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Simple Summary: Consumption of diets with a high-level incorporation of rye leads to an increase
in the concentration of nonstarch polysaccharides, which cannot be utilized by poultry. The enzyme
xylanase degrades arabinoxylans, the most common nonstarch polysaccharides present in both wheat
and rye. In this study, the effect of dietary hybrid rye inclusion and enzyme xylanase supplementation
to a diet of laying hens on bone quality was evaluated. Bone quality in laying hens is especially
important as one of the bone functions is to store calcium and other minerals for eggshell production.
The results of our study showed that modern hybrid rye varieties, when supplemented with exogenous
xylanase, can be introduced to the diet of laying hens without any adverse effects on bone structure.

Abstract: This study was conducted to examine the effect of dietary rye inclusion and xylanase
supplementation on the bone quality of ISA Brown laying hens. Ninety-six laying hens were assigned to four
groups: fed with wheat–corn diet or rye–wheat–corn diet (25% of hybrid rye inclusion) or nonsupplemented
or supplemented with xylanase (200 mg/kg of feed) for a period of 25 weeks, from the 26th to the 50th
week of age. X-ray absorptiometry, X-ray diffraction, and Fourier-transform infrared spectroscopy were
used to provide comprehensive information about the structural organization of bone constitutive phases
of the tibia mid-diaphysis in hens from all treatment groups. Bone hydroxyapatite size was not affected by
diet. Xylanase supplementation influenced the carbonate-to-phosphate ratio and crystallinity index in hens
fed with both diets. Xylanase had more pronounced effects on bone mineral density and collagen maturity
in hens fed with the rye–wheat–corn diet versus those fed with the wheat–corn diet. The results of this
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study showed that modern rye varieties, when supplemented with exogenous xylanase, can be introduced
to the diet of laying hens without any adverse effects on bone structure.

Keywords: laying hen; tibia; rye; xylanase; bone quality; collagen

1. Introduction

Bone tissue is composed of about 60% inorganic matter (calcium, phosphorus, and other minerals
located mainly in the hydroxyapatite crystallite structures), 10% water, and 30% organic matter
(ossein, which contains collagen fibers, proteoglycans, and other bone matrix noncollagenous proteins).
Bone remodeling and maturation involves changes in both the inorganic and organic bone phases
and is dependent on the interaction between bone cell activities (osteoblasts responsible for bone
mineralization and osteoclasts responsible for bone resorption) and the intermolecular networks
of collagen. Proper bone structural composition is crucial for ensuring its major functions, namely,
providing mechanical support for locomotor functions, protecting vital organs, and maintaining mineral
homeostasis [1]. In mature egg-laying hens, a specific type of bone, named medullary bone, appears in
the endosteal surface of long bones. The medullary bone functions to store calcium phosphate and
other minerals for eggshell production [2–5]. When the calcium stored in the mineral matrix of the
medullary bone is moved to the oviduct to be used for eggshell calcification, the physical strength of
the bones decreases [1,6]. Gregory and Wilkins [7] estimated that about 30% of commercial egg-laying
hens suffer at least one bone fracture in their lifetime. Therefore, mineral-metabolism-related disorders
and bone weakness in laying hens, which affect both the effectiveness of the production cycle and the
overall welfare of the hens, have been serious problems for decades [8–11].

Over and above genetic, endocrine, and environmental (including the housing system) factors, nutrition
is acknowledged to be the most important factor affecting the quality of bones in laying hens, with nutritional
factors playing an important role in the regulation of bone homeostasis [12–18]. Among others, dietary
energy source is widely connected to bone mineralization, remodeling, and mechanical strength [19,20].
Nowadays, corn is the most commonly used energy source in the diets of intensively reared laying hens.
While modern varieties of cereal grains commonly cultivated in Europe, like wheat or rye, are good
alternative energy sources that can be used as partial replacements for corn [21–23], the consumption
of diets with a high-level incorporation of wheat or rye leads to an increase in the concentration of
antinutritive factors (soluble nonstarch polysaccharides, NSPs), which cannot be utilized by monogastric
animals [21,24,25]. NSPs increase intestinal digesta viscosity, which has unfavorable effects on gut
transit time and gut motility, which in turn reduces the absorption of nutrients [26,27]. The major
portion of NSPs in both wheat and rye are arabinoxylans, the antinutritional effects of which are
attributed to both water-extractable arabinoxylans (their viscous properties in the gastrointestinal tract
of birds) and water-unextractable arabinoxylans (their nutrient-encapsulating effects in cereal cell
walls) [28]. While wheat can be introduced to the diet of laying hens without limits, the recommended
rye content, due to its higher content of arabinoxylans, is limited to 10% [21,29]. The negative effects
of NSPs can be partially overcome by the supplementation of exogenous NSP-degrading enzymes
to poultry diets. These include endo-beta-1,4-xylanases, which degrade arabinoxylans. While the
magnitude of this response varies from grain to grain, the addition of xylanase to wheat- and rye-based
diets can reduce intestinal viscosity, improve nutrient uptake, and stimulate beneficial microbial
growth [30–32]. Therefore, when using exogenous enzymes, the maximum content of rye in the
diet of laying hens can be as high as 40% [29,33,34]. While some studies show that the inclusion of
cereals to corn-based diets does not affect egg performance and feed conversion ratio (FCR) in laying
hens [34–36], the presence of NSP-rich grains in poultry diets has been shown to affect bone quality
parameters [19,37]. For bone homeostasis and remodeling, the reported malabsorption of calcium,
as well as fat-soluble vitamins, like vitamin D, is particularly important [38,39].
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Yet there are no studies that simultaneously compare the effects of the dietary inclusion of hybrid
rye, the modern varieties of which are characterized by a reduced amount of antinutritive factors,
specifically arabinoxylans [21,22,40], and xylanase supplementation on long bone quality in laying
hens fed with a wheat–corn diet. In order to properly assess the effect of nutrition on bone properties,
it is necessary to analyze the structure, organization, and characteristics of both the inorganic and
organic components of the bone.

