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With socioeconomic advances and improved living standards, metabolic

syndrome has increasingly come into the attention. In recent decades, a

growing number of studies have shown that the gut microbiome and its

metabolites are closely related to the occurrence and development of many

metabolic diseases, and play an important role that cannot be ignored, for

instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease

(NAFLD), cardiovascular disease and others. The correlation between gut

microbiota and metabolic disorder has been widely recognized. Metabolic

disorder could cause imbalance in gut microbiota, and disturbance of gut

microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a

natural ingredient, plays an important role in the treatment of metabolic

disorder. Studies have shown that BBR can alleviate the pathological

conditions of metabolic disorders, and the mechanism is related to the

regulation of gut microbiota: gut microbiota could regulate the absorption

and utilization of berberine in the body; meanwhile, the structure and function

of gut microbiota also changed after intervention by berberine. Therefore, we

summarize relevant mechanism research, including the expressions of

nitroreductases-producing bacteria to promote the absorption and utilization

of berberine, strengthening intestinal barrier function, ameliorating

inflammation regulating bile acid signal pathway and axis of bacteria-gut-

brain. The aim of our study is to clarify the therapeutic characteristics of

berberine further and provide the theoretical basis for the regulation of

metabolic disorder from the perspective of gut microbiota.
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1. Introduction

Metabolic disorders are a complex group of multifactorial

disorders formed by one or more causes of glucose metabolism,

lipid metabolism, purine metabolism and so on, including

central obesity, insulin resistance, abnormal glucose

metabolism, lipid metabolism disorders, non-alcoholic fatty

liver disease(NFLD), and metabolic hypertension, among

others (Kassi et al., 2011). With the improvement of living

standards, the incidence of metabolic disorder is also

increasing. The existence of multiple metabolic disorders not

only increases the incidence rate of diabetes directly, but also

greatly increases the risk of atherosclerotic cardiovascular

disease, brings enormous burden to the global medical and

health field (2001). Insulin resistance is the core factor of

metabolic syndrome, it is also a common pathological

manifestation of metabolic disorders such as diabetes and

obesity (Balkau and Charles, 1999; Huang, 2009). The current

situation shows that a large proportion of metabolic syndrome

patients suffer from impaired glucose tolerance or diabetes

(Shinkov et al., 2018).

The relationship between the occurrence of metabolic

disorders with the gut microbiota is one of the main research

directions to explore the mechanism of metabolic disorders at

present (Meijnikman et al., 2018). The human gut flora is a very

complex system of a great variety, according to current reports,

more than 1000 kinds of microorganisms in the human

gastrointestinal tract are known, which belong to five phyla:

Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and

Verrucomicrobia (Wu et al., 2021). Among which, anaerobic

Bacteroides and Firmicutes are the two dominant species,

accounting for more than 90% of all bacterial species (Qin

et al., 2010). Numerous studies have shown that alterations in

the composition of the gut microbiota have been associated with

metabolic disorders (Festi et al., 2014; Ussar et al., 2015),

including obesity (Gomes et al., 2018), DM (Baothman et al.,

2016; Yang et al., 2021), high fat diet (Yin et al., 2018; Leeming

et al., 2019; Schoeler and Caesar, 2019), antibiotics (Ianiro et al.,

2016; Ramirez et al., 2020), and other factors can lead to gut

microbiota dysbiosis (Jin et al., 2017; Greenhill, 2018; Guerre,

2020; Philippe, 2020), and at the same time, the gut microbiota

can be mediated by drugs that regulate the body’s metabolism

and play a role in improving metabolic disorders (Feng

et al., 2020).

Consistently, as a natural medicine, berberine plays an

important role in the treatment of metabolic disorders. Its

mechanism of utility has also been extensively and intensively

studied (Caliceti et al., 2016), a large number of experimental

studies have shown that berberine alleviates body metabolism

and insulin resistance through a variety of mechanisms, such as

amelioration of oxidative stress, inhibition of macrophage

inflammatory response, adenosine monophosphate-activated
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protein kinas (AMPK) activation and Phosphorylation of

acetyl-CoA carboxylase (ACC), regulating mitochondria-

related pathways (Zhang et al., 2018), inducing peroxisome

proliferator-activated receptors (PPARs) increase6Modulating

transcriptional programs of transcription factors, among

others (Wang et al., 2020). In recent years, the mechanism of

berberine in treating metabolic disorders by modulating gut

microbiota has been increasingly discovered and recognized. In

this paper, the author focuses on the mechanism of BBR

ameliorate metabolic disorder, so as to further clarify the

therapeutic characteristics of BBR, providing a theoretical basis

for regulating and alleviating metabolic disorder from the

perspective of gut microbiome.
2.Berberine for metabolic disorders

Berberine (BBR) is a quaternary ammonium salt from the

group of bioactive isoquinoline alkaloids (Imenshahidi and

Hosseinzadeh, 2016), which is the major active component of

traditional Chinese herb Coptis chinensis (Tabeshpour et al.,

2017). In addition, BBR also exist in various medicinal plants

such as Berberis aristata, B. petiolaris, B. aquifolium, B. vulgaris,

B. thunbergia and many others (Cicero and Baggioni, 2016; Liu

et al., 2019). Its chemical structure is represented in Figure 1. In

recent years, a large number of research confirmed that BBR has

extensive pharmacological properties, such as anti-inflammatory

(Kuo et al., 2004), pain‐relieving (Hashemzaei and Rezaee,

2021), anti-infective (Aswathanarayan and Vittal, 2018),

antitumor (Liu et al., 2019),neuroprotective (Luo et al., 2012)

and modulate energy metabolism, which can be used to treat

cancer (Zhang et al., 2020), digestive (Zou et al., 2017), metabolic

(Xu et al., 2021), cardiovascular (Martini et al., 2020), and

neurological diseases (Kulkarni and Dhir, 2010). Formulas

containing traditional herbal Coptis chinensis, has been used

for thousands of years in traditional Chinese Medicine. Most of

these formulas possess the efficacy of clearing heat, eliminating

dampness, dissipating fire and detoxifying (Wang et al., 2017),

similar to what we now considered as anti-infective and anti-

inflammatory functions.

Accumulating clinical studies have shown that BBR has a

good role in the treatment of metabolic diseases such as diabetes,

obesity, non-alcoholic fatty liver disease and hyperlipidemia.

