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There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding
on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms
for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational
effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically
relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So
far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal
dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in
crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes
which relies on the S𝜏-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an
effective parallelization on the present heterogeneous HPC architectures.

1. Introduction

Systems biology provides a general framework for integrating
pharmacology and genetics through mathematical models
[1]. In this context, there is an increasing recognition that
stochastic processes regulate highly predictable patterns of
gene expression in developing organisms, but the implica-
tions of stochastic gene expression for understanding phe-
nomena such as genomicsmutations and copy number varia-
tions remain largely unexplored [2].Therefore computational
tools that consider biological noise are suitable for pharma-
cogenomics research, towards personalized medicine [3].

In particular, gene expression is an inherently stochastic
process: genes are activated and inactivated by random
association and dissociation events, transcription is typically
rare, and many proteins are present in low numbers per cell.
If large numbers of identical events occurred in the same cell
and they were statistically independent, relative fluctuations
could be ignored and deterministic rate equations would

suffice to describe dynamics. But in several processes num-
bers are not large and events are not independent. Active
genes are often present in a single copy, mRNAs can be rare,
and most proteins are present in less than 100 molecules per
bacterial cell. Substrates, enzymes, and regulatory molecules
can also fluctuate and further randomize expression rates [4].

Moreover, the integration of synthetic and cell-free biol-
ogy has made tremendous strides towards creating artificial
cellular nanosystems using concepts from solution-based
chemistry, where only the concentrations of reacting species
modulate gene expression rates. However, it is known that
macromolecular crowding, a key feature in natural cells,
can dramatically influence biochemical kinetics via volume
exclusion effects, which reduce diffusion rates and enhance
binding rates of macromolecules. The macromolecular
crowding can increase the robustness of gene expression by
integrating synthetic cellular components of biological
circuits and artificial cellular nanosystems. Furthermore,
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a negative feedback loop and the size of the crowding
molecules can fine-tune gene circuit response to molecular
crowding [5].

The simplified representation of intracellular reactions
with homogeneous approaches may be inadequate when the
observed properties of the real system are also the conse-
quence of macromolecular crowding. Molecular crowding
is a natural state of cells in which their intracellular envi-
ronments are densely packed with macromolecule [6, 7].
This crowding is absent in the solution-based chemistry
approaches that are typically used in synthetic genetic sys-
tems. Molecular crowding can cause volume exclusion effects
that reduce diffusion rates and enhance the binding rates
of macromolecules [8], leading to a fundamental impact on
cellular properties such as the optimum number of transcrip-
tion factors [9], the dynamical order of metabolic pathways
[10], and nuclear architecture [11]. In such situations, a more
accurate representation is achievable by using modelling
approaches based on reaction-diffusion (RD) systems taking
into account the geometry of the space and the effect of
crowding elements.

Noise of biological systems and macromolecular crowd-
ing can be faced using stochastic reaction-diffusion models
with crowding objects that influence reactive and diffusive
events. A system of this type can be simulated using the
S𝜏-DPP algorithm [12]. Due to the necessity of simulating
the system a large number of times to obtain a satisfac-
tory statistical description of its dynamics and consider-
ing that each single simulation of the algorithm is still
time-consuming; in this work we present two paralleliza-
tions of the spatial TAU-leaping in crowded compartments
(STAUCC) simulator (a C implementation of the S𝜏-DPP
algorithm [12]), one for distributed memory systems, such
as clusters for high performance computing (HPC), and
the other for devices based on the CUDA architecture
(http://www.nvidia.com/object/cuda home new.html).

This work represents an extension of [13, 14], where we
presented a brief description and the preliminary results of,
respectively, the parallelization based on the message passing
interface (MPI) standard (http://www.mpi-forum.org/) and
the CUDA-based implementation of STAUCC. In particular,
here we describe in detail the two implementations, which
have been improved in the view of the matured experience,
with an in-depth comparison of their performance on a real-
world test case.

The paper is organized as follows. In Section 2 we present
related works. In Section 3 we resume the cardinal points
of the S𝜏-DPP algorithm used in STAUCC, whose MPI
and CUDA implementations are described, respectively, in
Sections 4 and 5. In Section 6 the gene regulatory network
to which we applied the STAUCC simulator is presented; in
Section 7 the experimental results are discussed, followed by
the conclusions and future work drowned in Section 8.

2. Related Works

Two broad classes of methods for stochastic RD exist:
particle-based and voxel-based methods. Particle-based

methods compute the Brownian motion of individual parti-
cles (e.g., MCell [15], Smoldyn [16], and GridCel [17]), while
voxel-based methods calculate changes in the number of
molecules occurring in small well-stirred compartments in
which the space modelled is partitioned (e.g., STEPS [18],
MesoRD [19], and NeuroRD [20]).

