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Mitochondrial DNA control region sequencing of the critically endangered
Hainan gibbon (Nomascus hainanus) reveals two female origins and extremely
low genetic diversity
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ABSTRACT
The Hainan gibbon (Nomascus hainanus) is endemic to China and is the world’s rarest ape. The remain-
ing wild population totals only 33 individuals. In the current study, we sequenced the Mitochondrial
DNA control region of 12 wild Hainan gibbons representing three social groups of the five remaining
groups. By conducting population genetic analyses, we found that the proportion of four nucleotides
(T, C, A and G) were 29.0%, 27.2%, 31.9% and 11.9%, respectively. Hypervariable segments of the
mtDNA D-loop region (1005bp in length), indicated five variable sites (a point mutation), with only
two haplotypes present among the 12 samples. We observed that the genetic diversity of Hainan gib-
bons is lower than that reported in any other wild primate population, and that the two haplotypes
detected, represent two ancestral lineages. These findings have important implications for proposing
effective conservation strategies to protect this Critically Endangered ape species.
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Introduction

The Hainan gibbon (Nomascus hainanus, Hylobatidae,
Primates) (Thomas 1892) is the world’s rarest ape, with a
remaining wild population of some 33 individuals. Although
once widespread across Hainan, China, the last remining
population is confined to a forested area of 16 km2 in the
Bawnagling National Nature Reserve. Recent estimates indi-
cate the existence of five remaining social groups (A, B, C, D,
E) (Unpublished data from 2020 monitoring results). Hainan
gibbons experienced a rapid population decline in the mid
20th century, as 99.9% of their habitat was lost due to the
conversion of tropical forests for purposes of industrial agri-
culture. In the 1970s, the Hainan gibbon population totaled
only 7–8 individuals (Liu et al. 1984; Zhou et al. 2005; Deng
et al. 2015). And, although the population has increased four-
fold over the past 40 years, this species continues to face an
impending extinction crisis.

Population genetics offer an important tool to better
understand and model the evolutionary history, population
dynamics, and patterns of gene flow of threatened species.
This information is essential in developing effective strategies
to manage and protect wild animal populations. For example,
studies have shown that over the past few centuries, orangu-
tans (Pongo pygmaeus) inhabiting northeastern Borneo have
experienced a genetic bottleneck associated with a

population decline of some 95%. This has occurred in
response to anthropogenically induced habitat fragmenta-
tion, deforestation, and hunting (Goossens et al. 2006).
Similarly, the Mexican howler monkey (Alouatta palliata mexi-
cana), an Endangered primate subspecies is currently distrib-
uted in only four forest fragments in the state of Veracruz,
Mexico. Genetic testing revealed that haplotype diversity and
nucleotide diversity (h¼ 0.486; p¼ 0.0007) are extremely low
compared with other Neotropical primates (Jacob et al.
2014). Finally, in northwestern Madagascar, populations of
the golden-brown mouse lemur (Microcebus ravelobensis)
have been severely reduced, resulting in a dramatic decrease
in genetic diversity (Guschanski et al. 2007). Although the set
of anthropogenic factors that promote wildlife population
decline and biodiversity loss are well understood (Estrada
et al. 2018; Estrada et al. 2019; Estrada et al. 2020), the spe-
cific effects of population decline on genetic diversity and
extinction risk in individual taxa require continued
investigation.

In the current study we examine levels of genetic diversity
in the mitochondrial DNA (mtDNA) control region of the
Critically Endangered Hainan gibbon. Previous research on
the genetics of this species have focused principally on their
phylogenetic position within the gibbon radiation (Su et al.
1995; Zhang 1995; Thinh et al. 2010a,b). To date, there has
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been only one study of the genetic diversity of the mito-
chondrial D-loop region of the Hainan gibbon (Li et al. 2010).
However, given that the genetic data used in that study
came from a single family group and focused on a short seg-
ment (202 bp) of the D-loop, it is unlikely to fully reflect the
range of genetic variability of this Critically
Endangered species.

Methods

Sampling collection

We studied Nomascus hainanus at the Bawangling National
Nature Reserve (19N 020～19N 080, 109 E 020～109 E 130),
Hainan, China. Hainan gibbons vocalize almost every morn-
ing, and we monitored these vocalizations to identify group
location (this was done for groups A, B, C, and D; we did not
monitor group E). The total population size of the four moni-
tored groups was 25 individuals.