BBR could ameliorate insulin resistance in patients with

diabetes, lower blood sugar and hemoglobin A1c (HbA1c) in

patients with T2DM (Yin et al., 2008; Zhang et al., 2010). Obesity

is closely related to an increased risk of T2DM, BBR could

successfully decrease body weight, body mass index, waist

circumference in obese patients with T2DM (Xu et al., 2021).

In addition, BBR can improve the hepatic fat content,

apolipoprotein B (Apo B), alanine aminotransferase (ALT),

and aspartate aminotransferase (AST) in patients with NAFLD
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(Yan et al., 2015). Furthermore, BBR treatment can substantial

reduction in TC, TG, and LDL-C levels in patients with

Hyperlipidemia (Kong et al., 2004).

In addition to clinical studies, berberine has been extensively

explored in the treatment of metabolic syndrome in terms of

mechanisms. Berberine has many extensive and intensive studies

in the field of metabolic diseases. It can regulate and ameliorate

glycolipid metabolism (Ma et al., 2018; Yu et al., 2019;

Bertuccioli et al., 2020), lose weight (Neyrinck et al., 2021) and

alleviation of insulin resistance (Memon et al., 2018), especially

in the treatment of combined multiple metabolic disorders, the

efficacy of BBR is outstanding (Yu-Guang et al., 2017).

Meanwhile, numerous experimental studies have shown that

BBR ameliorate body metabolic dysfunction through multiple

mechanisms (Yin et al., 2012; Ilyas et al., 2020). In terms of

glucose metabolism, BBR strengthened autophagy and protected

from high glucose-related injury in podocytes by promoting the

AMPK activation, at the same time, the bidirectional regulation

of AMPK activity can reduce the risk of hypoglycemia caused by

berberine (Xiao et al., 2018). BBR also through TLR4/MyD88/

NF-kB signaling pathway improves gut-derived hormones

(Gong et al., 2017a), alleviate inflammation by reducing the

exogenous antigen load in the host (Zhang et al., 2012). In the

regulation of blood lipids, BBR can decrease triglyceride

expression in HepG2 cell lines (Cao et al., 2018), modulation

of bile acids (He et al., 2016a) and upregulation of Trib1 mRNA

levels to reduce lipid levels (Singh and Liu, 2019). With further

in-depth studies scholars have found that modulation of gut

microbiome may be another novel mechanism of action for

berberine to ameliorate metabolic disorders (Hvistendahl, 2012;

Feng et al., 2015).
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3. Impact of gut microbiota on
metabolic disorders

Earlier studies have shown that alterations in the gut

microbiota are environmental factors that influence host

susceptibility to obesity and increase adiposity (Backhed et al.,

2004). When feces from obese and lean pairs of twins were

transplanted separately into germ free mice, mice transplanted

with feces from obese recipients gained weight and exhibited an

obesity associated metabolic phenotype, whereas mice

transplanted with feces from lean recipients showed no

significant metabolic phenotype (Ridaura et al., 2013).

Therefore, gut microbiota is strongly associated with the

occurrence of metabolic disorders.

On the one hand, the findings suggest that metabolic

disorders significantly affect the structure and function of the

gut microbiota. On the other hand, gut microbiota can produce

metabolites by fermenting dietary fiber, for instance, short-chain

fatty acids (SCFAs) and bile acids (BAs), have important

metabolic functions (Canfora et al., 2019), can significantly

affect body metabolism function. The Firmicutes/Bacteroidetes

(F/B) ratio is widely accepted to have an important influence in

maintaining normal intestinal homeostasis, the increase of F/B

will lead to obesity (Stojanov et al., 2020). Numerous studies

have confirmed that, humans or animals with obesity/insulin

resistance or diabetes have an elevated abundance of

opportunistic pathogens (such as sulfate reducing bacteria)

and a decreased abundance of beneficial bacteria (as

F.prausnitzii (Xu et al., 2020a), A.muciniphila, R.intestinalis,

Bifidobacterium and Akkermansia muciniphila.) in the gut

(Everard et al., 2011; Qin et al., 2012; Tilg and Moschen, 2014;
FIGURE 1

Chemical structural formula of Berberine (BBR).
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Feng et al., 2015; Cani, 2019). Further studies revealed that

certain specific bacteria have important effects on body

metabolism, such as the endotoxin producing bacterium

E.clocae isolated from obese patients, which can cause obesity

and insulin resistance in axenic mice (Fei and Zhao, 2013). It

follows that the metabolic function of the organism interacts

with the gut microbiome, and modulation of the gut microbiota

can improves metabolic function.

In recent years, a large number of studies have focused on the

relationship between berberine and gut microbiota. Research

shows can ameliorate metabolic abnormalities by modulating the

flora to enhance bioavailability (Liu et al., 2016), regulating the

bacteria-brain-gut axis (Sun et al., 2016; Sun et al., 2017),

strengthening intestinal barrier function (Zhang et al., 2012;

Gong et al., 2017a), alleviating metabolic endotoxemia (Gao

et al., 2017), increasing of short-chain fatty acid (SCFA)-

producing bacteria (Mcnabney and Henagan, 2017) and other

ways. Now, these mechanisms will be systematically summarized

and elaborated in this review.

4. Mechanism of berberine
ameliorates metabolic disorders
based on gut microbiome

Berberine can induce cell death of harmful intestinal bacteria

and increase the number and species of beneficial bacteria

(Habtemariam, 2020). From administration to absorption, BBR

can be metabolized by gut microbiota to improve its therapeutic

effects on metabolism related diseases such as diabetes,

hyperlipidemia, or directly affect gut microbiota to regulate and

ameliorate metabolic disorders (Cui et al., 2018). The gut

microbiota cuts down BBR to the absorbable form of DhBBR,

which converts to BBR and enters the blood after absorption in

intestinal tissue, so as to improve the bioavailability of BBR (Feng

et al., 2015). Studies have shown that BBR can increase its oral

availability and relieve metabolic disorder by reversing the

changes in the quantity, structure and composition of gut

microbiota under the pathological conditions (Table 1). At the

same time, BBR improves intestinal barrier function and reduces

the inflammation of metabolism related diseases by regulating gut

microbiota. In addition, BBR achieves energy balance by

regulating gut microbiota dependent metabolites (such as LPS,

SCFAs, BAs) and related downstream pathways. What’s more, it

can improve gastrointestinal hormones and metabolic disorders

by regulating bacterial-brain-gut axis (Figure 2).
4.1 Increasing of NR-producing bacteria
to promote the utilization of BBR

