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Abstract

Background and aims

The incidence of colorectal cancer (CRC) is increasing in adults younger than 50, and early

screening remains challenging due to cost and under-utilization. To identify individuals aged

35–50 years who may benefit from early screening, we developed a prediction model using

machine learning and electronic health record (EHR)-derived factors.

Methods

We enrolled 3,116 adults aged 35–50 at average-risk for CRC and underwent colonoscopy

between 2017–2020 at a single center. Prediction outcomes were (1) CRC and (2) CRC or

high-risk polyps. We derived our predictors from EHRs (e.g., demographics, obesity, labora-

tory values, medications, and zip code-derived factors). We constructed four machine learn-

ing-based models using a training set (random sample of 70% of participants): regularized

discriminant analysis, random forest, neural network, and gradient boosting decision tree. In

the testing set (remaining 30% of participants), we measured predictive performance by

comparing C-statistics to a reference model (logistic regression).

Results

The study sample was 55.1% female, 32.8% non-white, and included 16 (0.05%) CRC

cases and 478 (15.3%) cases of CRC or high-risk polyps. All machine learning models pre-

dicted CRC with higher discriminative ability compared to the reference model [e.g., C-sta-

tistics (95%CI); neural network: 0.75 (0.48–1.00) vs. reference: 0.43 (0.18–0.67); P = 0.07]
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Furthermore, all machine learning approaches, except for gradient boosting, predicted CRC

or high-risk polyps significantly better than the reference model [e.g., C-statistics (95%CI);

regularized discriminant analysis: 0.64 (0.59–0.69) vs. reference: 0.55 (0.50–0.59);

P<0.0015]. The most important predictive variables in the regularized discriminant analysis

model for CRC or high-risk polyps were income per zip code, the colonoscopy indication,

and body mass index quartiles.

Discussion

Machine learning can predict CRC risk in adults aged 35–50 using EHR with improved dis-

crimination. Further development of our model is needed, followed by validation in a pri-

mary-care setting, before clinical application.

Introduction

Colorectal cancer (CRC) is the most gastrointestinal cancer, affecting over 150,000 adults in

the U.S. each year. Despite a declining CRC incidence and mortality in older adults due to

effective screening, CRC incidence and mortality is rising in adults�50 years of age [1–3].

The duration of preclinical CRC is estimated to be between 4 and 6 years [4]. Thus, adults may

harbor asymptomatic CRC for years before undergoing CRC screening [5]. Although multiple

professional societies now recommend initiating CRC screening at age 45 as opposed to 50,

simulations raise concerns about cost, risks, and efficacy even when fecal immunochemical

testing (FIT) is used [6]. Thus, there is an urgent need to establish novel and targeted CRC

screening strategies for young adults that are cost-effective and easy to implement. Such efforts

are challenged by the perceived lower risk among young adults and medical providers, even

when gastrointestinal symptoms are present [7–9].

One potential strategy for the early detection of CRC and premalignant polyps, is to apply

evidence-based risk stratification tools to identify individuals at greater risk who can benefit

from screening. Such efforts may reduce diagnostic delays for young adults, particularly when

leveraging the power of electronic medical records to alert caregivers. Novel risk assessment

tools are being developed and validated for other malignancies and applied to clinical practice

so as to improve care with acceptable costs [10]. However, thus far, the available CRC risk

assessment tools focus on asymptomatic adults over the age of 50 and do not capture adults

aged 35–44 who account for 50% of early-onset CRC cases [11, 12]. Existing CRC prediction

tools also lack discriminatory power or are cumbersome to use, which has reduced their utili-

zation and dissemination [13]. Therefore, developing a sensitive and specific, and yet easy to

implement, CRC risk assessment tool for adults aged 35–50 is necessary to classify young

adults into meaningful risk groups so as to identify those at high risk, while reducing interven-

tions such as colonoscopy, in those at low risk.

In that regard, machine learning is an aspect of artificial intelligence that uses software algo-

rithms to improve the analysis by learning and identifying patterns in large datasets [14].