Hainan gibbons are strictly arboreal and often travel in
the uppermost regions of the tree canopy. Therefore, collect-
ing noninvasive fresh fecal samples from all group members
requires months of intense field observations. From March
through August 2018, we spent five months following gib-
bon groups A, B, and C in order to obtain fresh fecal sam-
ples. Gibbon feces noticeably change color approximately
two hours after defecation. We used this color change to
only collect recently voided fecal samples (samples voided in
the previous two hours). To avoid resampling the same indi-
vidual, each fecal sample was scored for freshness (color),
size, and shape. In those instances in which two or more
fecal samples were located within a radius of 1.5m, only one
sample was collected. We used high temperature sterilized
tweezers and petri dishes to collect the fecal samples. The
samples were stored in liquid nitrogen, and then packed in
dry ice and transported to the laboratory for cryo-
genic storage.

DNA extraction and detection

The average weight of a Hainan gibbon fecal clump is
approximately 1000mg. After carefully examining the fecal
clump and judging it to be fresh, we extracted a 100–150mg

sample from its interior or center. We extracted DNA from
this 100–150mg sample using a QIAamp Fast DNA Stool Mini
Kit following the manufacturer’s instructions. We avoided
cross-contamination by using an ultra-clean workbench for
extracting fecal genomic DNA. The extracted total DNA was
subjected to 0.8% agarose gel electrophoresis, and contamin-
ation was monitored by including a negative extraction con-
trol (mock extraction submitted to PCR) per extraction.
GreenView nucleic acid dye staining, and the estimated con-
centration and purity (260/280, 260/230 value) were recorded
using a UV transilluminator. At the same time, we used a
Qubit3.0 fluorescence quantifier to determine the concentra-
tion of DNA. In order to detect whether the extracted DNA
concentration met the standard (�50 ng/uL), we combined
agarose gel electrophoresis, nucleic acid dye staining, and
included a fluorescence quantifier to make to increase the
reliability of the results.

Identification of polymorphic markers

Testing Potential Markers via amplification
We tested seven hypervariable segments of the
Mitochondrial D-loop region primer pairs previously
described as polymorphic (Table 1). Samples were amplified
for each primer pair via PCR in a reaction volume of �10 uL
containing 1 uL template DNA (�50 ng/uL), 0.5 uL (10 pmol/
uL) primer, 1 uL bovine serum albumin (New England
BioLabs), 2 ul ddH2O, and 5 uL PCR Mix. The thermal profile
for PCRs consisted of the following: denaturation and enzyme
activation at 94 �C (3min), 35 cycles of denaturation at 94 �C
(30 s), annealing at 46–55 �C (30 s), extension at 72 �C (60 s)
and final extension at 72 �C (10min). PCR products were sep-
arated on 3% agarose gels by electrophoresis to visually
assess the amplification efficiency, and set a negative PCR
control in order to ensure amplifications were executed for
Mitochondrial D-loop region of Hainan gibbon.

Determination and proofreading of the target sequences

One pair of primers with the highest amplification rate and
the longest fragment was selected from the initial 7 primer
pairs and used for final target sequencing. The PCR products
were sent for bidirectional sequencing to Kinco Biotech.

Table 1. Mitochondrial D-Loop region primer information.

Primer name Primer sequence (50-30) bp Reference

GDL-L1 (F) CGAAAACAAAATACTCAAATGAACCT 750 Kocher et al. (1989)
GDL-H2 (R) GGTGATCCATCGTGATGTCTTATT 750 Kocher et al. (1989)
GIBDLF3 (F) CTTCACCCTCAGCAC CCAAAG C 600 Cummins (2001)
GIBDLR4 (R) GGGTGATAGGCCTGTGATC 600 Cummins (2001)
L15997 (F) CACCATTAGCACCCAAAGCT 500 Andayani et al. (2001)
H16498 (R) CCTGAAGTAGGAACCAGATG 500 Andayani et al. (2001)
L16007 (F) CCCAAAGCTAAAATTCTAA 450 Whittaker et al. (2007)
H16431 (R) GTTGGTGATTTCACGGAGGA 450 Whittaker et al. (2007)
L16205 (F) AACACAACATGCTTACAAGC 1000 Chan et al. (2007)
H16431 (R) GTTGGTGATTTCACGGAGGA 1000 Chan et al. (2007)
L15926 (F) TCAAAGCTTACACCAGTCTTGTAAACC 200 Li et al. (2010)
H00651 (R) TAACTGCAGAAGGCTAGGACCAAACCT 200 Li et al. (2010)
L16007 (F) CCCAAAGCTAAAATTCTAA 1000 Kuebler et al. (2016)
H00651 (R) TAACTGCAGAAGGCTAGGACCAAACCT 1000 Kuebler et al. (2016)

F: Forward primer; R: Reverse primer
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Sequencing was performed on the ABI3730XL sequencer
using the BigDyeVR Terminator v3.1 Cycle Sequencing Kit. The
sequencing results were aligned in the GenBank sequence
database using Blast software, in order to confirm that the
amplification primer matched the target sequence. We used
Clustal X (1.83) (Jeanmougin et al. 1998) for sequen-
ces alignment.