The oral bioavailability of Berberine is low (< 1%) as a result

of poor aqueous solubility, the molecular structure of berberine
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prevents its rapid absorption from the intestine (Habtemariam,

2020). The extremely low plasma concentrations following oral

administration of BBR in experimental or clinical settings are

not sufficient to achieve the effects observed in in vitro

experiments, which presents challenges in explaining its

excellent and diverse pharmacological effects in clinical trials

(Tan et al., 2013; Liu et al., 2016). Consequently, the

investigators try to find out solutions in order to solve the

problem of poor bioavailability (Liu et al., 2010). Previous

researches have shown that gut microbiota participates in the

metabolism of most oral drugs in vivo both directly and

indirectly (Zhang et al., 2020). Some chemical components

have been metabolized before the first-pass effect of liver, and

the activity or toxicity of drugs can be significantly changed,

affecting the exertion of drug efficacy (Sousa et al., 2008;

Possemiers et al., 2011). Efficacy of intestinal microbiota in

drug action remains underappreciated as before. There is

increasing evidence that gut microbiota plays an important

role in treatment through interaction with drugs. It contains a

variety of metabolic enzymes, which can trigger a series of drug

metabolic reactions and embodied the important role of gut

bacteria for oral absorption of BBR (Xu et al., 2017).

Nitroreductases (NRs) are bacterial enzymes that reduce

nitro-containing compounds which play key roles in BBR

intestinal absorption. It has been found that various types of

nitroreductase producing bacteria, such as Enterobacter, can

produce nitroreductase to catalyze the reduction reaction of

BBR to Dihydroberberine (DhBBR), which is a key bacterium to

promote the intestinal absorption of BBR,NRs turns BBR into its

absorbable form (DhBBR), which has highly polar and easily

absorbed into the blood, and it is rapidly converted into BBR by

oxidation after entering the blood. Studies have confirmed that

the absorption rate of DhBBR is 5-fold correspond to BBR in

animals (Direct, 2002). Some studies have also shown that after

the increase of NR producing bacteria, the oral utilization and

clinical efficacy of BBR can be improved. The experiment has

shown that increasing fecal NR activity by approximately 10% in

the gut microbiota can increase blood BBR concentrations by

65-70% in both animal experiments and human studies,

suggesting that bacterial NR has a highly efficient function in

converting BBR to DhBBR (Wang et al., 2017a).

Previous studies have shown that the elevation of fecal NR

caused by HFD was due to an increased proportion of NR-

producing bacteria in the gut or their increased activity. The

bioavailability of BBR (100 mg/kg/d) in HFD-fed hamsters was

higher than in normal chow-fed hamsters when administered

orally. HFD caused increased mortality in the abundance of

Enterobacter spp in mice, and BBR decreased blood lipids (such

as TC, TG, LDL) in the HFD-fed hamsters, but did not play a role

in those who keep with general diet (Wang et al., 2017a). In

contrast, another researcher used antibiotics to reduce gut

microbiota as a control group, inhibitory effect of oral treatment

on gut bacteria in mice with type 2 diabetes decreased the BBR-to-
frontiersin.org
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DhBBR conversion and the concentration of BBR in the blood, at

the same time, the lipid-lowering and hypoglycemic effects of BBR

were reduced (Feng et al., 2015).Clinical study showed that NR

activity in feces was higher in hyperlipidemia patients than in

healthy subjects. Correlation analysis also showed that blood BBR

was positively correlated with fecal NR activity. Therefore, it is

reasonable to suggest that fecal NR activity is one of the effective

biomarkers of BBR in the treatment of hyperlipidemia (Wang

et al., 2017a).

Therefore, it is believed that HFD increases the proportion of

NR producers in the gut bacterial community and/or the NR

activity in bacteria. Studies showed an increase in the NR-

producing bacteria in the gut microbiota community with
Frontiers in Cellular and Infection Microbiology 05
Bacteroides (Schapiro et al., 2004), Escherichia-Shigella (Fu

et al., 2007), and Bifidobacterium (Kinouchi et al., 1982),

whose growth rate were the the highest among the top 50

bacterial strains. Moreover, Ru Feng et al. (2018) studied the

pharmacokinetics of gut microbiota modulating BBR (50 mg/kg/

d) and active metabolites in Beagle Dogs, as a result, an increase

in the number of bacteria producing nitroreductase was

observed in Escherichia–Shigella and Bacteroides.

Increasing of NR-producing bacteria was speculated to be

one of the mechanisms of BBR improving metabolism.

Nitroreductase activity is not only a biomarker to predict the

therapeutic effect of BBR, but also an important target to

improve the efficacy of BBR.
TABLE 1 Mechanism of berberine ameliorates metabolic disorders based on gut microbiome.

Disease Subjects Dosage Outcome Changes in Gut
Microbiota

Potential
Mechanism

References

Hyperlipidemia HFD-fed hamsters 100mg/kg/d for
6weeks

TC↓
TG↓
LDL ↓

Bacteroides↑ Escherichia-
Shigella↑
Bifidobacterium↑

NR↑ Yan Wang et al. (2017a)

Hyperlipidemia B6 mice 40mg/kg/d for 35
days

TC↓
TG↓
LDL ↓
TBA ↓
LPS↓
Weight↓

A.muciniphila↑
Sporobacter termitidis↑
Alcaligenes faecalis↑
Escherichia coli↓
Desulfovibrio↓
Parabacteroides
distasonis↓

mucus ↑
SCFAs↓

Kai He et al. (He et al.,
2016a)

T2DM db/db mice 100mg/kg/d for
55 days

FBG ↓
HbA1c ↓

Verrucomicrobia↑
A.muciniphila↑
Saccharibacteria↓
Deferribacteres↓
Actinobacteria↓
Firmicutes↓

mucin-2↓ Cai Na Li et al. (Li et al.,
2020)

Obesity and
Insulin Resistance

HFD-fed rats 100mg/kg/d for 8
weeks

FBG↓
FINS↓
HOMA-IR↓

Blautia ↑

Allobaculum↑

LBP↓ Xu Zhang el al (Zhang
et al., 2012).