Therefore, the current study was carried out to investigate the compositional changes in the
tibia of laying hens fed with rye–wheat–corn and wheat–corn-based diets, with or without xylanase
supplementation, in order to determine the interactive effects of rye and xylanase. Dual-energy X-ray
absorptiometry (DXA), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD)
techniques were used. These techniques allowed for the provision of detailed information concerning
the mineralization, structural organization, and interaction of both the inorganic and organic bone
phases of the tibia, which is considered a model bone in poultry research. Moreover, to visualize the
distribution of collagen in the compact (structural) and medullary bones, Picrosirius red (PSR) staining
was performed on decalcified, paraffin-embedded tissue sections of bone samples collected from the
laying hens fed with the respective diets.

2. Materials and Methods

2.1. Ethical Approval

All laying hens were housed in the chicken facility of the Department of Animal Nutrition and
Feed Science, National Research Institute of Animal Production, Balice, Poland. The experiment was
carried out in compliance with the European Union law of the European Parliament and of the European
Council (Directive 2010/63/UE, received in Poland by Legislative Decree 266/2015) on the protection
of animals used for scientific purposes. According to the EU/PL law, approval from an animal ethics
committee was not required, as the birds were fed a nontoxic diet and were not subjected to any invasive
procedures. Polish regulations allow for this type of trial to be run on livestock animals without particular
per case agreement by the local ethics committee, as long as no procedures are performed that might
cause suffering, pain, or other stress, as was the case with the present study. All of the authors who took
part directly in the planning and running of the experiment held certificates for the experimentation on
living animals, delivered by the Polish Veterinary Services, as required by EU/PL law.

2.2. Birds and Experimental Diets

The experiment was carried out using 96 17-week-old commercial ISA Brown laying hens, obtained
from a local hatchery. The hens were placed in wire-mesh floor cages (two hens per cage) and housed
under climate-controlled conditions. Each cage provided 3600 cm2 of total floor space and was equipped
with a claw-shortening device, two perches, one nipple drinker, and two feed troughs. During the
pre-experimental period, which lasted from the 18th to the 25th week of age, the hens were fed a standard
commercial diet. The experimental period took place from the 26th to the 50th week of age. The hens
were randomly assigned to one of four dietary treatment groups, each comprising of 12 replicate cages,
blocked in four columns and three rows. Feed, in a mash form, was offered ad libitum, and the hens also
had free access to water and were exposed to a 14:10 (L:D) lighting schedule.

A 2 × 2 factorial arrangement was employed, with rye inclusion (0% or 25%) and xylanase
supplementation (0 or 200 mg/kg of feed) as factors. Hybrid winter rye cv. Brasetto and xylanase
Ronozyme WX (DSM Nutritional Products Sp. z o.o., Mszczonów, Poland) with minimum xylanase
activity, 1000 FXU/g, were used. The chemical composition of the rye grain included 9.23% crude protein,
0.81% crude fat, 1.46% crude fiber, and 1.51.% crude ash [41]. The experimental diets, isonitrogenous and
isoenergetic, were formulated to meet or exceed the nutrient requirements of laying hens [29] (Table 1).
The nutrient composition of the diets was calculated based on the chemical composition of the raw
feedstuff, and the metabolizable energy value was calculated according to European tables [42], as the
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sum of the metabolizable energy (ME) content of the various components. The content of antinutritional
factors in the experimental diets, as analyzed using gas chromatography, was as follows: wheat–corn diet:
total NSPs—77.8 g/kg DM, insoluble NSPs—67.0 g/kg DM, arabinoxylans—33.4 g/kg DM; rye–wheat–corn
diet: total NSPs—93.4 g/kg DM, insoluble NSPs—75.9 g/kg DM, arabinoxylans—40.84 g/kg DM [43].

Table 1. Composition and calculated nutritional value of experimental diets fed to laying hens for a
period of 25 weeks.

Item
Diet

Wheat–Corn Rye–Wheat–Corn

Ingredients (g/kg)

Rye 0.00 250.00
Wheat 382.30 250.80
Corn 290.00 150.00

Soybean meal 200.00 210.00
Rapeseed oil 15.00 27.00
Limestone 91.00 90.00

Monocalcium phosphate 12.00 12.00
NaCl 3.00 3.00

DL-Methionine 1.10 1.10
L-Lysine hydrochloride 0.60 0.10

Vitamin–mineral premix 1 5.00 5.00
Metabolizable energy, MJ/kg 3 11.55

Nutrient composition (g/kg DM) 2

Crude protein 170.00
Lys 7.20
Met 3.40
Ca 36.00

Available P 3.75
Na 1.50
Cl 2.19

1 The premix provided per 1 kg of diet: vitamin A, 10,000; vitamin D3, 2000 IU; vitamin E, 20 IU; vitamin K3, 1.5 mg;
vitamin B1, 1.0 mg; vitamin B2, 4.0 mg; vitamin B6, 1.5 mg; vitamin B12, 0.01 mg; Ca pantothenate, 8.7 mg; niacin,
20.0 mg; folic acid, 0.8 mg; choline chloride, 200.0 mg; manganese, 85.0 mg; zinc, 60.0 mg; iron, 45.0 mg; copper,
8.0 mg; iodine, 1.0 mg; selenium, 0.25 mg; 2 calculated according to the chemical composition of feed components;
3 calculated according to European tables [42] as the sum of the ME content of the various components.