Data analysis

We evaluated the genetic diversity of the Hainan gibbon
population by calculating Haplotype diversity (h) and
Nucleotide diversity (p) using DnaSP 5.10 (Rozas and Rozas
1999). We assessed base composition and site variation using
MEGA X (Kumar et al. 2001).

Results

DNA sample and identification of polymorphic markers

A total of 36 samples of Hainan gibbon feces were collected,
six from Group A, 11 from Group B, and 19 samples from
Group C (Supplementary Table S1). Excluding repeated sam-
ples (individual recognition results based on microsatellite
markers, Guo et al. 2020) and unsuccessfully extracted DNA
(<50 ng/uL), the 12 DNA samples used for PCR amplification
included three individuals from Group A, four individuals
from Group B, and five individuals from Group C.

According to the success rate of amplification and the
completeness of sequence information in the D-loop region
and the sequencing results, primers L16007 and H00651
were selected. The PCR products were subjected to 1.5%

agarose gel electrophoresis and a clear band (about1005 bp)
was obtained (Figure 1).

Haplotype distribution

All 12 sequences defined two distinct haplotypes. Individuals
A01, A02, B06, C10, C06, and C19 shared a single haplotype,
and individuals B01, C07, B07, B02, C08, and A04 shared a
second haplotype. In the 12 samples, five polymorphic sites
were detected. Nucleotide variation included conversions,
transversions, insertions and deletions. Nucleotide poly-
morphic sites were primarily G to A conversions. The average
content of T, C, A, and G bases in all sequences was 29.0%,
27.2%, 31.9% and 11.9%, respectively (Figure 2).

Genetic diversity

The haplotype diversity (h) was 0. 545 and the nucleotide
diversity (p) was 0. 000271.

Discussion

In the face of climate change, habitat degradation, forest
fragmentation, and the conversion of natural landscapes for
purposes of industrial agriculture to feed a growing human
population, many animal species have experienced marked
population decline (Estrada et al. 2020). A recent report of
the United Nations Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services estimated that one
million animal and plant species are threatened with extinc-
tion (IPBES 2019), and this includes some 65% of the over

Figure 1. Electrophoretic detection of PCR products in the mtDNA D-Loop region from 12 individual Hainan gibbons (1 to 12 is the experimental group, 13 and 14
are negative controls).

Figure 2. mtDNA D-loop region sequence variation sites in 12 Hainan gibbons.
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500 species of nonhuman primates (Estrada et al. 2017; IUCN
2020). In order to better understand the population demog-
raphy and population genetics of the Critically Endangered
Hainan gibbon, our research team first conducted a long-
term field investigation monitoring their behavior, ecology,
group size, and group composition. In the present study we
collected fresh fecal samples of 60% of the members of
Group A (n¼ 3), 57% of the members of Group B (n¼ 4), and
50% of the membership of Group C (n¼ 5). The proportion
of individuals sampled in our study is larger than in previous
studies（ Li et al. 2010; Bryant et al. 2016). In addition, we
amplified the 1005 bp sequence of the mtDNA D-loop region,
which is considerably longer than the 202 bp sequence ana-
lyzed in the only other study of mtDNA in this species (Li
et al. 2010). Using a longer sequence is expected to improve
the reliability of the Hainan gibbon genetic information.

The molecular markers identified in the mtDNA D-loop
region of the last remaining population of Hainan gibbons
suggest that the two haplotypes detected represent two
ancestral female lineages. In response to rapid population
decline and exceptionally small population size, the genetic
diversity of this ape population remains extremely low.
(Gibbs 2001; P€uttker et al., 2008; Koskim€aki et al. 2014).

This study represents the most comprehensive investiga-
tion of the genetic status of this rarest ape population. Our
results indicate extremely low levels of polymorphism com-
pared with available data on other wild primate populations,
it also is among the lowest genetic variability reported for
any highly isolated animal population (Newman et al. 2004;
Hayaishi and Kawamoto 2006; Li et al. 2007; Liu et al. 2007;
Li et al. 2010; Zhu et al. 2016). The low genetic diversity of
the remaining Hainan gibbon population is consistent with
their severe population decline (99.4%), that occurred over
a 20–30 year period (Zhou 2008), which was the result
of extreme deforestation and forest fragmentation that
decreased their remaining area of suitable habitat from
27,784 km2 (Zhou et al. 2005) to approximately 16 km2 (Zhou
2008). The Hainan gibbon remains at extreme risk of extinc-
tion. Our findings reinforce the imperative to expand conser-
vation efforts to protect the world’s last remaining Hainan
gibbon population. We recommend a targeted conservation
program of continuous population monitoring, regenerating
native forests, strict enforcement against hunting, and obtain-
ing genetic information on all remaining wild individuals. In
the absence of an aggressive and comprehensive conserva-
tion management program, this rarest of ape species may
not survive to the end of this century.
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