Particle-based modelling is very computationally inten-
sive, because it means to solve the equation of motion for
each molecule of the system, which is appropriate only to
compute the behaviour of few molecules at best [21]. On the
other hand, voxel-based approaches do notmodel themotion
of each single protein but have enough accuracy to capture
how spatial gradients influence system dynamics.

So far, different parallelization approaches have been
deployed to reduce the computational time required for
the simulation of biochemical systems modelled using a
voxel-based approach and simulated employing stochastic
algorithms. Most of the proposed solutions are based on the
use of an embarrassingly parallel approach to run several
instances of simulation of the model at a time, maintaining
the simulation algorithm sequential. A typical example is
given by the exploitation of distributed platforms, such as
with Grid computing [22] and multicore CPUs [23].

An efficient parallelization of the algorithm itself, which
improves the execution time of each specific simulation,
can exploit more effectively the available computational
resources, allowing to reach a higher computational effi-
ciency. An MPI implementation of STAUCC which paral-
lelizes the S𝜏-DPP algorithm [12] was presented in [13].

As regards the use of accelerators, in the literature some
works considered the use of graphics processing units (GPUs)
[24] and also field-programmable gate arrays (FPGAs) [25].
We presented a GPU based implementation of STAUCC
in [14] that in particular differs from [24] because (1) we
consider the volume of the molecules, which results in more
synchronization operations for checking, at each time step,
the free space left in the membranes, and (2) because the
Fermi architecture we exploited presents different capabilities
with respect to those exploited for the optimization strategies
they proposed.

3. The Spatial TAU-Leaping in Crowded
Compartments (STAUCC) Simulator

The spatial TAU-leaping in crowded compartments
(STAUCC) simulator implements the S𝜏-DPP algorithm [12],
whose pseudocode is presented in Algorithm 1. STAUCC
exploits a 𝜏-leaping method to stochastically simulate the
evolution of biochemical systems, which can be defined as
a set of chemical reactions (i.e., rules), and supports the
modelling of spatial effects due to molecular crowding.

A system is defined as a set of compartments containing
a multiset of objects or molecular species. Compartments
can contain other compartments, in order to describe nested
configurations of the biological system (e.g., nucleus inside
cytoplasm). At a given time instant 𝑡, each object is associated
with only one compartment. The state of the system at time
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(1) load the description of the 𝑆𝜏-DPP system;
(2) for each membrane 𝑖 ∈ [1, . . . , 𝑛] calculate 𝐹

𝑖
(𝑡
0
);

(3) for each membrane 𝑖 ∈ [1, . . . , 𝑛]
(a) ∀ rule 𝑟

𝑘
, (𝑘 ∈ {1, . . . , 𝑙}): compute 𝑎

𝑘
;

(b) evaluate the sum of all the propensity functions 𝑎
0
in the compartment;

(c) IF 𝑎
0
̸= 0: 𝜏
𝑖
= ∞;

ELSE generate the step size 𝜏
𝑖
according to the internal state, and select the way to proceed in the current

iteration (i.e. 𝜏 leaping evolution with or without critical reactions);
(4) select 𝜏min = 𝜏𝑖 = min {𝜏

𝑖
, . . . 𝜏
𝑛
};

(5) for each membrane 𝑖 ∈ [1, . . . , 𝑛]
(a) IF 𝜏

𝑖
= ∞ goto (6);

(b) switch the evolution strategy type:
(I) case “𝜏 leaping with one critical reaction”:

if (𝜏
𝑖
> 𝜏
𝑖
): goto (d) else: goto (c);

(II) else goto (d);

(c) extract the critical and the non-critical rules that will be applied in the current iteration;
(d) IF the execution of the selected rules in all the compartments leads to an unfeasible state 𝜏min = 𝜏𝑖/2;

(6) IF a new value of 𝜏min was computed: 𝜏
𝑖
= 𝜏min and goto (4);

(7) for each membrane 𝑖 ∈ [1, . . . , 𝑛]
(a) update the internal state by applying the internal rules
(b) update the state of other membranes by applying the communication rules;

(8) for each membrane 𝑖 ∈ [1, . . . , 𝑛] update the value of the free space 𝐹𝑖;
(9) IF the termination criteria is satisfied, namely (i) the current time exceeds the end time OR (ii) there is not enough

free space in any membrane: finish;
ELSE: goto (3).

Algorithm 1: The pseudocode of the 𝑆𝜏-DPP algorithm.

𝑡 is given by the number of molecules of each species inside
each compartment.

For each compartment there is a set of rules describing
both the biochemical reactions and the molecular diffusion
gradients. A reaction rule substitutes the molecules specified
in its left-hand side (reactants) with the molecules specified
in its right-hand side (products). A diffusion rule moves
reactants from the current compartment to the compartment
specified in the right-hand side.

In case a reactant that is involved in more than one
rule is present in little amount, the occurrence of a rule
before the other(s) may prevent the other(s) rule(s) from
happening and vice versa. In such cases, the system can
evolve following different dynamics according to the order
in which rules occur. The reactions that involve potential
limiting reactant(s) are defined as “critical reactions”: these
rulesmust be executed sequentially in order to avoid negative
species population.

