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MicroRNA signature for estimating 
the survival time in patients 
with bladder urothelial carcinoma
Srinivasulu Yerukala Sathipati1*, Ming‑Ju Tsai2,3, Sanjay K. Shukla1, Shinn‑Ying Ho4,5, 
Yi Liu6 & Afshin Beheshti7,8

Bladder urothelial carcinoma (BLC) is one of the most common cancers in men, and its heterogeneity 
challenges the treatment to cure this disease. Recently, microRNAs (miRNAs) gained promising 
attention as biomarkers due to their potential roles in cancer biology. Identifying survival‑associated 
miRNAs may help identify targets for therapeutic interventions in BLC. This work aims to identify 
a miRNA signature that could estimate the survival in patients with BLC. We developed a survival 
estimation method called BLC‑SVR based on support vector regression incorporated with an optimal 
feature selection algorithm to select a robust set of miRNAs as a signature to estimate the survival 
in patients with BLC. BLC‑SVR identified a miRNA signature consisting of 29 miRNAs and obtained 
a mean squared correlation coefficient and mean absolute error of 0.79 ± 0.02 and 0.52 ± 0.32 year 
between actual and estimated survival times, respectively. The prediction performance of BLC‑SVR 
had a better estimation capability than other standard regression methods. In the identified miRNA 
signature, 14 miRNAs, hsa‑miR‑432‑5p, hsa‑let‑7e‑3p, hsa‑miR‑652‑3p, hsa‑miR‑629‑5p, and hsa‑
miR‑203a‑3p, hsa‑miR‑129‑5p, hsa‑miR‑769‑3p, hsa‑miR‑570‑3p, hsa‑miR‑320c, hsa‑miR‑642a‑5p, 
hsa‑miR‑496, hsa‑miR‑5480‑3p, hsa‑miR‑221‑5p, and hsa‑miR‑7‑1‑3p, were found to be good 
biomarkers for BLC diagnosis; and the six miRNAs, hsa‑miR‑652‑5p, hsa‑miR‑193b‑5p, hsa‑miR‑
129‑5p, hsa‑miR‑143‑5p, hsa‑miR‑496, and hsa‑miR‑7‑1‑3p, were found to be good biomarkers of 
prognosis. Further bioinformatics analysis of this miRNA signature demonstrated its importance in 
various biological pathways and gene ontology annotation. The identified miRNA signature would 
further help in understanding of BLC diagnosis and prognosis in the development of novel miRNA‑
target based therapeutics in BLC.

Bladder urothelial carcinoma (BLC) is one of the major causes of cancer moralities with nearly 17,200 deaths 
and 83,730 estimated new cases in 2021 in United States alone; and 549,000 estimated new cases and 200,000 
deaths  globally1,2. According to estimates, 440,864 cases in men and 132,414 cases in women have been reported 
in  20201. A male predominance is observed in all BLC cases which was ranked as the 6th most common cancer 
and 9th leading causes of cancer among men  globally1. The risk factors of BLC include occupational exposure to 
carcinogenic substances and cigarette smoking which is considered as the major risk factor in both genders and 
accounts for 47% of all these  cases3,4. BLC presents in two different forms, non-muscle-invasive tumors (NMIBC) 
and muscle-invasive tumors (MIBC). The NMIBC is benign with a higher incidence rate whereas MIBC is aggres-
sive, could metastasize but lower  incidence5. The standard treatment includes the combination of cytology and 
cystoscopy for the prognosis and diagnosis of BLC. There are some outstanding issues remaining in treatment 
conditions such as poor sensitivity of cytology in tumor detection, and invasiveness of  cystoscopy6. Additionally, 
difference exists in response to similar treatment among patients because tumor heterogeneity makes it challeng-
ing to cure cancer and therapeutic modalities greatly affects the quality of life in elderly  patients7. The five-year 
survival rate for patients with MIBC is 45%, and lymph node metastasis causes poor survival of 5% regardless 
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of type of the  treatment8,9. Although considerable advancements in adjuvant chemotherapy and surgery, BLC 
continues to be a common cancer. Therefore, identifying the survival related variants that could contribute to 
development of novel therapeutic strategies is necessary to improve the survival in patients with BLC.