Therefore, Incorporation of machine learning offers potential for the development of an effec-

tive CRC risk assessment tool for young adults. For instance, machine learning methods that

integrate clinical risk factors have been applied to breast cancer risk prediction and improve

predictive accuracy from 60% to 90% [15]. In addition, deep learning with an artificial neural

network based on personal health data has been shown to robustly stratify CRC risk in the
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large national database [16]. Thus, we hypothesize that machine learning can integrate readily

available and complex factors from electronic health records (EHRs) to create a prediction

model for CRC that applies to adults aged 35–50. To test our hypothesis, we derived and inter-

nally validated a prediction model for CRC or high-risk polyps in adults aged 35–50 years who

underwent colonoscopy due to symptoms or screening age indications.

Methods

Participants

We conducted a retrospective predictive study at the Ohio State University after receiving

approval from the Ohio State University’s (OSU) Institutional Review Board (IRB protocol

number 2020H0190). The Ohio State University IRB approved the waiver of informed consent

since this is a retrospective chart review that involves no interaction with study participants;

and the study accessed information which would normally be accessed during clinical care for

these patients. To develop the model, we used data from average-risk adults aged 35–50 who

underwent their first colonoscopy between November 2017 and February 2020. Our cohort

and their colonoscopy data were obtained from the GI Quality Improvement Consortium

(GIQuic) database at the Ohio State University. GIQuic is a collaborative, nonprofit, scientific

organization between the American College of Gastroenterology and the American Society for

Gastrointestinal Endoscopy [17]. The OSU GIQuIC database collects all the colonoscopies

performed at OSU and includes colonoscopy quality measures such as adequacy of bowel

preparation, indication, cecal intubation rate, and adenoma detection rate [18].

Inclusion and exclusion criteria

Our study plot is included in Fig 1. We included adults aged 35–50 years due to the increased

incidence of early-onset CRC in adults aged 35–49 years compared to younger adults [1].

Moreover, a substantial portion of asymptomatic early-onset CRC patients are not diagnosed

until the initiation of screening at age 50 [5]. Some health plans previously approved CRC

screening colonoscopy in adults aged 45 and older according with the American Cancer Soci-

ety (ACS) 2018 guidelines [19]. However all patients <45 are generally referred for a diagnos-

tic colonoscopy (e.g., diarrhea, constipation, abdominal pain, irritable bowel syndrome,

bleeding, etc). These gastrointestinal symptoms are found in a significant proportion of Amer-

icans, most of whom do not undergo diagnostic colonoscopy or have no organic causes on a

colonoscopy [20–23]. Therefore, we included adults who underwent either a diagnostic or

screening colonoscopy, which is the standard of care for the diagnosis of polyps or CRC. We

further investigated if including diagnostic colonoscopy may lead to possible bias by compar-

ing our predictors between adults aged 46–49 undergoing screening colonoscopy to vs. diag-

nostic colonoscopy (S1 Table). We selected 46–49 because the numbers of diagnostic and

screening colonoscopies were similar in this age range (407 vs. 296, respectively). Only diag-

nostic symptoms, tobacco use, and triglyceride levels differed significantly, suggesting symp-

tomatic and asymptomatic adults are similar for most of the predictors included in this study.

All included adults had a complete colonoscopy and an adequate bowel prep for detection of

polyps >5 mm (Boston Bowel Prep Scale�2 in every colon segment) [24]. As early-onset

CRC primarily occurs in adults with no strong familial predisposition or pre-existing colitis

[25], we included only average-risk adults in our model. Of the 5,588 participants considered

for the study, we excluded patients with: (1) inflammatory bowel disease or colitis on subse-

quent biopsies; (2) personal history of polyps or CRC, elevated cancer makers (e.g., CEA or

CA199) or metastatic cancer requiring colonoscopy; (3) family history of CRC in one first

degree or two second degree relatives, or (4) hereditary CRC syndromes including polyposis
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syndromes. After these exclusions, we retained 3,116 participants. This study was conducted

and reported in accordance with the guidelines for transparent reporting of a multivariable

prediction model for individual prognosis or diagnosis (TRIPOD) [26].