At the end of the experiment period, one hen from each replicate cage was randomly selected and
slaughtered by cervical dislocation, after electrical stunning. Immediately after slaughter, the right
tibiae were carefully dissected out, cleaned of adhering tissues, and frozen in separate plastic bags at
−20 ◦C until further examination.

2.3. Bone Measurements and Bone Sample Preparation

After thawing overnight at 7 ◦C, the tibiae were subjected to bone mineral density (BMD) and
bone mineral content (BMC) measurements using dual-energy X-ray absorptiometry (DXA) on a
Lunar iDXA densitometer (GE, Madison, WI, USA) located at the Lubelskie Centrum Diagnostyczne
(Lublin Diagnostic Center), Świdnik, Poland. A high-resolution slow scan (scan mode: standard,
10.0 µGy) was used. Prior to the measurements, the apparatus was calibrated using bone phantoms of
known BMD (BMD range of 0.6–1.4 g/cm2) designed for use on Lunar densitometers. A scan of the
whole bone was performed using the “small animal” mode of the enCORE® software (version 17.0
(2016); GE, Madison, WI, USA) and a special pad for “small animal” scans provided by the producer
densitometer, which was used to eliminate measurement artifacts and to immobilize the bones so
that all the bones were scanned in the coronal plane. No additional objects were used to mimic the
soft tissue around bone [17,18,44]. The measurements were carried out on the scanned data using
operator-defined regions of interest (ROIs) covering the central, 40 mm long fragment of the tibial
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bone, at the mid-diaphysis. Since these lines are fixed at specific intersections, a calculated compromise
was consistently applied. All measurements (blind) were carried out by the same person.

Next, 5 mm thick transversally cut slices of bone diaphysis (containing both compact and medullary
bones) were cut at the midpoint of the bone diaphysis, with an MBS 240/E diamond bandsaw (Proxxon
GmbH, Foehren, Germany). The samples were then fixed in phosphate-buffered 4% formaldehyde (pH 7.0).

The other parts of the central fragment of bone diaphysis were cleaned for bone marrow in
running water and then defatted using chloroform–methanol (2:1, v:v) at room temperature for 24 h
under constant agitation (laboratory shaker Elpan 357, Elpin-plus, Lubawa, Poland). Next, a 10 mm
long fragment was cut, dried for 24 h at a temperature of 105 ◦C and finally calcined in a muffle furnace
at 500 ◦C for 24 h to determine the ash percentage, which was expressed relative to the sample dry
weight. The remaining parts of the defatted bone sample were placed in a mortar, chilled in liquid
nitrogen, and pulverized using a pestle until the bone was powdered. The powdered bone tissue was
transferred to two 2.0 mL Eppendorf microtubes and frozen at −20 ◦C. The bone samples from the first
microtube were designated to XRD measurements, from the second to FTIR spectroscopy.

2.4. X-Ray Diffraction (XRD) Measurements

The mean size of the hydroxyapatite and crystallinity of the raw bone were measured using
X-ray diffraction (XRD). A high-resolution X-ray Empyrean diffractometer (PANalytical, Almelo,
the Netherlands), with Cu K-alpha radiation (λ = 1.54178 Å) and a Ni filter at a generator voltage of
40 kV and current of 30 mA, was used to perform the structural characterization of the bone. The radiation
was detected with a proportional detector. The samples were measured in θ–2θ geometry over a range
from 10◦ to 80◦ with a step size of 0.01◦ and counting time of 6 s per data point. All measurements
were carried out at room temperature. The source divergence and detector slit were 1/8, and Soller slits
were applied. Bragg peaks and crystallographic planes were identified using a HighScore Plus software
package (PANalytical, Almelo, the Netherlands) from the hydroxyapatite references (No. 96-901-0053).
The sizes of the hydroxyapatite crystals’ crystallites and the degree of crystallinity were calculated
using the Miller index (002). The peak position and the full width at half-maximum intensity (FWHM)
were calculated from the fits of the Lorentz function using OriginPro 2016 software (OriginLab Co.,
Northampton, MA, USA) [45]. The calculated compositional parameters determined to evaluate bone
material quality, derived from XRD spectroscopy, are characterized in Table 2.

2.5. FTIR Measurements

Infrared absorption spectra were recorded with a Vertex 70 FTIR (Bruker Optik, Ettlingen, Germany)
spectrometer, in the attenuated total reflection (ATR) mode, equipped with a liquid nitrogen cooled MCT
(mercury–cadmium–telluride) detector. A zinc selenide (ZnSe) crystal, with 20 internal reflections and
an incidence angle of 45◦, was the horizontal ATR element (PIKE Technologies). The spectrophotometer
was equipped with a HeNe laser, which emits red light at 633 nm, with a power output of 0.8 mW.
All ATR FTIR spectra were obtained at room temperature, in the spectral region, between 4000 and
900 cm−1. Typically, each spectrum represented an average of 64 scans taken at a resolution of 4 cm−1.
The acquisition time necessary to generate an average spectrum of 64 scans was 30 s. The instrument
was continuously purged with N2 for 40 min before and during measurements. The ZnSe crystal
plate was cleaned with ultrapure organic solvents. Powdered raw bone samples were placed onto the
face of the crystal of the ATR unit, and the tip of the clamp was pressed onto the crystal surface to
make the necessary contact to obtain a spectrum. The spectra were analyzed using a commercially
available software package, GRAMS/AI (Thermo Fisher Scientific, Waltham, MA, USA). After a baseline
correction, smoothing by a 5-point Savitzky–Golay filter and normalization using the 960 cm−1 (the ν1

mode) band characterized by its intensity, overlapping peaks were resolved and their integrated
areas measured using curve-fitting deconvolution with a Gaussian function [46]. The calculated
compositional parameters determined to evaluate bone material quality derived from FTIR spectra
analyses are characterized in Table 3.
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Table 2. Parameters used in the XRD analysis of bone material quality of laying hens fed either a wheat–corn diet or rye–wheat–corn diet (25% of hybrid rye inclusion),
nonsupplemented or supplemented with xylanase (200 mg/kg of feed) for a period of 25 weeks.