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs involved in translation repression by post-
transcriptional regulation of gene  expression10. MiRNAs have been implicated in cancer progression and they 
can either promote or suppress tumor progression and  metastasis11–13. A growing body of evidences has shown 
the association of miRNAs with cancer progression, diagnosis, and  prognosis14,15, especially that of  BLC16,17. 
For instance, significant changes in miRNA expression were observed in clinical samples, and three miRNAs, 
miR-129, miR-133b, and miR-518c, were discovered as potential prognostic predictors associated with BLC 
 progression18. Li et al. identified urothelial carcinoma associated miRNAs that were significantly expressed 
in urine and plasma samples of patients with chronic kidney  disease19. Ichimi et al. identified seven miRNAs 
namely, miR-145, miR-30a-3p, miR-133a, miR-133b, miR-195, miR-125b, and miR-199a, which were significantly 
downregulated in BLC when compared to the normal  samples20. Lin and colleagues used hybridization-based 
miRNA array on BLC and found that miR-143 functioning as a tumor suppressor, and 14 down-regulated 
miRNAs that were significantly expressed between tumor and normal  samples21. Studies have also noted the 
aberrant expression of miRNAs in tumor compared to normal bladder  tissues22–25. However, there are limited 
studies on estimating survival using machine learning techniques to explore the roles of miRNAs in terms of 
survival association in BLC.

Previously, we identified miRNA signatures for predicting the cancer stages in breast and hepatocellular 
 carcinoma26,27, and estimating the survival in glioblastoma, lung adenocarcinoma, and ovarian  cancers28–31. In 
this study, we developed a survival time estimator called BLC-SVR to estimate the survival in BLC patients using 
miRNA expression profiles. BLC-SVR was developed based on support vector regression (SVR) incorporating 
with an optimal feature selection algorithm IBCGA 32 to identify the survival associated miRNA signature and 
estimate the survival in patients with BLC. BLC-SVR achieved a promising accuracy on estimating the survival 
time of patients with BLC. Furthermore, bioinformatics analysis on the identified miRNAs to explore their 
diagnostic and prognostic abilities in BLC. The overview of the BLC-SVR is shown in Fig. 1.

Results
Identification of miRNA signature for estimating survival time. We retrieved 106 miRNA expres-
sion profiles of patients with BLC from The Cancer Genome Atlas (TCGA) database. Each miRNA profile con-
sisted of 485 miRNAs which were the variables for survival estimation. BLC-SVR identified a set of miRNAs 
as a signature for estimating the survival time in patients with BLC. A robust miRNA signature was selected 
by performing 50 independent runs of BLC-SVR. The appearance score (ASC) for each miRNA signature of 
the prediction model was measured and scored according to their frequency among independent runs. The 
miRNA signature with a highest ASC accommodates the more frequent miRNAs among the independent runs 
of BLC-SVR. The average and highest ASCs obtained from 50 independent runs were 13.52 ± 1.60, and 17.27, 

Figure 1.  System flowchart of BLC-SVR. miRNA expression profiles of BLC patients with survival information 
were used as input data of the BLC-SVR method, and the outputs were the miRNA signature with the predicted 
survival time.
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respectively. The robust signature with the highest ASC consisted of 29 miRNAs and obtained a squared cor-
relation coefficient  (R2) and mean absolute error (MAE) of 0.81 and 0.51 year, between actual and estimated 
survival times, respectively. The diagnostic and prognostic prediction ability of the identified miRNA signature 
is discussed in the following sections. The ASCs for all the independent runs of BLC-SVR are depicted in Sup-
plementary Fig. S1.

Prediction performance comparison. We compared the prediction performance of BLC-SVR with 
standard machine learning methods, including ridge regression, least absolute shrinkage selection operator 
(Lasso), and elastic net. Ridge regression achieved a  R2 and MAE of 0.42 and 0.81 year, between actual and 
estimated survival times, respectively; Lasso obtained a  R2 and MAE of 0.50 and 0.74 year, between actual and 
estimated survival times, respectively; and elastic net obtained a  R2 and MAE of 0.52 and 0.73 year, between 
actual and estimated survival times, respectively. BLC-SVR obtained a mean performance of 50 runs (BLC-
SVR-Mean) with  R2 and MAE of 0.79 ± 0.02 and 0.52 ± 0.32 year, between actual and estimated survival times, 
respectively. Whereas the best performance (BLC-SVR-Best) has the largest  R2 and MAE of 0.83 and 0.516 year 
using 32 miRNAs, respectively. The prediction comparison results showed the better estimation capability of 
BLC-SVR than the popular regression methods. The comparison of prediction performance of BLC-SVR with 
some regression methods is shown in Table 1. The correlation plots of BLC-SVR, ridge regression, Lasso, and 
elastic net are shown in Supplementary Fig. S2.