Outcomes

Our two outcomes were (1) CRC and (2) CRC or high-risk polyps confirmed by pathology.

Our outcomes were recorded by a personnel who was blinded to the study patient clinical

characteristics and laboratory measurements. High-risk polyps were defined as adenomatous

or serrated polyps�10 mm in size with high grade dysplasia or villous component or�3 ade-

nomas or serrated polyps of any size as done before [27, 28]. We did not include hyperplastic

polyps in our outcomes due to benign nature. Because the rate of early-onset CRC is low (9.5–

14 per 100,000) [29], we included high-risk polyps as an outcome to increase the pre-test prob-

ability of a positive test. We chose to include only high-risk polyps as 91% of proven high-risk

Fig 1. Study plot detailing study flow as well as inclusion and exclusion criteria.

https://doi.org/10.1371/journal.pone.0265209.g001
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polyps grow by 20% per year, whereas 63% of non-high-risk polyps remain stable or regress

[30].

Predictors

The predictors for machine learning models were chosen from routinely available data in the

EHRs using a priori knowledge. Our predictors were pulled from EHRs by a data analyst who

was blinded to the study and our outcomes. The predictors included in this study are summa-

rized in Table 1. Predictors included patient age at time of colonoscopy, reported sex and race;

American Society of Anesthesiology (ASA) comorbidity category; the symptom indicating the

colonoscopy; recorded height and weight; calculated body mass index (BMI) classified by

mean, quartile, and overweight/obesity category per WHO criteria; social history (use of alco-

hol, tobacco, or recreational drugs); medication (aspirin and statins); and laboratory studies

(hemoglobin and cholesterol panels). We used the ratio of triglyceride to high-density lipopro-

tein (HDL) as a surrogate of insulin resistance and stratified the ratio by mean, quartile, and

<3 or�3 as previously reported [31, 32]. Zip code-derived social determinants of health were

retrieved as well. Specifically, we used the 2018 IRS public data to link zip codes to mean

adjusted gross income, adjusted gross income percentage within income brackets, and single

return percentile [33] for inclusion in our model. Rural-urban commuting area (RUCA)

codes, which are a detailed and flexible scheme for delineating sub-county components of

rural and urban areas, were also linked to zip codes and included as predictors in our model

[34].

Data preparation

Dummy variables were created by converting categorical variables to corresponding as many

numerical variables as there are categories. Then, training and testing datasets were generated

by randomly splitting the data into 70% and 30%, respectively, using the createDataPartition
function in the R package caret. Missing values were imputed by creating a bag imputation

model and using the imputation model to predict the values of missing data points. Imputation

via bagging fits a bagged tree model for each predictor as a function of all other predictors.

Finally, we centered, scaled, and transformed the predictor values using the R function prePro-
cess in the caret package to generate comparable continuous predictors with dynamic ranges.

Predictive modeling

To predict the probability of each outcome, we first fit a logistic regression model as the refer-

ence model including all of the aforementioned predictors. Then four machine learning mod-

els were constructed: (1) regularized discriminant analysis, (2) random forest, (3) neural

network, and (4) gradient boosting decision tree. Regularized discriminant analysis is a gener-

alization of linear discriminant analysis and quadratic discriminant analysis that increases the

power of discriminant analysis to penalize large coefficients from small sample sizes. For our

regularized discriminant analysis model, we performed a random search for two parameters

(gamma and lambda) using the R package klaR [35]. Random forests are a bagging approach

derived from many decision trees and are created with bootstrap samples of training data and

random feature selection. For our random forest model, we used random search in the ran-
domForest package to generate 20 random values of mtry and selected the value with the high-

est accuracy [36]. Neural networks are computational learning systems that use a network of

functions to understand and translate a data input of one form into a desired output. For our

neural network model, we performed a random search for two hyper-parameters (size and

decay) using the R package nnet [37]. Gradient boosting decision trees are a boosting approach
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Table 1. Included predictors and baseline demographics.