Parameter Formula Description Reference

Size of the hydroxyapatite crystals in the c-axis D = Kλ
βcosθ

K—a constant related to the crystallite shape (0.94), λ—the wavelength of
X-ray radiation (1.54178 Å), β—the full width at half-maximum intensity

(FWHM) of (002) reflection peak, counting the apparatus broadening of 0.08◦,
θ—the (002) peak position

[47,48]

Mineral crystallinity index CI =
(

KA
FWHM002

)3 KA—a constant set to 0.24, FWHM002—the full width at half-maximum
intensity of (002) reflection peak [49]

Table 3. Parameters used in the FTIR analysis of bone material quality of laying hens fed either a wheat–corn diet or rye–wheat–corn diet (25% of hybrid rye inclusion),
nonsupplemented or supplemented with xylanase (200 mg/kg of feed), for a period of 25 weeks.

Parameter Formula Description Reference

Mineral-to-matrix ratio M/M =
Area(v1,v2PO3−

4 )
Area(AmideI)

The ratio of the main phosphate (ν1, ν3, PO4
3−; 900–1200 cm−1) to amide I

(1600–1700 cm−1) integrated band area (Figure 1A).
[50]

Collagen maturity CM =
Area(1660 cm−1)
Area(1690 cm−1)

The ratio of the area ratio between amide I sub-bands at mature cross-links
(1660 cm−1) and immature cross-links (1690 cm−1) (Figure 1B). [51,52]

Carbonate-to-phosphate ratio C/P =
Area(CO2−

3 )
Area(PO3−

4 )
The ratio of the integrated area of the carbonate spectral region (840–890 cm−1) to

integrated area of the ν1, ν3, PO4
3− spectral region (900–1200 cm−1).

[46,52,53]

Crystallinity index CI =
Area(1030 cm−1)
Area(1020 cm−1)

The ratio between phosphate sub-band areas of stoichiometric (at 1030 cm−1) to
nonstoichiometric (1020 cm−1) hydroxyapatites (Figure 1C).

[54]
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Figure 1. (A) Typical FTIR spectra of a raw bone sample showing the vibrational assignment of the 
most significant bands, and overlapping peaks constituting the phosphate group regions and amide 
I band. Protein secondary structure analysis. (B) Deconvolution of amide I region: baseline-corrected 
spectra were fitted with seven Gaussian band profiles by approximating the number and position, 
using the minima of second derivatives, which when simulated fits. The integrated area under sub-
bands (1690 and 1660 cm−1) was used for the calculation of collagen maturity. (C) Deconvolution of 
the phosphate group regions: The ν1, ν3 PO43− band (stoichiometric apatite, nonstoichiometric apatite, 
respectively) with underlying component modes revealed by curve fitting. Integrated area under sub-
bands (ν1, ν3 PO43−, HPO42−) were used for the calculation of crystallinity. The red dotted line simulates 
fit to the experimental curve, fitted with twelve Gaussian band profiles. 

2.6. PSR Staining 

Formaldehyde-fixed samples of tibial bone diaphysis were decalcified in a 10% EDTA solution 
(pH 7.4). Afterwards, the decalcified samples were dehydrated through a graded ethanol series (50%, 
70%, 90%, and 100% ethanol in distilled water), fixed with nonpolar Ottix Plus and Ottix Sharper 
solvents (DiaPath, Martinengo, Italy) and embedded in paraffin. Paraffin-fixed samples were cut with 
an HM 325 microtome (Thermo Fisher Scientific, Waltham, MA, USA) at a thickness of 5 µm and 
stained with Picrosirius red (PSR) stain to observe the distribution of mature, organized (seen as 
red/orange), and immature (seen as green) collagen fibers [55]. Stained slides were observed in cross-
polarized light using a CX43 (Olympus, Tokyo, Japan) microscope. 

2.7. Statistical Analysis 

The data were analyzed using a 2 × 2 factorial arrangement with rye inclusion and xylanase 
supplementation as the factors. The interaction between rye inclusion and xylanase supplementation 
was added to the model. A bird was considered an experimental unit. Normality of data was tested 
using the Shapiro–Wilk normality test, and homogeneity of variances was tested by Levene’s test. As 
all variables passed the normality test (p-value > 0.05), whenever significant differences were found 
among treatments, treatment means were analyzed using a Tukey’s HSD test. For all tests, a p-value 

Figure 1. (A) Typical FTIR spectra of a raw bone sample showing the vibrational assignment of the most
significant bands, and overlapping peaks constituting the phosphate group regions and amide I band.
Protein secondary structure analysis. (B) Deconvolution of amide I region: baseline-corrected spectra
were fitted with seven Gaussian band profiles by approximating the number and position, using the
minima of second derivatives, which when simulated fits. The integrated area under sub-bands (1690
and 1660 cm−1) was used for the calculation of collagen maturity. (C) Deconvolution of the phosphate
group regions: The ν1, ν3 PO4

3− band (stoichiometric apatite, nonstoichiometric apatite, respectively)
with underlying component modes revealed by curve fitting. Integrated area under sub-bands (ν1, ν3

PO4
3−, HPO4

2−) were used for the calculation of crystallinity. The red dotted line simulates fit to the
experimental curve, fitted with twelve Gaussian band profiles.