T2DM KKAy Mice 100mg/kg/d for 8
weeks

HbA1c↓
HOMA-IR↓

Vibrio desulfuricus↓
Enterobacter↓

LPS↓ Hui Cao et al. (Cao et al.,
2020)

Insulin Resistance HFD-fed rats 200mg/kg/d for 8
weeks

TG↓
LDL ↓
FBG↓
insulin resistance↓

Bifidobacterium↑

Escherichia coli↑
LPS↓ Liu, D., et al. (Liu et al.,

2018)

T2DM db/db mice 136.5mg/kg/d for
19 weeks

food intake ↓, weight ↓, blood
glucose↓ HbA1c↓

Butyricimonas↑
Coprococcus↑
Ruminococcus↑

SCFAs↓,LPS↓ Zhang, W., et al. (Zhang
et al., 2019)

Atherosclerosis High-Fat Diet-Fed
ApoE−/− Mice

50mg/kg/d for 13
weeks;
100mg/kg/d for
13 weeks

atherosclerotic lesions ↓
TC↓
LDL ↓

Roseburia↑
Blautia↑
Allobaculum↑

Alistipes↑
uricibacter↑

SCFAs↓ Wu, M., et al. (Wu et al.,
2020)

Hyperlipidemia HFD-fed hamsters 50or200mg/kg/d
for 2 weeks

TC↓
TG↓
LDL ↓

phylum Firmicutes↑
phylum Bacteroidetes↑

BAs↑ Gu, S., et al. (Li et al.,
2020)

hyperglycemia db/db mice 210mg/kg for 4
weeks

Weight
HbA1c↓
TG↓
LDL-c↓
FFA↓

bacteroideae
Clostridium,

BAs↑ Li, M., et al.
(Debose-Boyd and Ye,
2018)
This table lists the effects of BBR on laboratory indicators and gut microbiota with different doses in metabolic diseases, and the main potential mechanisms of BBR.
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4.2 Increasing of mucin-degrading-
producing bacteria to strengthen the
intestinal barrier function

Intestinal barrier function is closely related to the occurrence

and development of metabolic diseases (Scheithauer et al., 2020).

T2DM is well known as a metabolic disease with low level

chronic inflammation. Mucin-2 is a large glycoprotein that

maintains intestinal balance by forming a physical barrier

between the intestinal contents and the epithelium which is a

very important glycoprotein (Paone and Cani, 2020). Thass CA

(Thaiss et al., 2018) firmly believed glucose as an orchestrator of

intestinal barrier function. Hyperglycemia destroys the integrity

and balance of intestinal epithelial cells, interferes with the

function of tight junction protein and adhesion protein

between intestinal epithelial cells, leads to intestinal barrier

dysfunction, increases the spread of intestinal infection, and

then aggravates metabolic disorder. BBR can ameliorate

endoplasmic‐reticulum stress and reduce apoptosis of goblet

cells by reducing the expression of mucin‐2. Therefore, BBR has

the effect of strengthening intestinal barrier.

Akkermansia muciniphila (A.muciniphila) has been

authenticated as a mucin-degrading in the mucus layer, which
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has been proved to prevent the development of obesity and

associated complications (Plovier et al., 2017). A.muciniphila

treatment reversed metabolic disturbances caused by taking a

high-fat diet, such as metabolic endotoxemia, adipose tissue

inflammation, increased fat mass and insulin resistance in

humans (Everard et al., 2013). Surprisingly, this bacterium is

called a mucus degrader, and adding A.muciniphila increases the

number of goblet cells and the production of antimicrobial

peptides, which stimulated mucus production (Paone and

Cani, 2020). A.muciniphila plays an active role in improving

host metabolism and its abundance is often inversely correlated

with metabolic disturbances in most preclinical and clinical

studies (Zhou and Zhang, 2019), some studies made known a

negative correlation among A. muciniphila and markers

associated with metabolic disorders (Remely et al., 2015). A

study has also shown that he decrease of circulating endotoxin

levels mediated by A muciniphila can be attributed to the

induction of intestinal expression of tight junction proteins

(occult band protein-1 and occludin), thus reversing the

increase of intestinal permeability induced by Western diet (Li

et al., 2016). After BBR intervention, the abundance of

A.muciniphila in B6 mice induced by high-fat diet was 19.1

times higher than that in the control group (He et al., 2016a). A
FIGURE 2

Mechanism of action of Berberine in modulating Gut Microbioata. Increasing of the NR-producing bacteria: BBR can increase th abundance of
Bacteroides, Escherichia-Shigella and Bifidobacterium which can produc NRs. Nrs converts BBR into its absorbable form of DhBBR, which has
highly polar and easily absorbed into the blood. Increasing of mucin-degrading-producing bacteria: BBR can increase the abundance of
A.muciniphila. The increased abundance of A.muciniphila may lead to the reduction in mucin-2 expression in ileum. BBR seemed to protect the
intestinal barrier integrity through modulating HMGCT, SREBP2 and CYP7A1 expressions. Decreasing of LPS-producing bacteria: BBR reduced
the level of Vibrio desulfuricus and Enterobacter to inhibit the production of LPS. So that inflammatory factors (IL-1b, TNF-a IL-6, CRP in plasma
Sta reduced IL-1b levels) were decreased. Increasing of SCFA-producing bacteria: BBR increased the number of SCFA producing bacteria (such
as Butyricimonas, Coprococcus, Ruminococcus and Roseburia), raised the expression of pro-inflammatory cytokines, including LPS, TNF-a IL-
1b and IL-6. Increasing of BAs-decomposing bacteria: BBR increased the number of BAs-decomposing bacteria (such as phylum Firmicutes,
phylum Bacteroidetes, C. scindens and C. hylemonae) and reduced the level of C. hiranosis, decreased the activity of BSH. The possible
mechanism is to Up-regulate Na+/H+ antiporter, up-regulate colonic TGR5 expression and GLP secretion and to increase CYP7A1 and CYP27A1
expression. Regulating microbiota-gut-brain axis: BBR increases the propotion of Bacteroidetes and Firmicutes, increases the expression of
serum GLP-1, GLP-2, increase of the number of L.cells.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.854885
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2022.854885
feature of Diabetic rats fed with high fat and high-carbonhydrate

diet were proinflammatory intestinal changes, altered gut-

derived hormones, and what’s more, Intestinal permeability

can be increased by 2.77-fold than rats on a regular diet.