Each rule is associated with a propensity function
(stochastic reaction rate), defined as 𝑎 = 𝑐 ⋅ ℎ, where 𝑐
is the stochastic constant associated with the rule and ℎ is
the number of possible combinations of reactants appearing
in the left-hand side of the rule [26]. However, the novelty
of the S𝜏-DPP algorithm is that it takes into account also
the size of compartments and molecules involved in the
system, in order to describe the effect of crowding on the
rate of cellular processes (for more details see [12]). This
is the reason why propensity functions of reactions are
computed by also considering the amount of free space in
the current compartment. The free space of a compartment
𝑖 at time 𝑡 is defined as 𝑉

𝑓,𝑖
(𝑡) = 𝑉

𝑖
− 𝑉
𝑖,𝑜
(𝑡), where 𝑉

𝑖
is

the compartment size and 𝑉
𝑖,𝑜
(𝑡) is the space occupied by

molecules and compartments existing inside compartment 𝑖
at time 𝑡. Propensity functions of reactions of order greater
than one (e.g., A + B → R) are functions of the free space:
𝑎 = 𝑐 ⋅ ℎ ⋅ 𝑉

(−1)

𝑓,𝑖
. Thus, the lower the free space, the higher

the probability of reactive collision. Conversely, propensity
functions of reactions of order less than two (e.g., A → R)
and diffusive events are not function of the free space of
the current compartment. However, diffusive events toward
compartments with not enough free space are prohibited.

At each iteration, a time increment 𝜏 is computed inde-
pendently inside each compartment (line 3 of the pseu-
docode), on the basis of its current state. Then, the smallest
time increment is selected among those computed (line 4:
in a parallel implementation, this must be done after a first
synchronization of the computation in all compartments)
and shared by all compartments as the global time increment
on which to synchronize their evolutions. This time incre-
ment indeed is used to evaluate the evolution of the entire
system, as specified by the standard 𝜏-leaping algorithm [27],
which requires the generation of a Poisson random variable
to characterize the stochastic behaviour of the model.

First of all, this time increment determines the way
to proceed in the current iteration: SSA-like evolution, 𝜏-
leaping evolutionwith noncritical reactions only, or 𝜏-leaping
evolution with noncritical reactions and one critical reaction.
Then, the same time increment is used, together with the
computed propensity functions, to sample the number of
reactions to be executed in each compartment, according to
the chosen modality (line 5).
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A second synchronization point among the compart-
ments is now necessary for a consistent application of
the extracted rules, which implies to consider a new time
increment 𝜏 (line 6) or the exchange of molecules among the
compartments (line 7(b)).

Finally, before stepping over the next iteration of the
simulation, to ensure that the system has not ended up in
an unfeasible state (i.e., in at least one compartment there
are more molecules than the maximum number containable
in it), the free space left inside each membrane is checked,
and until it results negative in at least one membrane (third
synchronization point), the time step is repeatedly reduced
by half and another set of rules is extracted and applied to the
system (line 9).

4. The MPI Parallel Implementations of
the STAUCC Simulator

STAUCC presents three possible levels of parallelization.
The simplest one is related to the stochastic nature of the
simulation; that is, many independent instances of STAUCC,
from several dozens up to several thousands, can be executed
in an embarrassingly parallel way, using different cores/nodes
of a local HPC system, or distributed infrastructure, such as
the Grid, in order to achieve a statistically accurate result.

The second one is related to the execution of each single
simulation, which can exploit several parallel processes by
assigning each of them to one or more membranes. In this
case the steps 2, 3, 5, 7(a), and 8 of the algorithm are
executed in parallel, with steps 4, 6, 7(b), and 9 representing
communications-synchronization points, to be performed in
a collaborative way among the parallel processes.

The third parallelization paradigm is related to the eval-
uation in parallel of the propensity function, represented by
step 3(a) which, for example, can be performed by one thread
for each rule.

Considering that many biological systems can be mod-
elled using a relatively low number of reactions (e.g., in the
order of tens for central metabolism and cell cycle regulation)
and considering that in each time increment 𝜏 just few of
them are fired together, it is a reasonable choice to focus
the parallelization on the first two levels described above.
This choice is also supported by the consideration that the
number of compartments in which the space is discretized
is usually much greater than the number of rules of the
biochemical system; that is to say, a space-based paradigm
of parallelization can provide more flexibility and scalability
than a rule-based approach. Therefore, we focused on the
first two levels of parallelization and we implemented it
using MPI; that with respect to OpenMP allows exploiting
of multiple nodes of a cluster.

5. The CUDA Implementation of STAUCC

Also the CUDA implementation of STAUCC exploits the
same two-level parallelism, which means that it is possible
to launch concurrently several simulations of the model on
a GPU using different blocks, while, in each simulation,

the temporal evolution of the state of all compartments is also
computed in parallel by threads in a block. Indeed, as already
said, in the STAUCC algorithm the space is partitioned in
smaller regions or compartments, and most of the steps of
the algorithm can be performed by parallel threads.