Predictors Percentages and means Missing data

Total number of included patients 3116

Mean age (standard deviation or S.D.) 46.5 (4.73) 0.0%

Female Gender 55.1% 0.0%

Race 1.8%

Non-Hispanic White 67.2%

African American 18.7%

Hispanic 2.6%

Asian 1.5%

Other 8.1%

Rural-urban commuting area code (RUCA2) 0.0%

Mean (S.D.) 1.33 (1.17)

Metropolitan [RUCA 1–3] 93.3%

Micropolitan [RUCA 4–6] 5.0%

Small town [RUCA 7–9] 1.4%

Rural [RUCA 10] 0.3%

Percentage of returns within income brackets per zip code [mean (S.D.)] 0.4%

$1 to under $25,000 30.60% (9.48)

$25,000 to under $50,000 24.59% (6.98)

$50,000 to under $75,000 14.64% (2.63)

$75,000 to under $100,000 9.50% (2.83)

$100,000 to under $200,000 14.70% (7.69)

$200,000 or more 5.97% (5.88)

Percentage of single tax returns per Zip code [mean (S.D.)] 49.04% (8.67) 0.4%

Adjusted gross income per zip code [mean (S.D.)] $1,399,101.15

(862,516.76)

0.4%

American Society of Anesthesiology (ASA) Physical Status Classification

System

0.0%

ASA I (healthy patient) 25.6%

ASA II (mild systemic disease) 67.4%

ASA III (severe systemic disease) 6.9%

ASA IV (life threatening systemic disease) 0.1%

Colorectal cancer screening indication 53.0% 0.0%

All diagnostic colonoscopy indications 47.0% 0.0%

Functional gastrointestinal symptoms: 32.8%

•Abdominal pain 11.3%

•Constipation 5.9%

•Diarrhea 3.3%

•Rectal pain 0.6%

•Pelvic pain 0.3%

•Obstipation 0.1%

•Irritable bowel syndrome 0.3%

Weight loss 1.0%

Gastrointestinal bleeding 20.1%

Anemia 3.8%

Change in bowel habits 2.8%

Change in stool caliber 0.7%

Personal history of cancer other than CRC 0.4%

Colorectal neoplasm in distant relative 3.0%

(Continued)
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Table 1. (Continued)

Predictors Percentages and means Missing data

Family history of cancer other than CRC 0.0%

Prior diverticulitis prior diverticulitis 2.1%

Height in feet [mean (S.D.)] 5.59 (0.34) 0.7%

Weight in pounds [mean (S.D.)] 194.58 (53.11) 6.0%

BMI (kg/m2) 6.0%

Mean (S.D.) 30.24 (7.42)

� 25 Kg/m2 70.7%

� 30 Kg/m2 40.5%

� 35 Kg/m2 19.4%

� 40 Kg/m2 9.4%

Median [Inter quartile Range (IQR)] 28.8 (25–33.9)

Alcohol use 0.9%

Never 1.1%

No 33.8%

Not currently 3.0%

Yes 61.2%

Tobacco use 0.4%

Never 61.9%

Passive 0.2%

Quit 23.1%

Yes 14.3%

Intravenous drug user 1.4%

No 98.4%

Yes 0.2%

Illicit drug user 1.4%

Never 5.5%

No 84.3%

Not currently 2.0%

Yes 6.8%

Total cholesterol (mg/dL) 29.2%

Mean (S.D.) 185.57 (41.11)

� 200 mg/dL 23.9%

< 200 mg/dL 46.8%

� 170 mg/dL 45.3%

< 170 mg/dL 25.5%

Median (IQR) 183 (159–210)

High Density Lipoprotein (HDL, mg/dL) 29.9%

Mean (S.D.) 51.90 (15.82)

�35 mg/dL 63.5%

<35 mg/dL 6.6%

�40 mg/dL 55.4%

<40 mg/dL 14.7%

Median (IQR) 49 (41–60)

Low Density Lipoprotein (LDL, mg/dL) 30.3%

Mean (S.D.) 107.01 (34.45)

�100 mg/dL 40.3%

<100 mg/dL 29.4%

(Continued)
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that builds an additive model of decision trees estimated by gradient descent. For our gradient

boosting decision tree model, we applied a random search to tune parameters, number of iter-

ations, and interaction depth while holding shrinkage constant in the R package gbm [38].