However, BBR treatment can significantly reverse the above

changes, reduce the inflammatory changes of intestinal immune

system and reduce the damage of intestinal barrier. Besides, high

concentration of BBR treatment can reduce the intestinal

permeability of diabetic rats by 27.5%. The researchers

speculate that BBR seems to protect the integrity of intestinal

barrier by regulating the expression of ZO-1 and OCLN (He

et al., 2016a). Also, BBR can significantly increasing the

abundance of bacteria such as phylum Verrucomicrobia,

especially A.muciniphila. To decrease the FBG levels, improve

the impaired oral glucose tolerance, and ameliorate the balance

of a‐ and b‐cells in diabetic db/db mice, The increased

abundance of A.muciniphila may lead to the reduction in

mucin‐2 expression in ileum (Li et al., 2020). Atherosclerosis

(AS) is the main co-morbidity of metabolic syndrome, research

lends credence to a possible indirect role of IL-17 in determining

or favoring early (Tarantino et al., 2014). This beneficial effect of

BBR was associated with the regulation of gut microbiota,

particularly with increased abundance of Akkermansia (Yang

et al., 2021).

Interestingly, Gavage of BBR multiplied the abundance of

A.muciniphila in rats. However, it did not stimulate

A.muciniphila growth in direct incubation, which can be seen

that BBR may promote A.muciniphila in a host-dependent way

(Dong et al., 2021). How BBR stimulates A.muciniphila remains

further research. But it can be confirmed that BBR may regulate

tight junction protein and protect the integrity of intestinal

barrier by increasing mucin degrading bacteria.
4.3 Decreasing of LPS-producing
bacteria to improve
metabolic endotoxemia

Studies (Cani et al., 2007a; Cani et al., 2008) proved that

metabolic endotoxemia leads to inflammatory reaction which

can causes weight gain and diabetes. Endotoxin plasma

lipopolysaccharide (LPS) is one of the strong virulence factors

of Gram-negative bacterial species, released upon lysis by LPS

producing bacteria. It plays an important role in both acute

infections and chronic infections (Kallio et al., 2008). It is a

major active component in the generation of toxic effects from

endotoxin and an initiating factor in metabolic endotoxemia.

This “metabolic endotoxemia” has been widely recognized as an

important reason for triggering or promoting obesity, insulin

resistance, metabolic syndrome, and ultimately leading to

diabetes (Cani et al., 2007b). A high-fat diet leads to an

increase in the abundance of intestinal Gram-negative bacteria,

such as Proteus. A large amount of LPS produced by Proteus
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enters the blood because of the increase of intestinal

permeability. Binding of lipopolysaccharide to the complex of

CD14 and toll-like receptor 4 on the surface of innate immune

cells, LPS can induce systemic inflammation, which ultimately

impairs insulin sensitivity and induces insulin resistance-related

metabolic disorders (Pussinen et al., 2011).

Proteobacteria belongs to unstable potential pro-

inflammatory flora. Enterobacter, Vibrio desulfuricus and

Enterobacter cloacae increase significantly in the state of

metabolic disorder, and then cause metabolic diseases (Bai

et al., 2016). The abundances of Desulfovibrio genus were rised

in obesity and T2DM (Van Hul et al., 2018). Desulfovibrio is

supposed to an opportunistic pathogen that can produce

endotoxins. The researchers found that BBR reversed these

increases and reduced the level of Vibrio desulfuricus, in

addition, they discovered that BBR treatment reduced

inflammation of KKAy mice at least in part by regulating

TLR4, ERK, and p38MAPK pathways (Cao et al., 2020). Some

other researches showed that BBR could reduce the abundance

of Vibrio desulfuricus (Zou et al., 2015) and Enterobacter

(Weglarz et al., 2007) cloacae and inhibit the production of

LPS. To investigate the role of BBR-mediated modulation of gut

microbiota in reducing host inflammation and ameliorating

insulin resistance-related metabolic abnormalities, reviewers

(Zhang et al., 2012) measured the serum concentration of LBP

which is a biomarker of circulating LPS. they found that HFD

induced a significant increase in serum LBP level in rats, which

co-administration with BBR essentially prevented, suggesting a

potential role for gut microbiota antigens in this

pharmacological process. Another study (Zhang et al., 2011)

showed that BBR significantly reduced intestinal injury induced

by LPS injury rat model and decreased serum levels of

downstream inflammatory cytokines. What’s more, it is also

one of the results of this study that the combined administration

of BBR can significantly prevent HFD induced systemic

inflammation. A Long-term HFD altered the gut microbiota

composition by reducing protective bacteria like Bifidobacterium

and increasing gram negative bacteria like Escherichia coli,

resulting in increased release of LPS into plasma. A study

showed that BBR set-back these effects and restrained LPS-

induced TLR4/TNF-a activation, leading to increased insulin

receptor and insulin receptor substrate-1 expression in the liver

and reduce insulin resistance (Liu et al., 2018).

Gut microbial Dysbiosis affects the integrity of the intestinal

epithelium and increases blood levels of LPS (Cani and

Delzenne, 2009; Tagliabue and Elli, 2013). Meanwhile, HFD

induces high levels of circulating LPS, which promotes metabolic

inflammation and insulin resistance (Cani et al., 2007a; Cani

et al., 2007b). Demonstrated that lacking the IL-17 cytokine

receptor (IL-17RA−/−) mice in the HFD group exhibited

increased intestinal permeability, with increased levels of LPS

in vat of IL-17RA−/− compared with C57BL/6 wild-type (WT)

mice, suggesting that LPS may negatively affect insulin signaling
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and aggravate insulin resistance in these mice. Through a series

of experimental findings, the investigators showed the

importance of the IL-17/IL-17R axis in the metabolic and

immunological alterations associated with the development of

obesity and metabolic syndrome, by driving intestinal neutrophil

migration, limiting intestinal Dysbiosis and attenuating LPS

translocation to visceral adipose tissue (VAT) (Perez

et al., 2019).

An up-regulation of Th17-pattern-related cytokines such as

IL-6, TNFa, IL-17 and IL-22 in the intestine and increased Th17

cell. Reported data reveal that BBR can directly suppress

functions and differentiation of pro-inflammatory Th1 and

Th17 cells, and indirectly decrease Th cell-mediated

inflammation through modulating or suppressing other cells

assisting autoreactive inflammation, such as CD4+ Foxp3+ T

regulatory (Tregs), dendritic cells (DCs) and macrophages

(Ehteshamfar et al., 2020). Therefore, berberine may also treat

metabolic syndrome by regulating intestinal permeability,

alleviating inflammatory factors entering the bloodstream, and

thereby attenuating insulin resistance.