We developed a single CUDA kernel in which the thread
blocks carry out independent simulations of themodel, given
an initial condition of the system and a seed for the generation
of the chain of random numbers used by the algorithm
throughout the computation of the system’s dynamics. Inside
each block, the workload is balanced among the threads
assigning to each of them the computation of the evolution
of the most possible equal number of compartments. In this
way, for any given number of compartments in the system, we
are free to choose the number of threads per block which best
fits the GPU architecture and then launch number of blocks
according to the number of simulations we want to perform,
the number of streammultiprocessors (SMs) provided by the
GPU device, and the amount of its memory.

Inside the thread block, at each iteration of the algorithm
(or time frame), three communication/synchronization
points are required (see the previous section) as in the MPI-
based parallelization. The synchronization operation on
the present CUDA architectures is possible only among the
threads of a block, therefore the structure of the algorithm
must take this aspect into account.

A fundamental problem in developing parallel applica-
tions is thememorymanagement. In a first version, we placed
in the device shared memory those variables which must
be visible to all threads, either because involved in reduce
operations (e.g., the computed time increment 𝜏 and the free
space for each compartment) or because they are changed
by the threads of other compartments (e.g., the number of
molecules), and in the device constant memory the fixed
parameters of the system (e.g., the stochastic constants, the
sizes of molecules and compartments, the left-hand and
right-hand side of rules, etc.).

However, we then decided to place all the variables in the
device global memory because of at least two reasons. The
first one is the principal reason and it is because ourmain goal
is to provide a simulator which can deal with a large number
of membranes, as for real-world simulations. Keeping in the
shared or constant memory even a single location (integer or
floating point, 4 bytes anyway) per membrane (i.e., an array
of sizes equal to the number of membranes) imposes too
strict limits to the size of the systems which is possible to
simulate. For example, if the shared memory is 48Kbytes
(the maximum amount for each stream multiprocessor of
an Nvidia GPUs available nowadays on the market) and we
want to run concurrently 16 simulation instances (i.e., we
launch a grid of 16 blocks), then the maximum number of
membranes each block can process would be 48Kbytes/(16 ×
4) = 768 bytes, rather small for our purposes. The sec-
ond reason is related to the improvements in the CUDA
architecture and programming model. In [24] the smart
use of shared and constant memories was of fundamental
importance because the main memory of a graphic card
based on the Tesla architecture is not cached, while this
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feature is present on the more recent Fermi and Kepler
architectures. Moreover the smart and transparent memory
management is a key topic for the development of the
CUDA programming model, as demonstrated by the Unified
Memory (http://devblogs.nvidia.com/parallelforall/unified-
memory-in-cuda-6/) feature introduced CUDA 6.0. There-
fore sophisticated strategies for the use of registers and the
various kinds of memories have to be properly evaluated on
the basis of the actual application behaviour, because they
may have little importance in a short time.

In a second version of the implementation, to paral-
lelize the memory allocation/deallocation phases also, we
allocated/released dynamically the arrays in the device heap
memory, doing a per-block allocation/deallocation for the
arrays that before were put in the shared memory (i.e.,
the arrays common to all threads in a block) and a per-
thread allocation/deallocation for the others. However, in
this way the threads access very sparse memory locations,
thus causing a very bad use of the L1 cache, and this fact
globally worsens the execution time, despite the speedup of
the allocation/deallocation phases.

The best solution achieved for the memory management
of this application therefore is to allocate through a unique
host-side CUDA API call such as cudaMalloc all the one-
dimensional arrays used by all threads in all blocks, and
inside the computational kernel we declared pointers to the
memory regions reserved to the thread blocks to reduce
address arithmetics. The arrangement of the variables in
memory at this point must be such that the threads access
memory locationswith asmuchunitary stride as possible. For
example, if we need to store for each membrane the amount
of molecules for each species inside it and we have to deal
with M membranes, S species per membrane, and T threads
per block (supposing for simplicity that M is a multiple of
T), a good solution is to partition the global one-dimensional
array allocated (which will be of size M × S) into S subarrays
of M elements each and to further divide the subarrays into
groups of T adjacent elements. In this way we can access
the variables in a fully coalesced way with an external loop
over the S species and an internal loop over the membranes
associated with each thread (M/T): at each iteration, the T
threads in the block will access a contiguous group of T cells
in memory. We minimize the calls to device functions inside
the kernel limiting themonly to those quite long parts of code
repeatedly executed, to avoid further overheads.

Regarding the stochasticity of the algorithm, we used the
device APIs of the CURAND library (https://developer.nvid-
ia.com/curand) provided within the CUDA Toolkit (produc-
tion release 5.5). In particular, we used the pseudorandom
number generator based on the XORWOW algorithm. As
suggested in the library guide, for the highest quality parallel
pseudorandom number generation, each experiment (in our
case, each block) has been assigned a unique seed, and
within an experiment each membrane has been assigned a
unique sequence number (i.e., a random state). Thus during
the simulation each thread extracts the chain of random
numbers from the random state of the membrane of which
it is computing the evolution.