Finally, to account for potential overfitting of the machine learning models, we employed

repeated five-fold cross-validation in the R package caret [34].

We assessed the predictive performance of each model by computing C-statistics [area

under the receiver operating characteristic curve (AUC/AUROC)] and prediction metrics,

including sensitivity, specificity, positive predictive value, and negative predictive value, in the

testing dataset using functions provided in the R package pROC [39]. To account for the class

imbalance caused by a low proportion of outcomes, we applied the SMOTE resampling

method to generate artificial samples [40] and selected cutoffs based on the ROC curve. To

evaluate the contribution of each predictor to the machine learning models, we calculated vari-

able importance in the best performing models. Finally, we used the DeLong test to compare

ROC curves to the reference model using the function roc.test in the R package pROC [39]. A

p-value <0.05 was considered statistically significant. All analyses were performed with R ver-

sion 4.0.2 (The R Foundation for Statistical Computing).

Results

Altogether, 3,116 adults aged 35–50 were included in our study. The characteristics of the par-

ticipants are described in Table 1. The cohort was 55.1% female, 32.8% non-white, and 93.3%

belonged to a metropolitan area per RUCA classifications. Approximately 54% of the cohort

belonged to zipcode that earned less than $50,000 a year, and more than two-thirds (72%) of

the cohort were overweight or obese. A screening colonoscopy was performed in 53% of par-

ticipants, and functional gastrointestinal symptoms were the main indication for a diagnostic

colonoscopy (32.8%).

Table 1. (Continued)

Predictors Percentages and means Missing data

�150 mg/dL 7.2%

<150 mg/dL 62.5%

Median (IQR) 106 (84–129)

Triglyceride (TG, mg/dL) 29.4%

Mean (S.D.) 143.74 (176.88)

�150 mg/dL 21.9%

<150 mg/dL 48.7%

Median (IQR) 110 (76–167)

Triglyceride: High Density Lipoprotein (TG: HDL) ratio 29.9%

Mean (S.D.) 3.31 (5.92)

High (ratio�3) 25.0%

Low (ratio <3) 45.1%

Median (IQR) 2.24 (1.35–3.77)

Hemoglobin (mg/dL) 40.3%

Mean (S.D.) 13.75 (1.71)

Females with anemia (<12 mg/dL) 6.3%

Males with anemia (<13.5 mg/dL) 3.2%

Median (IQR) 13.9 (12.8–14.9)

Reported non-steroidal anti-inflammatory drugs use 12.5% 0.0%

Statin medications use 14.3% 0.0%

https://doi.org/10.1371/journal.pone.0265209.t001
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Prediction of colorectal cancer

Overall, 16 (0.05%) patients had CRC on colonoscopy. The C-statistics for CRC are presented

as ROC curves in Fig 2 and comparisons of AUC characteristics in Fig 3. The reference model

had the lowest discriminative ability when compared to the machine learning models. For

example, the neural network and gradient boosting decision tree models had higher AUC val-

ues compared to the reference model but did not reach significance (neural network: 0.75;

95%CI, 0.48–1.00; P = 0.07; stochastic gradient boosting: 0.76; 95%CI, 0.46–1.00; P = 0.14).

