotgun project has been deposited in
GenBank under the accession no. CP024912 (CHL-69), CP024913 (pCHL69-1), and
CP024914 (pCHL69-2). The versions described in this paper are the first versions,
CP024912.1, CP024913.1, and CP024914.1. The metagenome for the cyanobacterial
enrichment culture is publically accessible in JGI’s Integrated Microbial Genomes and
Microbiomes (IMG) under IMG Genome ID 3300005412.
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