Having enclosed in a kernel the computation of the
dynamic evolution of the system, we avoid any communica-
tion between host and device during the simulation. Yet it is
true that, having quite all the variables of the system stored
in the global memory, it could be possible to access them if
necessary from the host with little effort. In fact we should
simply return the kernel, keeping track of the current time
frame, and then launch another kernel starting from the step
where we stopped, but this would considerably slow down
the computation time. Thus, the state of the system (the time
frame plus the number of molecules in each compartment) is
copied every𝑁 iterations in a preallocated buffer in the device
globalmemory that is read back from the host after the kernel
returns.

6. Simulating a Gene Regulatory
Network with STAUCC

It is well known in biology that gene expression can be
regulated by a different number of factors, which inhibit or
promote gene expression under different conditions [28, 29].
Regulatory factors occur in low copy number and, in fact,
noise plays a relevant role in gene expression [30]. A pivotal
element in the interactions between regulatory factors and
DNA is given by the diffusion of regulatory factors within
the cell nucleus [31], which is an environment crowded by
chromatin. Taken together, these considerations underline
the need for a stochastic RD approach to model gene
expression, possibly considering also the crowding effects
created by the presence of the DNA in the nucleus.

In order to provide a realistic use case for the STAUCC
we have defined a model of a gene regulatory system with
explicit consideration of space and crowding. The nucleus
is represented as a two-dimensional grid composed of a
finite number of squared compartments of the same size, as
shown in Figure 1. Six types of objects are considered: four
regulatory factors, F

1
, F
2
, F
3
, and F

4
, and two genes, G

1
and

G
2
. While genes are modelled as static objects, regulatory

factors diffuse freely. The compartments in which the genes
are placed, as well as the adjacent compartments, have lower
free space, in order to represent the crowding due to the
presence of DNA and DNA-interacting proteins. Factors that
reach these compartments can bind genes in order to activate
or inhibit their expression (see, e.g., the evolution shown in
Figure 2). Therefore each of the two genes can be in one
of the following three states: free, a state in which a factor
can bind the gene; active, in case an activation factor binds
the gene; inhibited, in case an inhibition factor binds the
gene. A total of sixteen reaction rules have been defined in
order to describe the possible interactions between genes
and regulatory factors, as listed in Table 1. In our model,
the stochastic constants represent (i) gene regulatory factor
association/dissociation constants and (ii) regulatory factors
diffusion coefficients. Diffusion coefficients have been set
higher (i.e., faster) than association/dissociation constants
of two orders of magnitude. The fact that the time scale
of diffusion processes is much lower than the time scale of
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Figure 1: Schematic representation of the space domain. The 2D
grid of compartments represents a section of the nucleus in which
two genes, G

1
andG

2
(black rectangles), are located. Four regulatory

factors (represented with different colour circles) can diffuse within
this environment. Compartments filled in yellow have a lower
free space, which model the macromolecular crowding due to
chromatin. The representation is not in scale with actual sizes used
in simulations.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50 60

Time

Fr
eq
ue
nc
y

Free
Activated
Inhibited

Figure 2: Evolution of G
1
state probability starting from an initial

condition in which an activator is placed closer to the gene
with respect to an inhibitor. The vertical axis represents the G

1

frequencies that have been found for each state in relation to the
simulation time (horizontal axis).

reaction processes is crucial for maintaining valid the well-
stirred assumptionwithin each compartment [12].Themodel
has been simulated considering an increasing number of
compartments, that is, 256, 1024, and 4096.

At the beginning of a simulation all the objects represent-
ing a regulatory factor Fi are placed at corners of the lattice,
while the two genes are placed in two inner compartments
(see again Figure 1). An example of systemdynamics is shown
in Figure 2.

Table 1: List of rules defining reaction anddiffusion processes. (𝑥, 𝑦)
are the compartment’s coordinates, 𝑛 ∈ {−1, 0, 1}, and 𝑧 ∈ {1, 2, 3, 4}.