The performance metrics for all models are detailed in Table 2. All machine learning models

had similar sensitivity to the reference model except regularized discriminant analysis, which

had lower sensitivity. The specificity and accuracy were much higher for machine learning

models compared to the reference model (e.g., specificity of 96% and accuracy of 96% for regu-

larized discriminant analysis vs. 10% and 11%, respectively, for the reference model). The bal-

anced accuracy, a better metric for a rare event like CRC, was higher in the machine learning

models compared to the reference model (e.g., 73% for the neural network vs. 42% for the ref-

erence). Due to the low incidence of CRC, the positive predictive value was low in all models

(maximum of 5% for regularized discriminant analysis), and the negative predictive value was

99% in all models.

Prediction of colorectal cancer or high-risk polyps

There were 478 (15.34%) participants with CRC or high-risk polyps in our cohort. The C-sta-

tistics are described in Figs 2 and 3. All machine learning approaches had a significantly higher

ability to predict CRC or high-risk polyps, except for gradient boosting decision tree. For

example, the regularized discriminant analysis model had an AUC of 0.64 (95%CI, 0.59–0.69),

whereas the reference model had an AUC of 0.55 (95%CI, 0.5–0.6; P<0.0015). Compared with

the reference model, all machine learning models had comparable sensitivity and slightly

higher specificity, accuracy, and balanced accuracy (Table 2). The positive predictive value was

higher in the machine learning models compared to the reference model (e.g., 0.27 for the reg-

ularized discriminant analysis model vs. 0.17 for the reference model). The negative predictive

value was comparable in all models with a maximum of 0.89 in the regularized discriminant

analysis and neural network models.

Variable importance

The importance of variables in predicting the risk of CRC and CRC or high-risk polyps is dem-

onstrated in Fig 4. These variables were calculated in the best performing models based on our

AUC comparisons to reference illustrated in Fig 3: The neural network for CRC and regularized

discriminant analysis for CRC or high-risk polyps. The leading predictors of CRC in the neural

network model were ASA comorbidity category, HDL quartile, gastrointestinal bleeding as an

indication for diagnostic colonoscopy, mean percent of single returns per zip code, BMI quar-

tiles, and mean triglyceride:HDL ratio. The most important predictive variables for CRC or

high-risk polyps in the regularized discriminant analysis model were income returns within

income brackets per zip code, the indication for colonoscopy (screening vs. diagnostic), BMI

quartiles, triglyceride:HDL ratio (<3 vs�3), alcohol use, ASA comorbidity category, statin use,

HDL category, and gastrointestinal bleeding as an indication for diagnostic colonoscopy.

Discussion

Cost-effective tools are needed to improve CRC screening in young adults and to reduce the

morbidity and mortality associated with delayed diagnosis. We assessed the utility of machine
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Fig 2. Receiver Operator Curves (ROC) of the reference and machine learning models in the test set for colorectal cancer (CRC) and

CRC or high-risk polyps (bottom).

https://doi.org/10.1371/journal.pone.0265209.g002
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Fig 3. Area Under the Curve (AUC) of our reference and machine learning models in the test set for colorectal cancer

(CRC) and CRC or high-risk polyps. The p value compares the machine learning models to the reference model using the

DeLong test.

https://doi.org/10.1371/journal.pone.0265209.g003
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learning for creating a predictive model for colorectal neoplasia using single-center data from

3,116 colonoscopy patients aged 35–50. To develop this model, we carefully selected four

machine-learning approaches (regularized discriminant analysis, random forest, neural net-

work, and gradient boosting decision tree) and compared them to a logistic regression model.

Regularized discriminant analysis minimizes the misclassification probability compared to

logistic regression [41]. Random forest and gradient boosting decision trees are more powerful

than logistic regression when there are higher-order interactions between predictors [42, 43].

Neural networks have a high tolerance for noise and are able to diagnose networks on their

own [44]. In our analyses, the machine learning models achieved better predictive perfor-

mance for CRC or high-risk polyps using data routinely available in EHRs (e.g., indication, zip

code, BMI, and laboratory studies). The machine learning models also achieved higher speci-

ficity, positive predictive values, and accuracy for predicting our outcomes (i.e., leading to less

over-utilization of testing). To our knowledge, this is the first study that has applied modern

machine learning approaches to predict colorectal neoplasia in adults aged 35–50 with or with-

out symptoms.