Next, we validated the estimation ability of BLC-SVR using an independent test cohort from the TCGA data-
base. The independent test cohort consisting of 123 patients with BLC along with their follow-up times up to one 
year with an average 5.54 months. BLC-SVR estimated mean survival time of these patients was 15.50 months. 
There were 93 patients whose predicted survival time was longer than the actual follow-up time. The estimation 
performance of BLC-SVR achieved 75.60% accuracy on estimating the patients’ survival time. However, for 
the remaining 30 patients, estimated survival time was slightly shorter than the follow-up time. The prediction 
performance of BLC-SVR on 123 patients is shown in Supplementary Fig. S3.

Next, we prioritized the miRNAs of the signature using main effect difference (MED) analysis based on their 
contribution to the estimation of survival time as described in the  study33. The top 10 ranked miRNAs of the 
signature, including hsa-miR-432-5p, hsa-let-7e-3p, hsa-miR-146b-5p, hsa-miR-505-3p, hsa-miR-652-3p, hsa-
miR-629-5p, hsa-miR-193b-5p, hsa-miR-203a-3p, hsa-miR-542-5p, and hsa-miR-128-3p, were analyzed further. 
The miRNAs signature and their corresponding MED scores and ranks are listed in Table 2.

The roles of top 10 ranked miRNAs in cancer. The literature validation on top ranked miRNAs 
revealed that these miRNAs possess different functions and active involvement in BLC progression (Table 3). For 
instance, the up-regulated hsa-miR-432-5p targets RNA-binding motif protein 5 and regulate apoptosis in blad-
der cancer  cells34. Hsa-let-7 family is known to be differentially expressed in various cancers including  BLC35,36. 
Hsa-miR-146b expression was upregulated in bladder cancer tissues when compared to the normal  tissues37. 
A real-time quantitative polymerase chain reaction (RT-qPCR) study on BLC cell lines reported that hsa-miR-
652-3p expression levels were upregulated and knockdown of this miRNA significantly affected cell prolifera-
tion, migration, and invasion in  BLC38. A PCR based miRNA screening study revealed that hsa-miR-193 down-
regulated the expression of oncogenes, Cyclin D1 and EST1, and inhibited cell migration in human urothelial 
 cells39. The hsa-miR-203a has been identified as a tumor suppressor and its overexpression inhibits cell prolifera-
tion, invasion and migration in  BLC40. Hsa-miR-542 expression was downregulated and negatively correlated 
with the expression of surviving protein resulting in the inhibition of proliferation in BLC  cells41.

The roles of three of the top 10 ranked miRNAs (hsa-miR-505-3p, hsa-miR-629-5p, and hsa-miR-128-3p) 
have not been previously reported in BLC. However, these miRNAs are implicated in other major cancers. For 
instance, hsa-miR-505-3p acts as a tumor suppressor in pancreatic cancer and hepatocellular  carcinoma42,43. Hsa-
miR-629-5p promotes tumor progression by targeting AKAP13 in prostate  cancer44, and hsa-miR-128-3p acts as 
tumor suppressor in breast cancer by regulating the LIMK1/CFL1 signaling  pathway45. Hence, their involvement 
in other major cancers suggests that their expression is biologically consistent and important in BLC. A summary 
of miRNAs and their regulation in BLC is shown in Table 3.

Diagnostic ability of the miRNAs. To determine the diagnostic ability of the identified miRNA signa-
ture, receiver operating curve (ROC) analysis was performed using BLC tumor and normal samples. The ROC 

Table 1.  The comparison of prediction performance. R2, squared correlation coefficient; MAE, mean absolute 
error.