2.6. PSR Staining

Formaldehyde-fixed samples of tibial bone diaphysis were decalcified in a 10% EDTA solution
(pH 7.4). Afterwards, the decalcified samples were dehydrated through a graded ethanol series (50%,
70%, 90%, and 100% ethanol in distilled water), fixed with nonpolar Ottix Plus and Ottix Sharper
solvents (DiaPath, Martinengo, Italy) and embedded in paraffin. Paraffin-fixed samples were cut with an
HM 325 microtome (Thermo Fisher Scientific, Waltham, MA, USA) at a thickness of 5 µm and stained
with Picrosirius red (PSR) stain to observe the distribution of mature, organized (seen as red/orange),
and immature (seen as green) collagen fibers [55]. Stained slides were observed in cross-polarized light
using a CX43 (Olympus, Tokyo, Japan) microscope.

2.7. Statistical Analysis

The data were analyzed using a 2 × 2 factorial arrangement with rye inclusion and xylanase
supplementation as the factors. The interaction between rye inclusion and xylanase supplementation
was added to the model. A bird was considered an experimental unit. Normality of data was tested
using the Shapiro–Wilk normality test, and homogeneity of variances was tested by Levene’s test.
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As all variables passed the normality test (p-value > 0.05), whenever significant differences were found
among treatments, treatment means were analyzed using a Tukey’s HSD test. For all tests, a p-value
< 0.05 and a confidence interval of 95% were established. The data were analyzed using Statistica
software (v. 13.3, TIBCO Software Inc., Palo Alto, CA, USA).

3. Results

DXA analysis showed that the tibia from laying hens fed with the wheat–corn diet were characterized
by a lower bone mid-diaphysis planar area compared with the tibia from hens fed the rye–wheat–corn
diet (p < 0.001, Table 4). There was also a significant effect of xylanase, as the tibia from hens in
xylanase-supplemented groups had a lower bone mid-diaphysis planar area than that from hens in
enzyme-deprived groups (p < 0.001). For bone mineral density (BMD), there was an interaction between
rye content and xylanase supplementation (p < 0.05). When xylanase was added to the rye–wheat–corn
diet, a significant increase in BMD was observed. Moreover, hens fed the rye–wheat–corn diet without
xylanase had significantly decreased tibial BMD compared with that of hens fed with the wheat–corn
diet without xylanase (Table 4). As a result of the differences in BMD and bone planar area, there was a
significant interaction between rye content and xylanase supplementation for bone mineral content
(BMC) (p < 0.05). Hens fed with the wheat–corn diet had significantly decreased bone mineral content
in the tibial bone diaphysis following xylanase supplementation (p < 0.05), what was not observed
when hens were fed the rye–wheat–corn diet.

Table 4. DXA measurements and tibia mid-diaphysis ash content of 50-week-old laying hens fed with
either a wheat–corn diet or rye–wheat–corn diet (25% of hybrid rye inclusion), nonsupplemented or
supplemented with xylanase (200 mg/kg of feed), for a period of 25 weeks.

Factors 1 DXA Measurement Ash

Rye Xylanase BMD, g/cm2 Area, cm2 BMC, g Ash, %

Treatment 2

0% 0 mg/kg 0.275 b 4.14 1.151 b 29.9 a

200 mg/kg 0.238 ab 3.62 0.902 a 34.2 b

25% 0 mg/kg 0.198 a 4.57 0.899 a 33.0 b

200 mg/kg 0.246 b 4.12 1.012 ab 31.7 ab

SEM 3 0.018 0.09 0.081 0.6

Main factors

0% 0.257 3.88 a 1.027 32.4
25% 0.222 4.33 b 0.956 32.1

0 mg/kg 0.236 4.34 a 1.025 31.5
200 mg/kg 0.243 3.87 b 0.957 33.0

p-value

Rye 0.067 <0.001 0.392 0.603
Xylanase 0.722 <0.001 0.409 0.020

Rye x xylanase 0.027 0.592 0.034 <0.001
1 Number of observations included in the calculation of means for treatment effects is 8, whereas means for main
factors are 16. 2 Columns with different superscripts (a, b) are significantly different (p < 0.05). 3 SEM = standard
error of the means, BMD = bone mineral density, BMC = bone mineral content.

The bone quality data obtained from XRD and FTIR measurements are presented in Table 5. Raw
bone XRD structural analysis of position and FWHM of the (002) reflection peak (Figure 2) showed
that diet type had no effect on hydroxyapatite crystallite c-axis size or on bone crystallinity index
(Table 5). On the other hand, significant effects of xylanase supplementation on bone compositional
parameters were observed with regard to the FTIR spectra data (Table 5). In xylanase-supplemented
groups, a reduction in crystallinity (p < 0.01) was observed; this effect was especially evident for the
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rye-fed group. There was also an effect of xylanase supplementation on carbonate-to-phosphate ratio,
which was significantly decreased in xylanase-supplemented groups (p < 0.01). An interaction between
diet type and enzyme addition for mineral-to-matrix ratio (main-phosphate-to-amide-I-area ratio) and
collagen maturity was also noted. The mineral-to-matrix ratio, which is an indicator of the degree
of bone mineralization, significantly increased when xylanase was introduced to the wheat–corn
diet (p < 0.05). Collagen maturity (1660 and 1690 cm−1 sub-bans area ratio) was lowest in the bones
from laying hens fed with the rye–wheat–corn diet with no xylanase and was significantly improved
following xylanase supplementation to a value similar to those observed in both wheat–corn–diet
fed groups.
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Figure 2. Representative XRD patterns of the raw bone samples from 50-week-old laying hens fed with
either a wheat–corn diet or a rye–wheat–corn diet (25% of hybrid rye inclusion), nonsupplemented
or supplemented with xylanase (200 mg/kg of feed), for a period of 25 weeks. The position and
FWHM (full width at half-maximum) of the (002) reflection peak were used for the calculation of BAp
(bioapatite) crystal size and crystallinity index.