Multiple professional societies now recommend initiating CRC screening at age 45 as

opposed to 50. However, timely adoption of CRC screening in adults younger than 50 remains

challenging, due to the overall low population risk of CRC or pre-malignant polyps, costs of

screening, and risks of colonoscopy. An alternative screening strategy is to perform FIT annu-

ally starting at 45 years of age followed by colonoscopies starting at 50 years of age. In this sce-

nario, the number of colonoscopies would be reduced, but stool samples would have to be

mailed yearly. Ultimately, this cumbersome strategy may not be as cost-effective as expanding

screening colonoscopies in older more at-risk adults [6]. Furthermore, despite the high speci-

ficity of the FIT for CRC (94.9%), its sensitivity is low for CRC (73.8%), advanced adenomas

(23.8%), and advanced serrated lesions (5%) [45].

One example is the Colorectal Risk Assessment Tool (CCRAT), which is endorsed by the

National Cancer Institute [46]. CCRAT relies on patients to report risk factors, was only

Table 2. Performance metrics of different prediction models.

Colorectal cancer

Metric/Model Logistic regression Regularized discriminant Random forest Neural network Stochastic gradient boosting

Accuracy 0.11 0.96 0.66 0.71 0.86

Accuracy (lower) 0.09 0.95 0.62 0.68 0.84

Accuracy (upper) 0.13 0.97 0.69 0.74 0.88

Balanced accuracy 0.42 0.73 0.70 0.73 0.80

Sensitivity 0.75 0.50 0.75 0.75 0.75

Specificity 0.10 0.96 0.65 0.71 0.86

Positive predictive value 0.00 0.05 0 0.01 0.02

Negative predictive value 0.99 0.99 0.99 0.99 0.99

Colorectal cancer or high-risk polyps

Accuracy 0.52 0.61 0.61 0.62 0.54

Accuracy (lower) 0.49 0.58 0.58 0.59 0.51

Accuracy (upper) 0.55 0.64 0.65 0.65 0.58

Balanced accuracy 0.54 0.6 0.59 0.60 0.54

Sensitivity 0.58 0.57 0.55 0.56 0.54

Specificity 0.51 0.62 0.63 0.63 0.55

Positive predictive value 0.17 0.21 0.21 0.21 0.18

Negative predictive value 0.87 0.89 0.88 0.89 0.87

https://doi.org/10.1371/journal.pone.0265209.t002
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validated in adults over the age of 50, and modestly discriminates CRC (AUC of 0.61) [47].

Although newer tools can stratify the risk of high-risk polyps or CRC, they too have subopti-

mal discriminatory performance [27]. For instance, a recent head-to-head comparison of 17

risk models yielded an AUC of 0.58 to 0.65 for advanced adenomas or CRC [13]. More recent

models had modest prediction ability even when using an extensive list of predictors, which

can be cumbersome for patients and providers [27, 48]. Furthermore, most risk stratification

tools were created for asymptomatic adults�50 years of age and are not specifically tailored

for adults <50 years of age or those with symptoms [13]. Indeed, machine learning approaches

are reported to be powerful tools for predictive analytics in healthcare [49, 50] and have dem-

onstrated substantial success in many applications such as biomarker identification [51] and

Fig 4. Comparison of the reference Area Under the Curve (AUC) to machine learning models in the test set for colorectal cancer (CRC) and CRC or

high-risk polyps.

https://doi.org/10.1371/journal.pone.0265209.g004
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outcome prediction [52, 53]. Therefore, the present study builds on and extends these reports

by demonstrating the superior ability of modern machine learning approaches to predict CRC

(AUC of 0.75 for the neural network model) and CRC or high-risk polyps (AUC of 0.64 for

the regularized discriminant analysis model) compared to conventional logistic regression

using variables routinely available in EHRs.