Method R2 MAE (years) Features selected

Ridge regression 0.42 0.81 485

Lasso 0.50 0.74 26

Elastic net 0.52 0.73 33

BLC-SVR-ASC 0.81 0.51 29

BLC-SVR-Best 0.83 0.51 32

BLC-SVR-Mean 0.79 ± 0.02 0.63 ± 0.32 32.64 ± 4.22
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analysis showed that 14 miRNAs of the signature have the good diagnostic ability (AUC ≥ 0.7) while distin-
guishing the tumor and normal samples, shown in Table 2. The top 10 ranked miRNAs obtained an average 
area under the ROC curve (AUC) of 0.70 ± 0.10 and five of these miRNAs showed good diagnostic ability. The 
five miRNAs, hsa-miR-432-5p, hsa-let-7e-3p, hsa-miR-652-3p, hsa-miR-629-5p, and hsa-miR-203a-3p obtained 
AUCs of 0.81, 0.81, 0.82, 0.81, and 0.71, respectively. The ROC curves for the top 10 ranked miRNAs are shown 
in Fig. 2. Further, we combined the top 10 ranked miRNAs to predict the diagnosis of BLC using Random forest 
 classifier46. We used a dataset consisting of 418 tumor samples and 18 normal samples retrieved from the TCGA. 
The prediction model was selected after 100 iterations of 10-CV. Random forest obtained a 10-CV accuracy, 
sensitivity, specificity, and AUC of 96.02%, 0.96, 0.85, and 0.95, respectively, while distinguishing tumor and 

Table 2.  ROC analysis of top ranked miRNAs between tumor and normal samples. MED, main effect 
difference; AUC, area under the receiver operating curve.

RANK miRNA MIMAT_ID MED AUC 

1 hsa-miR-432-5p MIMAT0002814 1.53 0.81

2 hsa-let-7e-3p MIMAT0004485 1.50 0.81

3 hsa-miR-146b-5p MIMAT0002809 1.47 0.66

4 hsa-miR-505-3p MIMAT0002876 1.34 0.59

5 hsa-miR-652-3p MIMAT0003322 1.12 0.82

6 hsa-miR-629-5p MIMAT0004810 0.96 0.81

7 hsa-miR-193b-5p MIMAT0004767 0.95 0.64

8 hsa-miR-203a-3p MIMAT0000264 0.80 0.71

9 hsa-miR-542-5p MIMAT0003340 0.79 0.53

10 hsa-miR-128-3p MIMAT0000424 0.79 0.67

11 hsa-miR-129-5p MIMAT0000242 0.66 0.85

12 hsa-miR-769-3p MIMAT0003887 0.64 0.79

13 hsa-miR-224-3p MIMAT0009198 0.57 0.59

14 hsa-miR-570-3p MIMAT0003235 0.56 0.77

15 hsa-miR-1254 MIMAT0005905 0.54 –

16 hsa-miR-143-5p MIMAT0004599 0.53 0.67

17 hsa-miR-320c MIMAT0005793 0.43 0.7

18 hsa-miR-642a-5p MIMAT0003312 0.38 0.74

19 hsa-miR-496 MIMAT0002818 0.35 0.7

20 hsa-miR-421 MIMAT0003339 0.35 0.5

21 hsa-miR-2116-3p MIMAT0011161 0.31 0.59

22 hsa-miR-361-5p MIMAT0000703 0.29 0.66

23 hsa-miR-548o-3p MIMAT0005919 0.26 0.73

24 hsa-miR-26a-1-3p MIMAT0004499 0.16 0.64

25 hsa-miR-339-3p MIMAT0004702 0.08 0.49

26 hsa-miR-23a-5p MIMAT0004496 0.07 0.63

27 hsa-miR-508-3p MIMAT0002880 0.06 0.58

28 hsa-miR-221-5p MIMAT0004568 0.02 0.72

29 hsa-miR-7-1-3p MIMAT0004553 0.012 0.71

Table 3.  The summary of the roles of miRNAs in bladder cancer. N/A, not available.

miRNA Regulation Functional impact on tumors Target gene for bladder cancer References

hsa-miR-432-5p Up Tumor progression RBM5 34

hsa-let-7e-3p Up Tumor progression LIN28, HMGA2, MYC, BCL2L 35,72

hsa-miR-146b-5p Up Tumor progression ETS2 37

hsa-miR-505-3p N/A N/A N/A N/A

hsa-miR-652-3p Up Tumor progression KCNN3 38

hsa-miR-629-5p N/A N/A N/A N/A

hsa-miR-193b-5p down Tumor suppression CCND1 and ETS2 39

hsa-miR-203a-3p Down Tumor suppression SIX4 40

hsa-miR-542-5p Down Tumor suppression BIRC5 41

hsa-miR-128-3p N/A N/A N/A N/A
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normal samples, shown in Supplementary Fig. S4. The combination of top 10 ranked miRNAs showed better 
diagnostic ability.