Figure 3 shows representative images of Picrosirius red (PSR)-stained sections of the tibial bone
mid-diaphysis, where both compact bone and medullary bone can be observed. Figure 3C shows an
increase in the fraction of immature collagen fibers (green) in compact bone from hens fed with the
rye-containing diet, without xylanase. Xylanase supplementation to the rye-containing diet resulted
in a more mature, organized structure, similar to that observed in the wheat–corn–diet fed groups.
Analogous changes, but to a lesser extent, were observed in the wheat–corn–diet group after the
addition of xylanase (Figure 1A,B). In addition, a less organized, random arrangement of collagen was
observed in the medullary bone of both groups deprived of xylanase supplementation (Figure 1A,C),
compared with the groups that received xylanase (Figure 1B,D).
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Table 5. Structural organization of bone constitutive phases of the tibia mid-diaphysis of 50-week-old laying hens fed with either a wheat–corn diet or a rye–wheat–corn
diet (25% of hybrid rye inclusion), nonsupplemented or supplemented with xylanase (200 mg/kg of feed), for a period of 25 weeks.

Factors 1 XRD Diffraction FTIR Spectroscopy

Rye Xylanase HA c-Axis Size, nm Crystallinity Index Mineral-to-Matrix Ratio Carbonate-to-Phosphate Ratio Crystallinity Collagen Maturity

Treatment 2

0% 0 mg/kg 19.28 0.161 10.57 a 0.0263 1.19 5.25 b

200 mg/kg 19.44 0.165 12.85 b 0.0239 1.15 5.31 b

25% 0 mg/kg 19.47 0.165 12.75 b 0.0276 1.25 4.06 a

200 mg/kg 19.72 0.172 11.62 ab 0.0250 1.17 5.36 b

SEM 3 0.28 0.070 0.55 0.0007 0.03 0.18

Main factors

0% 19.36 0.163 11.71 0.0251 1.17 5.28
25% 19.60 0.169 12.19 0.0263 1.21 4.71

0 mg/kg 19.37 0.163 11.66 0.0270 b 1.22 b 4.65
200 mg/kg 19.58 0.168 12.23 0.0245 a 1.16 a 5.34

p-value

Rye 0.406 0.398 0.396 0.118 0.114 0.005
Xylanase 0.466 0.465 0.310 0.002 0.033 0.001

Rye x xylanase 0.871 0.842 0.005 0.876 0.523 0.002
1 Number of observations included in the calculation of means for treatment effects is 8, whereas means for main factors are 16. 2 Columns with different superscripts (a, b) are significantly
different (p < 0.05). 3 SEM = standard error of the means. HA = bone hydroxyapatite.
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Figure 3. Representative photomicrographs of PSR-stained sections from the tibia mid-diaphysis of
50-week-old laying hens fed with either a wheat–corn diet (A,B) or a rye–wheat–corn diet (C,D) (25%
of hybrid rye inclusion), nonsupplemented (A,C) or supplemented (B,D) with xylanase (200 mg/kg
of feed), for a period of 25 weeks, observed in polarized light. Well-organized and more mature
collagen fibers show orange-red birefringence, and the immature ones are green. A difference in the
organization of collagen in compact bone in both xylanase-supplemented groups (B,D) characterized
by a more ordered arrangement of mature collagen fibers can be observed. Also, in the medullary bone,
both xylanase-deprived groups (A,C) show a less organized random arrangement of collagen fibers.
All scale bars represent 100 µm.

4. Discussion

In recent years, XRD and spectroscopic analyses have become more widely used as tools for
analyzing the effects of environmental, endocrine, age-dependent, and nutritional factors on the
organization of bone constitutive phases in different areas of veterinary and animal sciences [56–62].
The analysis of X-ray reflection peaks and spectroscopic bands allows us to assess both the structure
and the nature of interaction of both the inorganic and organic bone matrixes, which include the
assessment of, among others, the degree of bone mineralization, crystallinity, and collagen maturity.
The present study made use of these techniques to evaluate the effects of dietary rye inclusion and
xylanase enzyme supplementation on bone quality in egg-laying hens. The bones of laying hens are
characterized by ongoing rapid bone remodeling processes, which affect bone function and architecture,
as well as bone mineralization and metabolic activity. Potential negative changes in bone structural
organization resulting from inappropriate nutrition may disturb bone remodeling processes, which
could reduce the availability of minerals for eggshell calcification and, therefore, drastically influence
eggshell and egg quality.