When it comes to practical applications, and based on the improved positive prediction of

CRC or high-risk serrated or adenomatous polyps (21.9% in the neural network model com-

pared to conventional regression) observed in our study, we suggest that combination of

machine learning-based risk assessment and FIT could offer a cost-effective early screening

strategy for adults under the age of 50 and would help to reduce the burden of colonoscopy

referrals on the healthcare system. Therefore, future studies should combine machine learning

models with non-invasive methods (e.g., FIT and screening for symptoms) to improve the

effectiveness of CRC detection in adults under the age of 50. Due to the recent recommenda-

tion to lower the age of CRC screening to 45, this approach would be critical to conserve colo-

noscopy resources by stratifying adults into risk categories.

Strengths and limitations

Our proof-of-concept study has several strengths and limitations. The strengths include the

significance and innovation of the model, rigorous methods and reporting, inclusion of aver-

age-risk patients with or without symptoms, use of predictors collected during routine clinical

care, and internal validation using a split sample. For instance, symptoms (e.g., gastrointestinal

bleeding) were important predictors for CRC and can risk-stratify adults in the primary care

setting based on symptoms and other CRC predictors. There are several possible explanations

for the incremental gains in predictive ability achieved by the machine learning models. For

example, although we integrated several well known risk factors for CRC, the categorical for-

mats of continuous variables with clinically meaningful cutoffs may contribute to risk predic-

tion. Machine learning accounts for linear and non-linear relationships between variables,

which enhances predictive performance without assuming additivity compared to conven-

tional statistical models [54]. Assembling methods that combine several basic models to pro-

duce one optimal model, such as the random forest and gradient boosting decision tree

models, results in a well-generalized model and reduces the risk of overfitting [55, 56].

Although machine learning improves predictive ability, the predictions remain imperfect. This

is likely due to the subjectivity of symptoms, timing of BMI measurement relative to CRC

(early-life vs. pre-diagnosis), and lack of broader predictors, such as diet and physical activity.

Although these variables are risk factors for CRC, our objective was to harness the limited set

of clinical data that are available in EHRs to develop machine learning models. Machine learn-

ing approaches are also data driven and therefore depend on accurate data. This becomes

problematic when data is missing. For example, patients referred for screening colonoscopy

may have symptoms that were not reported at time of referral [57]. Patients may also under-

report recreational drugs’ use or the use of over-the-counter medications such as aspirin. Sec-

ond, the imputation of missing data is a potential source of bias. Nevertheless, imputation by

machine learning is a rigorous technique, especially when compared to regression [58]. Third,

due to the rarity of CRC, our dataset was imbalanced, which may bias predictions towards the

dominant class. We applied the “SMOTE” oversampling method to adjust for this bias when

developing our models [40]; however, we anticipate the collection of additional patients with

CRC in future studies to better address this issue. Forth, the inclusion of non-high-risk polyps

may undermine the discrimination of the models. To evaluate the effect of this inclusion, we

compared the sensitivity of the machine learning and regression models after exclusion of
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non-high-risk polyps (data not shown). We did not observe an improvement in the predictive

power of any of the models.

Conclusions

In this analysis of data routinely collected in EHRs for clinical purposes, we demonstrated that

machine learning has a superior ability to predict the risk of colorectal neoplasia in adults aged

35–50 compared to conventional logistic regression. Our machine learning models improved

specificity, positive predictive values, and accuracy compared to logistic regression and there-

fore have the potential to reduce invasive testing. Future research should aim to validate our

model in large primary care and referral settings and to expand machine learning models by

using a broader set of predictors. Upon successful completion of this work, machine learning

models have the potential to stratify adults aged 35–50 years with or without symptoms into

CRC risk categories, which will lead to precise and cost-effective prevention and early detec-

tion of CRC. Our ultimate vision is for machine learning risk assessment tools to be seamlessly

integrated into the health care electronic medical system for real-time monitoring of patient

risk. We expect that using EHR-based risk assessment tool will also reduce barriers to adoption

of our model and improve uptake and value of screening.
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