Additionally, expression differences of the top 10 ranked miRNAs between normal and tumor samples were 
analyzed using box-plot analysis. The analysis showed that eight miRNAs, hsa-miR-432-5p, hsa-let-7e-3p, hsa-
miR-146b-5p, hsa-miR-652-3p, hsa-miR-629-5p, hsa-miR-193b-5p, hsa-miR-203a-3p, and hsa-miR-128-3p were 
significantly expressed (p < 0.05) between normal and tumor samples. The box plot analysis of the top 10 ranked 
miRNAs is shown in Fig. 3.

Prognostic ability of the miRNAs. The prognostic performance of miRNA signature was analyzed by 
Kaplan-Meir (KM) survival curves using  CancerMIRNome47. Six miRNAs of the signature showed significant 
prognosis capability in overall survival analysis. These six miRNAs, hsa-miR-652-5p, hsa-miR-193b-5p, hsa-
miR-129-5p, hsa-miR-143-5p, hsa-miR-496, and hsa-miR-7-1-3p, obtained p-values of 4.88e−05, 8.91e−04, 
8.97e−03, 8.91e−04, 0.05, and 0.027, respectively, between high and low expression groups. The KM survival 
curves for the six miRNAs are shown in Fig. 4.

Biological significance of the miRNA signature. To determine the biological relevance of the miRNA 
signature that could aid in understanding the functional information and involvement in disease-associated 
pathways, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were 

Figure 2.  ROC curve analysis of the top 10 ranked miRNAs. (A) hsa-miR-652-3p, (B) hsa-miR-432-5p, (C) 
hsa-let-7e-3p, (D) hsa-miR-629-5p, (E) hsa-miR-203a-3p, (F) hsa-miR-128-3p, (G) hsa-miR-146b-5p, (H) hsa-
miR-193b-5p, (I) hsa-miR-505-3p, and (J) hsa-miR-542-5p.

Figure 3.  Expression differences of the top 10 ranked miRNAs between tumor and normal samples using box 
plots.
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employed. The miRNA signature is significantly involved in various biological pathways such as prion disease, 
fatty acid biosynthesis, fatty acid metabolism, ECM-receptor interaction, hippo signaling pathway, adherence 
junction, steroid biosynthesis, lysine degradation, TGF-beta signaling pathway, and proteoglycans in cancer. 
The number of targeted genes involved in KEGG pathways of the miRNA signature is shown in supplementary 
Table S1. The miRNA signature enriched in KEGG pathways is shown in Supplementary Fig. S5.

Next, the biological significance of the miRNA signature was analyzed in different stages of BLC using KEGG 
pathway analysis. The differentially expressed miRNAs of the signature were identified between stage II, III, and 
IV. There were nine miRNAs, including hsa-miR-496, hsa-miR-146b-5p, hsa-miR-652-3p, hsa-miR-26a-1-3p, 
hsa-miR-193b-5p, hsa-miR-642a-5p, hsa-miR-432-5p, hsa-miR-143-5p, and hsa-miR-505-3p which were dif-
ferentially expressed between stage II&III, and two miRNAs, hsa-miR-143-5p and hsa-let-7e-3p, between stage 
III&IV. The significant biological pathways in stage II&III were thyroid hormone synthesis, oxytocin signaling 
pathway, ErbB signaling pathway, long-term depression, and hippo signaling pathway, to name a few. The signifi-
cant pathways in stage III&IV were biosynthesis of unsaturated fatty acids, ErbB signaling pathway, GABAergic 
synapse, morphine addiction, and estrogen signaling pathway. There were some common pathways, including 
ErbB signaling pathway, thyroid hormone signaling, morphine addiction, non-small cell lung cancer, and estro-
gen signaling pathway in stage II&III and stage III&IV. However, some targeted pathways were different across 
cancer stages of BLC. The complete list of significant pathways across cancer stages are listed in Supplementary 
Table S2. The bubble plots showing the KEGG pathways in BLC stages are shown in Supplementary Figs. S6&S7.

Next, GO annotations of the miRNA signature was employed in three categories, including biological process, 
molecular functions, and cellular components. The GO analysis showed that the miRNA signature involved 
several biological processes that the top five significant biological processes were DNA metabolic process, cel-
lular protein metabolic process, membrane organization, RNA metabolic process, and nucleobase-containing 
compound catabolic process (Supplementary Table S3). The top five molecular functions were ion binding, 
nucleic acid binding transcription factor activity, protein binding transcription factor activity, enzyme binding, 
and enzyme regulatory activity. The top five cellular components were organelle, cytosol, nucleoplasm, protein 
complex, and focal adhesion. The details of GO annotations for the miRNA signature are listed in Supplementary 
Tables S3-S5. The GO enrichment analysis of the miRNA signature is depicted in Supplementary Figs. S8-S10.