Process Rule
Activation of G1 mediated by F1 G1 + F1 → G

1

+

Dissociation of F1 from G1 G
1

+
→ G1 + F1

Activation of G2 mediated by F1 G2 + F1 → G
2

+

Dissociation of F1 from G1 G
2

+
→ G2 + F2

Inhibition of G1 mediated by F2 G1 + F2 → G1
−

Dissociation of F2 from G1 G1
−
→ G1 + F2

Inhibition of G2 mediated by F2 G2 + F2 → G2
−

Dissociation of F2 from G2 G2
−
→ G2 + F2

Activation of G1 mediated by F3 G1 + F3 → G1
+

Dissociation of G1 from F3 G1
+
→ G1 + F3

Inhibition of G2 mediated by F3 G2 + F3 → G2
−

Dissociation of F3 from G2 G2
−
→ G2 + F3

Inhibition of G1 mediated by F4 G1 + F4 → G1
−

Dissociation of G1 from F4 G1
−
→ G1 + F4

Activation of G2 mediated by F4 G2 + F4 → G2
+

Dissociation of F4 from G2 G2
+
→ G2 + F4

Diffusion from (𝑥, 𝑦) to (𝑥 + 𝑛𝑥, 𝑦 + 𝑛𝑦) F
𝑧

𝑥,𝑦
→ F
𝑧

𝑥+𝑛𝑥,𝑦+𝑛𝑦

7. Performance Evaluation

Two are the resources adopted for the simulation. The first
one is a cluster composed of 18 nodes equipped with two
4-core Intel Xeon E5345 CPUs, 16GB of Ram, linked together
via an Infiniband QDR network.

The second one is a subset of three heterogeneous nodes
of a cluster equippedwith two 6-core Intel Xeon E5645 CPUs,
32GB of RAM, and one different CUDA device: a GTX 580,
a K20, and a GTX-Titan. We exploited in both cases also
the Intel Cluster Studio XE 2013 suite, in particular the C
compiler and the MPI library implementation.

The execution times of all the three STAUCC implemen-
tations (sequential, MPI, and CUDA) are proportional to
the number of iterations, that is, the number of times the
steps 3–9 are performed until the termination criteria are
satisfied.This depends on both the initial conditions (i.e., the
initial state and parameter values) and the chain of generated
stochastic numbers. In general, a higher number of iterations
are required whenever the system dynamics are fast, that is,
when many reactions occur and the system state (number of
molecules) is significantly modified: in this scenario in fact
small 𝜏 values will be required to satisfy the leap condition
and any iteration will represent a short interval of time.

It is worth noting that, due to the use of randomly
generated numbers, two runs with the same initial conditions
are likely to have a different evolution and thus a different
number of iterations. For example, the execution time of
the sequential implementation of STAUCC for the 256-
compartment system can vary between 43.73 seconds for
6,244 iterations (wall clock time) and 2,214.23 seconds for
427,156 iterations. This large variation is the consequence of
the specific sequence of states the system will assume during
the simulation on the basis of the assigned random value. In
fact, states associated with large propensity function values
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Table 2: Evaluation of the TimePerStep execution times: in milliseconds for the sequential version and speedup values using up to 4 nodes
of the first cluster with Infiniband connection.

Number of compartments Number of cores
1 2 4 8 16 24 32

256 2.9ms. 1.86 2.80 3.50 3.20 2.08 2.12
1024 14.6ms. 1.81 3.90 5.30 6.47 7.03 7.54
4096 63.2ms. 1.87 3.70 6.10 10.40 15.70 19.80

and with reactions that determine significant variations of
propensity function values will require shorter time incre-
ments and, therefore, a larger number of iterations.

The time for data acquisition depends on the size of the
system description that is lower than 1MB and therefore
negligible, while the output time depends on a user-defined
parameter that specifies the sampling frequency of the system
status. By sampling every 100 iterations, in the slowest case,
the result corresponds to more than 100MB of output data,
while the production of only the final state of the system
results always in a size of a few MB.

These differences in output size and therefore in the
time that is required for building the output can be a
problem in the analysis of the scalability of the system.
Therefore in the following we analyse the performance of
the three implementations by comparing the average time for
executing a single iteration (hereafter called TimePerStep).

7.1. The MPI Implementation of STAUCC. Each node of the
first cluster has 8 cores, and therefore we considered six
execution patterns: 2, 4, and 8 parallel processes running on a
single node, to test the scalability within a single node, and 16,
24, and 32 parallel processes spread among 2, 3, and 4 nodes,
to test the impact of the communication overheads. Results
are shown in Table 2.

We can see how the variation of the number of compart-
ments used to model the nucleus space affects the scalability
of the algorithm. With 256 regions the use of all the 8 cores
of a node is the most effective parallelism degree: in fact
if we execute two instances of STAUCC on two nodes, we
achieve, globally, a speedup of 3.5 × 2 with respect to 3.2, that
is, executing a single simulation with 16 cores. The usage of
two nodes is suitable only with at least 4096 compartments,
while the maximum parallelism degree is achieved for the
largest simulation, that results in a speedup of about 20 using
4 nodes, very close to the speedup of about 24 (i.e., 6.10 ×
4, the speedup achieved by using all the 8 cores of a node)
achievable by executing a single instance per node.

These performance values are due to the fact that increas-
ing the number of processes and exploiting more than one
node has the consequence that the communication times
overcome the computation times, and this is also with a fast
interconnection as Infiniband. As said before, each iteration
requires 3 communication operations among all the parallel
processes, and this limits the achievable performance. In
particular the smallest time increment and the correctness
check were implemented using the MPI Allgather function,
while the transfer of molecular species is performed by an
MPI Reduction followed by an MPI Scatterv function call.