In our study, an increase in bone area (as measured using DXA) was observed after dietary rye
inclusion. This may indicate that the circumference of the tibial mid-diaphysis had increased. However,
one should remember that the DXA measurement gives the area of the planar projection of the bone.
The cross sections of the tibia mid-diaphysis in poultry is roughly elliptical [63]. Therefore, an increase
in diameter in one plane does not necessarily indicate an increase in diameter in the other plane as well.
While there are no similar studies on laying hens, studies using broiler chickens and turkey poults fed
with rye-based diets (37% and 58% of rye, respectively) showed decreased tibial diameter in birds fed
with rye diet when compared with birds fed with corn diet [64,65]. A previous study by our lab on
broiler chickens showed that dietary rye inclusion (15%) had no effect on bone quality (in terms of
BMD and bone cross-sectional area), and the addition of 200 mg/kg xylanase (1000 FXU/g) increased
the tibial BMD in chickens fed with both diets [66]. The results of the present study indicate that the
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same dose of xylanase, when supplemented to the 25% rye–wheat–corn-based diet, also increased the
tibial BMD of laying hens.

We also aimed to examine whether dietary rye inclusion or xylanase addition could alter bone
the hydroxyapatite structure in laying hens, as well as the crystallinity or hydroxyapatite crystal
domain size influence on bone properties [67,68]. There are some recent studies showing that diet
type influences bone crystal size in pigs [56,57]. There is also a previous study on laying hens where
crystallinity was analyzed; however, in this particular study, age-related changes were examined [59].
In the current study, FTIR spectroscopy showed that xylanase addition reduced the crystallinity of the
bone mineral phase of the tibia in laying hens fed with a wheat–corn diet. Generally, bone crystallinity,
as measured by FTIR, can be confirmed by XRD analyses based on the FWHM of the (002) reflection
peak [69]. This, however, was not observed in our study as XRD diffraction showed no differences in
crystallinity index between groups. The differences in crystallinity determined with FTIR and that
determined by XRD methods are probably due to fact that the measurements were performed on raw
bone samples, and the XRD measurement of FWHM is dependent on the presence of organic matter in
the bone matrix [48] as the (002) reflection peak also represents a measurement of the alignment of
mineralized collagen fibrils [70]. Finally, while in mammals a correlation between the degree of bone
hydroxyapatite crystallinity and bone mineral density is generally reported [71,72], this relationship
was not observed in the current study. This is because in mammals and male birds, the measurement
of the femoral mid-diaphysis bone density involves the measurement of the bone mineral density of
the structural cortical bone only, while in egg-laying hens, the BMD measurement of the same region
of the tibia gives the sum of the mineral densities of both the cortical and medullary bones [73], which
significantly differ in bone turnover rate, and in general, the medullary bone has low BMD for rapid
osteoclastic bone resorption.

An important observation from the XRD data is that there was no effect of dietary treatment on
hydroxyapatite crystal sizes. No changes in crystal size suggests that all the bones assessed show the
same balance in the management of eggshell-production-related high requirements of Ca and in bone
remodeling rate, as suggested by Li et al. [59]. Moreover, it is well documented that osteoporotic bone
displays larger crystallite size of the hydroxyapatite mineral, which can result in more fragile bones,
with reduced stiffness [74]. Therefore, the lack of differences in hydroxyapatite crystal size between
groups in our study indicates that the dietary treatments should have no effect on bone elasticity.
This aspect of the XRD data should be further examined. For example, hydroxyapatite crystallite c-axis
size can be validated using data collected on the (004) reflection peak [75]. However, to date, these data
have generally been used for analyses concerning synthetic hydroxyapatites [76] or the hydroxyapatite
present in tooth enamel [75]. Crystallinity data are also dependent on the presence of impurities in
bone hydroxyapatite. Li et al. [59] observed a rapid increase in the incorporation of carbonate into the
cortical bone of laying hens during the laying period. As shown by FTIR analyses, our hens, at the age
of 50 weeks, displayed different tibial-carbonate-to-phosphate ratios between groups, which could be
a potential trigger for osteoporosis [59,77]. Finally, according to the literature, bone-mineral-to-matrix
ratio is related to the mineral content expressed in terms of bone ash percentage [69]. The same
was observed in our study (Tables 4 and 5), where xylanase supplementation had a positive effect
on hens fed with the wheat–corn diet, and the dietary rye inclusion had no negative effect on the
bone-mineral-to-matrix ratio. However, this was not observed for BMD determined using the DXA
method. This may be due to the limitations of DXA as a method for determining bone mineral content,
which include not only the abovementioned fact that DXA estimates the content on the basis of 2D
scans of bone but also the fact that it has been shown that the result of DXA may depend on whether the
scan is made for a whole limb or an isolated bone. However, while both types of scan in laying hens are
highly correlated [78], Baird et al. [16] found that DXA underestimated the BMC of excised tibias from
58-week-old hens comparing bone ash; the opposite was observed by Schreiwes et al. [79], where DXA
measurement of intact limb overestimated the BMC in tibias of 58-week-old live hens. To sum up the
results of the XRD and FTIR measurements, no significant changes in the structural organization of the
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bone mineral phase was observed in 50-week-old laying hens, irrespective of dietary treatment, while
FTIR spectroscopy showed that hens fed with the rye–wheat–corn diet showed the same structural
organization of bone constitutive phases, irrespective of xylanase supplementation.

Both the amount of mineralized bone and the collagen cross-linking contribute to the quality of
bone in laying hens [80], with bone loss being associated with significant changes in the organization
of the cortical (structural) bone collagenous matrix [69]. Bone mechanical strength in birds was found
to be correlated with the level of immature cross-links in the cortical bone [81]. Compared with other
long bones in the avian skeleton, the long bones of the pelvic limb are characterized by a significant
proportion of immature collagen, which reflects their physiological function as a calcium deposit [69].
However, as shown in PSR-stained sections (Figure 3), the cortical bone of hens supplemented with
xylanase in the current study showed a significant reduction in the area of green, immature cross-links
associated with newly synthesized collagen, indicating a higher bone turnover rate [69]. This shows
that xylanase supplementation to the rye-based diet affects the collagen formation process, thereby
leading to the formation of more a mature bone. In a healthy mature bone, an increase in collagen
cross-linking has been correlated with an improvement in bone strength and increased resistance to
fracture in laying hens [69]. This may also indicate that xylanase supplementation increased bone
strength irrespective of dietary rye inclusion, as has previously been observed for broiler chickens fed
with wheat–corn and rye–wheat–corn diets [66]. On the other hand, Silversides et al. [32] showed that
supplementation of xylanase (2000 U/kg) to a wheat–corn diet did not affect bone breaking strength in
laying hens at 64 weeks of age. Thus, bone strength should be further investigated in future studies.