Gene interaction network. The complex networks in which miRNAs engaged with other functional mol-
ecules can influence cell biological responses and human  diseases48. Hence, a miRNA network analysis was 
employed for the top 10 ranked miRNAs with genes, long non-coding RNAs (lncRNAs), circular RNAs (ciR-
NAs), and small molecules to explore the miRNA-target interactions using miRNet 2.0: a miRNA-centric net-
work visual analytics  platform49. The miRNA-gene target interaction network was built with experimentally 
validated gene target networks using the miRTarBase V8.050. There were 1594 gene interactions with top 10 
ranked miRNAs in a miRNA-gene target network. The miRNA-gene target network is shown in Fig. 5A.

Figure 4.  Kaplan-Meir survival analysis. The survival probability of patients with high expression of miRNAs 
(A–D) is poorer than that of patients with low expression. The high expression of hsa-miR-652-5p and hsa-miR-
7-3p (E, F) has positive effect on survival probability.
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In the miRNA-lncRNA interaction network, seven of the top 10 ranked miRNAs targeted 197 lncRNAs 
formed with 255 edges. There were 4508 circular RNAs (ciRNAs) formed with 7751 edges in the miRNA-ciRNA 
interaction network. In the miRNA-small molecule interaction network, there were 43 compounds interacting 
with top 10 ranked miRNAs and forming 65 edges. The miRNA interaction networks for genes, lncRNA, ciRNA, 
and small molecules are shown in Fig. 5A–D.

Discussion
The critical role of miRNAs in cancer biology has opened up a new direction for oncology research. Numer-
ous evidences have demonstrated the development of miRNA-based cancer progression, diagnosis, and 
 therapeutics51–53. Bladder cancer is one of the common cancers and a heterogeneous disease with prognostic 
and therapeutic challenges. Identifying the survival related variants could help understand the cancer survival at 
various stages and may contribute to the therapeutic improvements in BLC. Due to cost and time consumption 
in experimental methods to predict the targets and identify biomarkers, computational methods are often used 
in miRNA biology and cancer prognosis predictions. Advances in machine learning methods have significant 
importance in developing fast and accurate models to aid in caner prognosis, diagnosis, and medical decision-
making54. Recent developments on miRNA-disease associations revealed the importance of computational mod-
els in understanding the disease associated  variants55. However, there are limited studies on identifying miRNA 
signatures to estimate the survival time in patients with BLC using machine learning techniques.

The machine learning methods often suffer from higher dimensionality  issues56, especially in biomedical data. 
The used feature selection algorithms could work well in coping with the curse of dimensionality issue resulting 

Figure 5.  MiRNA-interaction network. (A) miRNA-gene interaction network, (B) miRNA-ciRNA interaction 
network, (C) miRNA-lncRNA interaction network, and (D) miRNA-small molecule interaction network.
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from genomic data and select a robust signature for cancer  prognosis31,57. To address the dimensionality issue, 
we used an optimal feature selection algorithm IBCGA to identify a small set of miRNAs from a large number 
of candidate miRNAs that are associated with survival time in patients with BLC. In our previous studies, opti-
mized survival estimation methods were developed to estimate the survival time in patients with glioblastoma, 
lung adenocarcinoma, and ovarian  cancers28–30. In this study, we developed an optimized SVR-based method 
BLC-SVR to identify a miRNA signature associated with survival and estimate the survival time in patients 
with BLC. The identified miRNA signature consisted of 29 miRNAs as a signature and obtained a  R2 and MAE 
of 0.81 and 0.51 year, between actual and predicted survival times, respectively. The estimation capability of 
BLC-SVR was compared with some standard regression methods and results showed its promising estimation 
performance. Further, the identified miRNAs of the signature were ranked based on their contribution to the 
estimation performance. The literature survey on top 10 ranked miRNAs demonstrated that seven of top 10 
ranked miRNAs are actively involved in BLC progression except the three miRNAs hsa-miR-505-3p, hsa-miR-
629-5p, and hsa-miR-128-3p. These three miRNAs are important contributors to the estimated performance. 
Therefore, hsa-miR-505-3p, hsa-miR-629-5p, and hsa-miR-128-3p may be novel targets for BLC and further 
studies are needed to validate their roles in BLC.