This has the advantage of reducing the data transfer of the
data with respect to the use of a single MPI Allgather: in the
largest case in fact the system state has a size of 1MB.

By analysing the trace data of the cases 8 and 16 for
4096, we can see that using two nodes the time for the
communication operations is about 4 times more than the
time needed to perform the computation. On the contrary
if all the processes are on one node, the ratio is about 2
times. It is worth noting that this last result is achievable only
if an optimized implementation of the MPI library is used,
as with the Intel one. General purpose implementations as
MPICH2 1.2.5 in fact provide lower performance and it is
better to implement the same parallelization strategy with the
OpenMP paradigm.

Two considerations hold true. At first it is worth noting
that the average execution time for a single 4096-membrane
simulation is of about 6 hours in the sequential version, while
with our parallel implementationwe are able to get the results
in 18 minutes using four nodes. This means that the parallel
implementation using clusters of ×86 multicore processors
is effective but the parallelism degree has to be properly
tuned considering the size of the system to simulate. The
second one is that, due to the stochastic nature the analysis
STAUCC provides, the goal can be to obtain the results of
many different simulations in the shortest possible times. In
this case themost effective solution is to exploit a hybridMPI-
OpenMPmodel where the MPI processes are responsible for
orchestrating different stochastic simulations, that is, for the
subdivision of the generated random numbers among them,
while each simulation is performedwithin a single node using
all the cores with parallel threads provided by the OpenMP
paradigm.

7.2. The CUDA Implementation of STAUCC. The STAUCC
parallel simulator presented in this paper has been tested on
three different Nvidia devices. The GeForce GTX 580 device,
based on the CUDA Fermi architecture, was selected because
it is equivalent in terms of the price for their acquisition
to the Intel Xeon E5645 CPU equipping the nodes of the
second cluster, while the K20 and GTX-Titan, based on the
CUDAKepler architecture, are, after the recent K40, themost
powerful CUDA-based devices produced by Nvidia in 2014.

We simulated the system by distributing the workload
among a block of 32 threads for the GTX-580 device (i.e., one
warp per block), with 128 for the other two devices, because
this resulted in the more effective configuration. With these
problem sizes in fact it is difficult to exploit all the 192 cores
and each thread computes in any case the evolution of many
compartments.
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Table 3: Evaluation of the execution times considering the node of the second cluster equipped with the Intel Xeon E5645 CPU and the
GTX-580 device. Speedup values are computed considering the TimePerStep values.

Number of compartments Blocks thread TransferTime (ms) TimePerStep (ms) Speedup

256

Seq. 81.2 2.1 —
1-32 163.7 6.5 0.3
32-32 170.8 0.4 5.8
64-32 159.8 0.2 12.4
128-32 186.7 0.1 22.6
256-32 162.7 0.1 24.5

1024

Seq. 82.5 7.6 —
1-32 193.5 22.1 0.3
32-32 179.1 1.4 5.5
64-32 188.6 0.6 12.0
128-32 182.2 0.4 20.4

4096

Seq. 88.9 29.9 —
1-32 175.6 80.4 0.4
32-32 177.0 4.9 6.1
64-32 205.0 2.4 12.3

Table 4: Evaluation of the execution times considering the three different CUDA devices available on the second cluster nodes for the 4096-
compartment system. The number of blocks we consider is multiple of the number of SMs available on these devices. Speedup values are
computed considering the TimePerStep values.

Device Blocks threads TransferTime (ms) TimePerStep (ms) Speedup
CPU — 88.9 29.9 —

GTX-580 32-32 177.0 4.9 6.1
64-32 205.0 2.4 12.3

K20

13-128 198.6 2.9 10.2
26-128 182.7 1.5 20.5
52-128 189.9 0.8 37.8
78-128 208.6 0.9 32.8

GTX-Titan

14-128 137.4 2.2 13.5
28-128 136.1 1.1 27.6
56-128 139.2 0.5 57.4
84-128 146.5 0.6 48.1

For each system size, we launched concurrently on the
GPU an increasing number of stochastic simulations; that
is, we launched the simulation kernel with an increasing
number of blocks (as explained before, the evolution of a
simulation instance is computed entirely by a single block
of threads independently from the others). As larger systems
occupy more space in the global memory of the device
and we avoid any communication between host and device
during the simulation (which is performed running a single
kernel as explained), the maximum number of simulation
instances that is possible to launch decreases as the number
of compartments increases. For this reason, the kernel can
compute a maximum of 256 simulation instances for the
smallest system on the small GTX-580 device and between 64
and 84 for the largest onewhen considering the three different
devices.

As a consequence, the speedup of the STAUCC simulator
is computed considering the average time for an iteration
of the model simulation (TimePerStep) and dividing this

quantity in the sequential simulation by the same quantity
in the parallel simulation: in this case, the total number of
iterations performed is the sum, over the total number of
simulations launched, of the number of iterations computed
in each instance of simulation.