In the medullary bone, a reduction in green-stained collagen cross-links was observed after xylanase
supplementation (Figure 3). The medullary bone has a very high rate of formation and resorption [3].
Adequate regulation of mineral resorption in the medullary bone is essential for calcification of the
eggshell [2]. Yet without detailed analysis of the medullary bone, we are unable to conclude as to
how this reduction in immature collagen influenced the eggshell formation process. However, while
the decrease of the egg-laying rate in rye–wheat–corn groups was observed (95.6% and 95.2% in
xylanase-deprived and xylanase-supplemented groups, respectively) when compared with wheat–corn
groups (97.2% in both groups), both rye content and xylanase addition had no effect on eggshell weight
and density of the eggs laid by our hens, as has previously been reported [43]. On the other hand, we
observed an increase in the presence of more organized, mature cross-links, suggesting a reduction
in the amount of labile carbonate and an increase in crystalline apatite crystals in the medullary
bone [70]. Since there is a correlation between mineral crystallinity, collagen maturity, and mineral
content [73], the increase in collagen maturity observed in both the cortical and medullary bones in
xylanase-supplemented groups is probably responsible for the observed increase in BMC in the hens
fed with wheat–corn diet after xylanase supplementation and the increase in BMD in the hens fed with
rye–wheat–corn diet, despite the observed reduction in bone cross-sectional planar area.

As shown by PSR staining, dietary treatment influenced collagen cross-links in the medullary
bone. The medullary bone is highly reactive and more metabolically active and thus has a much higher
turnover rate than the compact bone. Due to the high turnover rate, there are always areas of the
medullary bone that differ with regard to mineralization and hydroxyapatite crystals composition [50].
Our results show that future XRD and FTIR studies that are conducted separately for compact and
medullary bone tissues are needed. However, our study provides an important first step in the
characterization of the previously unknown relationship between diet type and structural organization
of bone constitutive phases in laying hens and can guide future investigations with regard to the
function of enzyme supplementation on bone quality in poultry. Nevertheless, in this study, XRD
and FTIR spectroscopy revealed their power in investigating structural changes in bone constitutive
phases in the bones of laying hens as a result of dietary treatments, showing that in combination with
histological examination, these techniques can provide important information concerning bone mineral
and organic matrix composition, crystallinity, and collagen maturity.
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5. Conclusions

To the best of our knowledge, this is the first study that shows that the structural organization of
the bone can be affected by dietary factors in laying hens. We found that xylanase supplementation
to both grain diets resulted in improved bone structure. The nature of the response to xylanase is
dependent on the type of grain, but regardless of diet type, the response is positive. As an effective food
additive, xylanase can probably promote the absorption of minerals to enhance calcium homeostasis,
which enhances bone quality. Finally, our study shows that modern rye verities can be introduced
to the diet of laying hens; however, xylanase enzyme supplementation is recommended. However,
to fully assess the effect of rye inclusion on calcium homeostasis in laying hens, further studies focusing
on a detailed analysis of bone geometry, mineral composition, mechanical endurance, and eggshell
quality need to be carried out.
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Tomczyk-Warunek, A. Dried fermented post-extraction rapeseed meal given to sows as an alternative protein
source for soybean meal during pregnancy improves bone development of their offspring. Livest. Sci. 2019,
224, 60–68. [CrossRef]

57. Wang, S.; Zhang, P.; Kong, X.; Xie, S.; Li, Q.; Li, Z.; Zhou, Z. Delicate changes of bioapatite mineral in pig
femur with addition of dietary xylooligosaccharide: Evidences from Raman spectroscopy and ICP. Anim. Sci.
J. 2017, 88, 1820–1826. [CrossRef]

58. Rudyk, H.; Tomaszewska, E.; Kotsyumbas, I.; Muszyński, S.; Tomczyk-Warunek, A.; Szymańczyk, S.;
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Grela, E.R. Long-bone properties and development are affected by caponisation and breed in Polish fowls.
Br. Poult. Sci. 2017, 58, 312–318. [CrossRef]

64. Téllez, G.; Latorre, J.D.; Kuttappan, V.A.; Kogut, M.H.; Ewolfenden, A.; Ehernandez-Velasco, X.; Hargis, B.M.;
Bottje, W.G.; Bielke, L.R.; Faulkner, O.B. Utilization of rye as energy source affects bacterial translocation,
intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens. Front. Genet. 2014,
5, 339. [CrossRef]

65. Téllez, G.; Latorre, J.D.; Kuttappan, V.A.; Hargis, B.M.; Hernandez-Velasco, X. Rye Affects Bacterial Translocation,
Intestinal Viscosity, Microbiota Composition and Bone Mineralization in Turkey Poults. PLoS ONE 2015,
10, e0122390. [CrossRef]

66. Muszyński, S.; Świątkiewicz, S.; Arczewska-Włosek, A.; Dobrowolski, P.; Piedra, J.L.V.; Arciszewski, M.B.;
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