In addition, the diagnostic ability prediction results showed that five of the top 10 ranked miRNAs, hsa-miR-
432-5p, hsa-let-7e-3p, hsa-miR-652-3p, hsa-miR-629-5p, and hsa-miR-203a-3p, obtained an AUC greater than 
0.70 while distinguishing the tumor and normal samples, proving their discrimination ability. The differential 
expression analysis on top 10 ranked miRNAs showed that eight of the top 10 ranked miRNAs were significantly 
expressed between tumor and normal samples. Next, KM survival analysis of the miRNA signature revealed that 
six miRNAs, hsa-miR-652-5p, hsa-miR-193b-5p, hsa-miR-129-5p, hsa-miR-143-5p, hsa-miR-496, and hsa-miR-
7-1-3p, were good prognostic predictors of overall survival in patients with BLC.

The functional analysis of miRNAs revealed the involvement of miRNAs in physiological process that are 
essential for disease mechanism. Biological relevance of the identified miRNA signature concluded that the 
miRNA signature was involved in several biological pathways, including biological processes, molecular func-
tions, and cellular components. The top-3 KEGG pathways were prion diseases, fatty acid biosynthesis, and fatty 
acid metabolism. In human prion diseases, point mutations in the prion protein gene (PRNP), which encodes PrP, 
induce familial forms of human prion  diseases58. Somatic missense mutation in the prion protein gene (PRNP) 
have been identified in patients with  BLC59. Urinary retention as an early symptom was observed in patients with 
prion  disease60. The prion proteins were detected in urine and involved in disease  infection61. Fatty acid synthe-
sis and fatty acid metabolism pathways are associated with various cancers including  BLC62. A previous study 
showed that the change in the fatty acid composition may be an indicator of altered lipid metabolism occurring 
in vivo during human bladder tumorigenesis. The bladder cancer tissue showed a significant reduction in total 
n-6 polyunsaturated fatty acid (− 15.1%; P < 0.001)63.

The pathway analysis demonstrated that the group of miRNAs target specific pathways and target genes that 
might contribute to the cancer progression. To investigate the numbers of genes, lncRNAs, ciRNAs, and small 
molecules targeted by the top ranked miRNAs, miRNA-gene target interaction networks were constructed. A 
miRNA network showed some key molecules that were connected to top ranked miRNAs which might act as 
underlying drivers of survival in BLC. In conclusion, the identified miRNA signature would guide the under-
standing of the survival associated miRNAs and help develop miRNA target-based therapeutic strategies in BLC.

Material and methods
Dataset. The clinical characteristics. The miRNA expression profiles of 409 patients along with their sur-
vival times were retrieved from the TCGA database. All the data extraction methods were carried out in accord-
ance with the TCGA guidelines and regulations. The patient selection criteria included patients with survival 
times and miRNA expression profiles. The miRNA expression was considered if the expression levels of mature 
miRNAs were presented in more than 70% of the samples. After the filtration process, there were 106 patients 
with miRNA expression profiles where each miRNA profile consisted of 485 miRNAs in the final dataset.

The clinical characteristics of the 106 patients with BLC are presented in Supplementary Fig. S11. The majority 
of BLC patients were male, and 69% were male and 31% female. The average age at diagnosis was 70.46 ± 9.43 
and average height of the patients was 173.4 ± 11.14 cms. The total numbers of patients in stages 2, 3, and 4 were 
14, 37, and 55, respectively. The range of survival times of patients were between 0.63 and 94.26 months.

BLC‑SVR method. BLC-SVR was designed to identify a set of miRNAs as a signature that could estimate 
the survival time in patients with BLC. BLC-SVR method was developed based on SVR incorporated with the 
optimal feature selection algorithm IBCGA. Two main parts of BLC-SVR are feature selection and survival esti-
mation. BLC-SVR adopted the optimization technique from our previous  study29.