Results are shown in Table 3 for the simulation of
the three systems on the GTX-580 and in Table 4 for a
comparison of the results on the 4096 system among the
three devices. The first consideration is about the memory
allocation/deallocation times. They maintain quite constant
values when varying the system size in the considered range
both in the sequential and in the GPU implementations; for
which reason we do not consider them when calculating the
speedups (it is sufficient to keep in mind that the overall
time necessary for the memory management on the GPU is
about 2 times slower than on the CPU). It is important to
note that these times for the GPU codes include also the data
movement from/to the device; therefore we defined them as
TransferTime in Tables 3 and 4.
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The TimePerStep of course increases with the size of
the system, in both the sequential and parallel imple-
mentations. However, it becomes smaller when launching
more simulation instances in the parallel implementation
because the total execution time increases less than the
number of iterations computed.This means that the device is
increasingly exploited more efficiently when launching more
thread blocks which hide the latencies caused by sequential
dependence and memory stores and loads. This is clear
considering the cases 64-32, 52-128, and 56-128 of Table 4.
GTX-580 is equippedwith 16 SMs composed of 32 cores each,
K20 is equipped with 13 SMs composed of 192 cores each, and
GTX-Titan is equipped with 14 SMs with the same number of
cores as K20.We can see that the ratio between GTX-580 and
K20 is about 3, while with GTX-Titan is about 4.6. Besides
other aspects as the GPU andMemory Clock rates, these two
devices allow using of 4 times the core of the GTX-580.

The implementation scales well when augmenting the
number of compartments: in Table 3 we can see that, for a
fixed number of simulation instances (i.e., the same number
of blocks as 64-32), increasing the system dimension does not
affect the speedup achievable.

Moreover, due to the discussed trend of the time per iter-
ation, the speedup increases with the number of simulation
instances launched.

The K20 and GTX-Titan devices are equipped with 6GB
of main memory with respect to the 1.5 GB provided by
GTX-580; therefore they would be able to execute in theory
about 100 concurrent simulations (i.e., the number of blocks).
However, this number is limited by the fact that using
more threads means using more device memory and, more
important, the use ofmore threads has an impact on the cache
miss rate.This is the reason why moving from 52 to 78 blocks
on the K20 and from 56 to 84 for GTX-Titan does not result
in an improved speedup.The number of blocks launched was
decided considering multiples of the number of SMs that are
13 for K20 and 14 for GTX-Titan. For this reason the best
achievable result is therefore the 57.4 achieved with the GTX-
Titan.

Two final considerations can be made. In a cluster
equipped with accelerators we can exploit them and also the
available cores by launching at a time both the implementa-
tions, paying attention to selecting different randomnumbers
among them. Then, the results seem to suggest that, for this
algorithm, it is better to spendmoney to buy less cluster nodes
but equipped with accelerators. This is true for systems that
fit in the memory of a GPU, that is, 6 GB for K20 and GTX-
Titan, and can be atmost 12 for the K40 device. Otherwise the
usage of accelerator is no more feasible.

8. Conclusions

In this paper we presented two parallelization approaches
of the STAUCC simulator, a tool for the efficient stochastic
simulation of RD processes in crowded environments based
on the S𝜏-DPP algorithm. To this end, we considered amodel
where gene activation is triggered by transcription factors
that diffuse in a crowded environment.

The execution of large experiments with STAUCC, as in
general for the RD-based stochastic systems, is very time-
consuming. For this reason we analysed how the charac-
teristics of the algorithm can be exploited to accelerate
the simulation of the system’s evolution using two different
parallelization approaches, that is, using message passing
techniques based on MPI and GPU computing based on the
CUDA architecture.

Themajor limit of the first parallelization approach is that
the exploitation of all the cores within a single node of a clus-
ter yields to good performance if the MPI implementation is
smart enough to exploit the shared memory to perform the
communications or a hybrid MPI-OpenMP implementation
is exploited, whereas the exploitation of multiple nodes is
suitable only for large systems and using at least an Infiniband
interconnection network.

The use of GPU-based accelerators instead provides very
high performance figures, but the amount ofmainmemory of
present devices (i.e., up to 12GB) limits the size of biological
models that can be simulated using them. In conclusion,
a proper exploitation of a heterogeneous HPC cluster has
to consider the combined use of the different nodes and a
parallel approach (CPU or GPU based depending on the
available compute capabilities) within each node.

Two are the future directions. The first one is that we
will experiment the use of the Xeon Phi accelerators, to
compare the performance with those achieved by the CUDA
devices. The second one is related to the stochasticity of the
experiments. So far we considered only the objective to min-
imize the time to solution. But the CUDA implementation of
STAUCC allows us to consider the use of less powerful but
more energy efficient devices as those based on GPU+ARM,
in order to evaluate also the objective to minimize the energy
to solution indicator.
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