In conclusion, BBR can significantly reduce the abundance

of Proteobacteria, such as Desulfovibrio, Enterobacter cloacae,

and inhibit LPS production, effectively prevent serum LBP

elevation (Zhang et al. , 2012), regulating intestinal

permeability, attenuating insulin resistance and improve

metabolic endotoxemia.
4.4 Increasing of short-chain fatty acid
(SCFA)-producing bacteria to regulate
inflammatory response

To a certain extent, the occurrence and development of

metabolic disorders are closely related to changes in the

composition of the gut microbiota and its metabolites, such as

short chain fatty acids (SCFA), can significantly affect glycolipid

and energy metabolism. SCFAs, mainly produced by gut bacteria

ferment carbohydrates and degrade aromatic compounds,

including acetic, propionic, butyric among others, have the

functions of promoting regeneration of epithelial cells

(Mcnabney and Henagan, 2017), strengthening intestinal

barrier function, suppressing part of the inflammatory

response induced by LPS, and regulating of cells in skeletal

muscle, liver, and fat to Alleviating glycemic homeostasis and

insulin sensitivity (Park et al., 2015). Both animal and human

researches have shown that the increase of SCFAs concentration

in feces is related to weight gain, fat accumulation and insulin

resistance, which may be due to the increase of SCFAs

production and the decrease of SCFAs absorption (Sircana

et al., 2018). SCFAs work as a mediator between gut

microbiota, they have the potential to improve glucose

homeostasis and insulin sensitivity in patients with T2DM,

and in the setting of pancreatic dysfunction, they can regulate
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pancreatic insulin and glucagon secretion through GLP1

augmentation in pancreatic dysfunction (Mandaliya and

Seshadri, 2019). Among these, the main energy of colon cells

comes from butyric acid, increasing satiety and reducing food

intake (Archer et al., 2004), and is also a regulator of

inflammation, modulating chronic inflammation by activating

anti-inflammatory Treg cells and inhibiting pro-inflammatory

cytokine and chemokine response pathways, while modulating

tight junction protein expression to adjust epithelial barrier

funct ion and intes t ina l permeabi l i ty (Wei e t a l . ,

2018).However, a high-fat diet caused dysregulation of SCFAs

producing bacteria structure and decreased abundance of SCFAs

producing bacteria, reducing the distribution of SCFAs in the

intestine and inhibiting them from exerting normal

physiological functions, result in the body occurrence a series

of metabolic related diseases (Zhang et al., 2015).

Reports indicated that BBR was provided with an effect on

anti-diabetic by regulating short-chain fatty acids (SCFAs). BBR

intervention changed the intestinal microflora of db/db mice,

increased the number of SCFA producing bacteria (such as

Butyricimonas, Coprococcus, Ruminococcus), reduced body

weight, blood sugar level and intestinal inflammation in db/db

mice (Zhang et al., 2019).Regarding the way BBR works in the

body, current research believes that there are two aspects: one is

the direct effect of circulating BBR, and the other is the indirect

effect of butyrate through the intestinal microorganism,

increased abundance of Escherichia-Shigella, Clostridium sensu

stricto 1, and Bacteroides may be one of the reasons for the

increase of butyrate production (Wang et al., 2017b). The anti-

atherosclerotic effect of BBR is also related to changes in

composition and functions of gut microbiota. Wu, M et al.

(Wu et al., 2020) studied the effects of berberine on

atherosclerosis and gut microbiota regulation in ApoE (-/-)

mice fed a high-fat diet, after treatment with BBR,

atherosclerotic lesions was decreased and it significantly

reduces total cholesterol, and very low-density lipoprotein

cholesterol levels. In detail, BBR enriched the abundance of

Turicibacter, Alistipes, Roseburia, Allobaculum, and Blautia, and

changed the abundance of Bilophila. These microbiota showed

good anti-inflammatory effects, which are related to the

production of SCFAs and significantly reduce pro-

inflammatory cytokines (including TNF)- a6 IL-1 b And

IL-6), they believe that reducing inflammation may be an

important mechanism for the reduction of atherosclerosis in

HFD-fed mice treated with BBR. After treated with BBR, Xu, X.,

et al (Xu et al., 2020) found Clostridium XIVa, Faecalibacterium,

Ruminococcus2, Coprococcus, Dorea, Butyricicoccus, and

Roseburia were markedly enriched in the gut microbiota.

These bacteria are butyric acid producing bacteria and play a

beneficial role in the host (Koh et al., 2016). In addition,

increased production of fecal SCFAs was also detected in Xu’s

study. Butyricoccus, Allobaculum, Phascolarctobacterium,

Blautia and Bacteriodes were markedly increased by BBR in
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the high-fat diet-induced rats as bacteria that can produce

SCFAs (Zhang et al., 2015). The efficacy was evaluated after 7

days of BBR treatment in beagle dogs, Feng, R et al. (Feng et al.,

2018) found that the abundance of seven butyrate-producing

genera increased than before. Escherichia-Shigella, Clostridium

sensu stricto 1, Megamonas, Bacteroides, Ruminococcus and

Blautia could produce butyate. That is to say BBR regulates

metabolism by increasing the abundance of butyric acid

producing bacteria. However, experiments in humans have

also shown that BBR reduces acetate and propionate

production but has no effect on butyrate levels, and that, at the

same time, the use of BBR increases the abundance of

Faeca l ibacter ium and decreases the abundance of

Bifidobacterium, Streptococcus and Enterococcus (Fu et al.,

2022).Treatment with berberine in combination with

Bifidobacterium could increase the abundance of beneficial

bacteria in the intestine of diabetic patients and achieve better

glucose lowering effect because of the inhibitory effect of

berberine on Bifidobacterium (Ming et al., 2021).
4.5 Increasing of BAs-decomposing
bacteria to regulate BAs-signal

Bile acids (BAs) are well known to be important metabolic

and inflammatory signaling molecules that modulate lipid and

energy-related nuclear hormone receptors, including farnesoid

X receptor (FXR) and transmembrane G protein-coupled

receptor 5 (TGR5 or GPBAR1) (Fiorucci et al., 2010). Bile acid

synthesis is the main pathway of cholesterol excretion in vivo.