Feature selection algorithm IBCGA . BLC-SVR utilized the optimal feature selection algorithm IBCGA 
to select a minimum number of features from a large number of candidate features (miRNAs) while maximizing 
the prediction  performance32. The IBCGA uses an intelligent evolutionary algorithm to solve the large param-
eter combinatorial optimization  problems64. Here, we used genetic algorithm (GA) terms GA-chromosomes 
and GA-genes for the feature representation. The chromosome of IBCGA comprises 485 GA-genes and three 
4-bit GA-genes to encode parameters C, γ, and ν for ν-SVR. The encoded GA-chromosomes were designed as 
described in previous  studies29–31. The best prediction model of BLC-SVR was generated from the 50 independ-
ent runs of IBCGA. The main steps in IBCGA are described as follows: where the detailed description can be 
refer to the  work32:
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Step 1: (Initialization) Randomly generate an initial population of individuals.
Step 2: (Evaluation) Evaluate the fitness value of all individuals using the fitness function, which is to maximize 
the prediction accuracy  (R2) in terms of 10-CV.
Step 3: (Selection) Use a conventional method of tournament selection that selects a winner from two ran-
domly selected individuals to generate a mating pool.
Step 4: (Crossover) Select two parents from the mating pool to perform an orthogonal array crossover opera-
tion.
Step 5: (Mutation) Apply a conventional mutation operator to the randomly selected individuals in the new 
population.
Step 6: (Termination test) If the stopping condition for obtaining the solution is satisfied, output the best 
individual as the solution. Otherwise, go to Step 2.
Step 7: (Inheritance) If r is less than a predefined number of features, randomly changes one bit in the binary 
GA-genes for each individual from 0 to 1, increase the number r by one and go to Step 2. Otherwise, stop 
the algorithm.

The applications of support vector machines (SVM) have diverse importance in biomedical sciences and precision 
medicine due to their capability in solving complications in  predictions65. The SVM has two modules, support 
vector classifier (SVC) and support vector regression (SVR)66. The SVMs are used in various cancer diagnosis 
and prognosis predictions. The optimized SVMs were used to predict the cancer stage in breast cancer and 
hepatocellular  carcinoma26,27, and estimation of survival in patients with lung adenocarcinoma, glioblastoma, 
neuroblastoma, and ovarian  cancers28–31. The LibSVM  package67 was used to implement the BLC-SVR. The 
optimization technique of SVR can be written as follows:

where 0 ≤ ν ≤ 1, ξi ≥ 0, ξ∗i  ≥ 0, (x1, y1)…(xm, ym) are the input data points, C is the regularization parameter, ε is 
an insensitive loss function, and b is a constant.

Performance measures. We used squared correlation coefficient (R2) and mean absolute error (MAE) as 
the estimation measures to evaluate the prediction performance of BLC-SVR.

where yi and zi are the actual and predicted survival times of the ith miRNA, respectively, y and z are the cor-
responding means, and N is the total number of BLC patients in the validation set. The mean absolute error 
(MAE) is also used for the evaluation of prediction performance, defined as follows:

Appearance score ASC. The robust signatures among the 50 independent runs of BLC-SVR has the high-
est ASC obtained using the following  procedure29.

Step 1: Perform Ns independent runs of BLC-SVR for obtaining Ns miRNA signatures. There are mi features 
in the ith signatures, i = 1, …, Ns (in this study Ns = 50).
Step 2: The ASC of a miRNA signature is calculated as follows:

(1) Calculate the appearance frequency f(miR)for each feature miR that appears in the Ns signatures.
(2) Calculate the score Fi, i = 1, …, Ns. Where miRit is the tth feature in the ith signature:

(3) Obtain the i-th feature set with the highest appearance score Fi as the robust signature.

Ridge regression, Lasso and elastic net. The estimation performance of BLC-SVR was compared 
with some standard regression methods, ridge regression, Lasso, and elastic net. Ridge regression is a penalized 
regression approach where the Euclidean norm was used as the  penalty68. Lasso uses L1 regularization to identify 
features and regression coefficients by regularizing the coefficients to zero that lead to minimize the prediction 
 error69. Elastic net is a combination of Lasso and ridge  regression70. The minimum λ was chosen after 100 itera-
tions of 10-CV for ridge, Lasso and elastic net. The prediction performance was evaluated in terms of the cor-
relation coefficient and mean absolute error.
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KEGG pathway and GO annotation analysis. The DIANA-micro-T-CDS algorithm provided the pre-
dicted miRNA targets for the pathway  analysis71. The p-value threshold was set to 0.05, and Fishers’s exact test 
(hypergeometric distribution) was used for the enrichment analysis.

miRNA‑interaction network. The miRNA-target interaction networks were built using miRNet 2.0: a 
miRNA-centric network visual analytics  platform49. For better visualization of target genes, we reduced the less 
important edges based on the shortest path measures, where the number of edges within the network can be 
reduced significantly by keeping the shortest path between hub-nodes. We used short distance and minimum 
layout filters for lncRNA and ciRNA networks, respectively.

Data availability
All the data used in this analysis can be found on the TCGA data portal [https:// portal. gdc. cancer. gov/].
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