Bile acids can activate TGR5 and FXR receptors, regulate blood

glucose, increase glycogen synthesis, inhibit liver glycogen

synthesis, protect islet cell function and maintain blood

glucose homeostasis (Li and Chiang, 2014). BBR can increase

the abundance of bacteria that promote the decomposition of

bound bile acids and enhance the expression of bile acid

receptors FXR and TGR5. BBR is considered to be an agonist

of FXR and TGR5 and regulate bile acid signal and function

(Han et al., 2017). In addition, bile acids have antibacterial

properties, inhibit the growth of bacteria in the intestine and

form a strong selective pressure on the intestinal flora. At the

same time, bile acids are modified and regulated by

microorganisms in the intestine (Fiorucci and Distrutti, 2015).

Research showed that BBR can significantly affect cholesterol

metabolism and/or bile acid biosynthesis, suggesting that the

circulating of bile acids is related to the lipid-lowering function

of BBR. Previous reports have indicated that BBR treatment can

increase the transforming of cholesterol to bile acid and reduce

the level of cholesterol in the blood (Sun et al., 2017), and it

affects the metabolism of hepatic lipids and cholesterol by

increasing bile acid excretion into the large intestine

(Mcdonald et al., 2012). In vitro studies on bile acid

metabolism in the gut also showed that BBR could
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significantly reduce bile acid catabolism by gut microbiota in

HFD hamsters. Meanwhile, Researchers predicted that BBR

significantly increased CYP7A1 and CYP27A1 expression. The

regulation of adipose genetic expression by insulin and fatty

acids is mainly mediated by transcriptional factor, for instance

SREBPs (Debose-Boyd and Ye, 2018). CYP7A1 is considered to

be the classical rate-limiting enzyme for the conversion of

cholesterol to bile acids. Meanwhile, this study found that BBR

treatment can promote the expression of CYP7A1 in the liver of

obese mice. It can be seen that the hypolipidemic effect of BBR

may be related to its up-regulation of SREBP2 and CYP7A1

expression and promotion of bile acid metabolism (Feng et al.,

2018).. Guo Y. et al. (Guo et al., 2016) found that BBR can

significantly improve the content of BAs in serum, which is

realized as an increase in primary BAs but a decrease in

secondary BAs. Bacteroides were also observed to be enriched

in the terminal ileum and large intestine of BBR-treated mice. A

study showed that berberine compound increased the relative

abundance of Proteobacteria and decreased Firmicutes and TM7

enrichment, which accelerate conversion of primary bile acid

cholic acid (CA) into secondary bile acid deoxycholic acid

(DCA) in ob/ob mice, and DCA upregulated colonic TGR5

expression and GLP secretion, thus acting as a hypoglycemic

agent (Li et al., 2020). A randomized, double-blind, placebo-

controlled clinical trial in 20 medical centers in China showed

that BBR is media ted by the inhib i t ion of DCA

biotransformation by Ruminococcus bromii (Zhang et al., 2020).

The phylum Firmicutes have higher bile salt hydrolase (BSH)

activity than the phylum Bacteroidetes in the intestinal

microbiota, and the latter is only active against taurine-

conjugated bile acids. The study distinctly shows that BBR

remarkably increased the Firmicutes/Bacteroidetes ratio and

suggests that this is one of the mechanisms of its induced

serum free bile acid increase and lipid lowering effect (Gu

et al., 2015).. Furthermore, there are other studies showing

that bile acids induce transcriptional changes in low-

abundance bile acid metabolizing bacteria, including C.

scindens (Devendran et al., 2019), C. hylemonae, and C.

hiranonis that are capable of turning taurine-conjugated bile

acids into unconjugated bile acids and secondary bile acids such

as ursodeoxycholic acid and lithocholic acid (Ridlon et al., 2020).

BBR significantly alter gut microbial-bile acid metabolite

interactions. Wolf, P.G., et al. (Wolf et al., 2021) found that

sulfated bile acids were strongly associated with C. hiranonis, C.

hylemonae and Bacteroidetes spp, which is positively correlated

with the first two and negatively correlated with the last one.

Also, BBR treatment increased cecal bile acid concentrations and

up-regulated Na+/H+ antiporter, cell wall synthesis/repair,

promote carbohydrate and amino acid metabolism. Studies

have shown that the level of circulating bile acids in patients

with metabolic disorders increases. BBR can increase some

beneficial bacteria with benzene sulfonyl hydrazine activity, for

instance Bacteroides, Bifidobacterium, Lactobacillus and
frontiersin.org

https://doi.org/10.3389/fcimb.2022.854885
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2022.854885
Clostridium, promote the decomposition of bound bile acids and

strengthen their excretion through the intestine. Lactobacillus

converts primary bile acids into secondary bile acids through

decarboxylation (Vincent et al., 2013). Overall, the mechanisms

by which BBR alters the gut microbiome are related to its

choleretic effects and are dose related.
4.6 Regulating microbiota-gut-brain axis
to improve gastrointestinal hormone
expression

The complex interaction between the brain and the gut is

called the brain-gut axis, reflects the bidirectional interaction

between the brain and the gut. And it is regulated by the gut

microbiota, as well as mediated by brain-derived and gut derived

hormones and peptides. microbiota-gut-brain axis involving

many important factors such as hormones, nutrients and

afferent/efferent regulatory autonomous neural pathways. A

variety of physiological processes are involved at the same

time, including satiety, regulation of metabolism, hormone

secretion and sensitivity (especially insulin sensitivity), and

bone metabolism (Romijn et al., 2008).. Recently, researchers

have found that the disturbance of the gut-brain axis is closely

related to the occurrence and development of metabolic diseases

and exerts its effects through the hormone signaling pathway

(Burokas et al., 2015). Studies have demonstrated that

gastrointestinal hormones, such as ghrelin, orexin, glucagon-

like peptide-1 (GLP-1), and leptin, can regulate feeding behavior,

energy homeostasis, etc. (Cameron and Doucet, 2007; De Silva

and Bloom, 2012).Numerous studies have shown that GLP-1

receptor agonists have good clinical efficacy in the treatment of

diabetes and obesity (Han et al., 2017). Studies have shown that

GLP-1 promotes beta-cell neogenesis and satiety, reduces

glucagon secretion, delays gastric emptying, and increases

peripheral glucose disposal (Donnelly, 2012). Drugs activating

the GLP-1 receptor are also beneficial in the management of

another current epidemic, namely nonalcoholic fatty liver

disease (NAFLD) (Paternoster et al., 2019). Changes in gut

hormones, containing increases in GLP-1 might have a role in

induction and long-term maintenance of weight loss (Finelli

et al., 2014). Consequently, the microbiota-gut-brain axis is a

potential target for metabolic disease treatment and one of the

hotspots for future research.

Studies have shown that BBR decreases the variousness of

intestinal flora, increases the proportion of Bacteroidetes and

Firmicutes, further increases the expression of serum GLP-1,

GLP-2 (Wang et al., 2021), PYY, GIP and ghrelin (Sun et al.,

2016), provides evidence that BBR treatment can inhibit

microbiota diversity, elevate plasma GLP-1 and orexin-a, and

upregulate hypothalamic GLP-1 receptor expression, which has

beneficial effects on various metabolic disorders such as insulin

resistance, obesity and obesity, thereby Induces regulation of the
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gut-brain axis of the microbiota (Sun et al., 2016). Previous

studies (Lu et al., 2009; Yu et al., 2010) showed that that BBR

increased the number of L-cells and the mRNA expression levels

of proglucagon in the ileum, while promoting GLP-1 secretion in

normal and diabetic rats. Other studies have also shown (Xu

et al., 2017) BBR significantly increased the levels of plasma

GLP-1 and GLP-2 in portal vein, as well as the number of L-cells

in proximal colon and the mRNA expression level of preluganin.

Some studies have linked the intestinal microbiota to the

intestinal endocrine system (Cani et al., 2013). Butyrate may

improve metabolism via gut-brain axis signaling (De Vadder

et al., 2014). The results showed that after BBR intervention, the

number of L-cells was positively correlated with the abundance

of acteria, anaerobes, cholephila and oscillibacter. Studies

indicated that Akkermansia muciniphila could significantly

increase GLP-1 release from colonic L cells (Everard et al.,

2011; Hansen et al., 2011), this study confirmed that BBR

increased the abundance of akman bacteria and decreased the

abundance of Lactobacillus, which seems to be related to the

increase of the number of L cells and the intestinal endocrine

peptides secreted by L cells. In summary, regulation of glucose

and gut hormone levels by BBR has a lot to do with modulating

the composition of the gut microbiome. There are few studies on

BBR in the treatment of metabolic diseases by regulating

microbiota-gut-brain axis, for its potential effectiveness, this

mechanism is worthy of further study.
5. Discussion

Previous studies have shown that metabolic disorders

significantly affect the structure and function of gut

microbiome. In addition, gut microbiome can affect body

metabolism by producing metabolites such as short chain fatty

acids and succinic acid, which increases the abundance of

beneficial bacteria and decreases the abundance of pathogenic

bacteria. Therefore, this study focused on the abundance of

beneficial and pathogenic bacteria after BBR intervention, and

summarized the mechanism of BBR on metabolic diseases. In

recent years, with the continuous unraveling of the interactions

between gut microbiome and organismal metabolism, relevant

intervention mechanisms including the regulation of short chain

fatty acids, bile acid metabolic pathways, LPS/TLR4 signaling

have been gradually studied (Harsch and Konturek, 2018).

However, based on fecal microbiota transplant (FMT),

metagene Association, and other techniques, it remains to be

explored from dissecting the overall structural changes in gut

microbiome to the specific effects of a single genus on organism

metabolism. In addition, because the complexity of the

interaction mechanism between gut microbiome and body

metabolism leads to a causality still not fully clear and needs

to be elucidated in more rational experimental designs and

research approaches (Fischbach, 2018), it is hoped that gut
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microbiome will become more widely used in clinical practice as

a therapeutic target for metabolic diseases.

Numerous studies have shown that BBR modulates the gut

microbiome, and its effects on modulating metabolic function

are influenced by the gut microbiota. For example, BBR

improves lipid levels in HFD-fed rats, whereas it does not

exert a fat regulating effect in normal rats. Further study

revealed that the abundance of Nitroreductases producing

bacteria increased under the metabolic disorder state, which

can produce more Nitroreductases, catalyze the conversion of

BBR to Dihydroberberine and promote the intestinal absorption

of BBR. So that the metabolic effect of BBR improvement is

dependent on the structure and function of gut microbiota. This

also reveals, to some extent, the biological basis for the

interindividual differences in the efficacy of BBR in regulating

body metabolism in the clinic (Wang et al., 2017a).

After extensive literature reading and summarizing, we

believe that in the exploration of BBR based on the

mechanism related to gut microbiome regulating organism

metabolism, it still needs to be combined with individual

differences in gut microbiome and well-established

experimental protocols to seek the best intervention mode and

intervention dosage for clinical application. Then, different

conclusions remain to be reported about the structural

changes of intestinal flora caused by Berberine: Some believe

that the abundance of Akkermansia increased after BBR

intervention, But while others believe that BBR could not

increase the abundance of Akkermansia alone. In addition,

some of the mechanisms by which berberine regulates the

structural changes of the flora remain to be explored, for

instance, how BBR stimulates A.muciniphila remains further

research. Therefore, not only the results of the pre-existing

studies need to be validated, but the reasons leading to the

discrepancy of the results should be further analyzed.

This review summarizes the mechanism of berberine

improving metabolic disorder based on gut microbiome

through a combing of literatures. It was found that BBR had a

clear effect on altering the abundance of specific bacteria in the

gut and modulating the structural function of the gut

microbiome as a whole. Through strengthening intestinal

barrier function, attenuating metabolic endotoxemia,

modulating systemic inflammatory responses, bile acid

signaling, and the Microbiota-Gut-Brain axis, among other

pathways, in order to exert its effect of improving metabolic

disorders. As more studies clarified the mechanisms and
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characteristics of BBR in ameliorating metabolic disorders by

regulating gut microbiome, it provided a new target and

research direction for the diagnosis and treatment practice of

metabolic diseases in the future clinic. It is worth mentioning

that BBR, as a widely used compound in clinic, both in animal

experiments and clinical studies, more and more studies have

focused on the effects of different doses of BBR on the gut

microbiome, and on the basis of confirming its efficacy, dose

studies will provide guidance for further exploring the

mechanism of action of BBR.
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