
Vol.:(0123456789)1 3

Environmental Sustainability (2022) 5:39–49 
https://doi.org/10.1007/s42398-022-00219-8

REVIEW

Microplastics in marine and aquatic habitats: sources, impact, 
and sustainable remediation approaches

Hemen Sarma1  · Rupshikha Patowary Hazarika2 · Vivek Kumar3 · Arpita Roy4 · Soumya Pandit5 · Ram Prasad6 

Received: 17 March 2021 / Revised: 22 January 2022 / Accepted: 5 February 2022 / Published online: 15 March 2022 
© The Author(s) under exclusive licence to Society for Environmental Sustainability 2022

Abstract
Plastic trash dumped into water bodies degrade over time into small fragments. These plastic fragments, which come under 
the category of micro-plastics (MPs), are generally 0.05–5 mm in size, and due to their small size they are frequently con-
sumed by aquatic organisms. As a result, widespread MPs infiltration is a global concern for the aquatic environment, posing 
a threat to existing life forms. MPs easily bind to other toxic chemicals or metals, acting as vector for such toxic substances 
and introducing them into life forms. Polyethylene, polypropylene, polystyrene, and other polymers are emerging pollutants 
that are detrimental to all types of organisms. The main route for MPs into the aquatic ecosystems is through the flushing 
of urban wastewater. The current paper investigates the origin, environmental fate, and toxicity of MPs, shedding light on 
their sustainable remediation.
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Introduction

Plastic is a material that is commonly used in everyday life 
for multiple purposes and in multiple forms sequipment, 
packaging material. Although invented for convenience, 
plastic has become a curse to life forms due to its persis-
tent nature. Smaller plastics (0.05–5 mm) or "microplastics" 
(MPs) are of particular interest to researchers because they 
can harm living organisms (Ma et al. 2020; Rezania et al. 
2018). MPs are a global concern because of ubiquitous pres-
ence  , thus  affecting aquatic (freshwater and marine), 

terrestrial, and remote arctic ecosystems, thereby impacting 
various lifeforms (Woodall et al. 2014; Nizzetto et al. 2016). 
MPs are widely used for a variety of purposes due to their 
low-cost and attractive properties such as high durability 
(Zhang et al. 2020).

According to recent statistical analysis, global plastic 
waste generation will triple between 2015 and 2060 (Lebre-
ton and Andrady 2019). Bayer Plastics (Germany) and Gen-
eral Electric (USA) began producing bisphenol A (BPA)-
based plastics for industrial applications in 1955 (Sarma and 
Lee 2018). Nowadays diverse types of day-to-day materials 
like cosmetics, skincare, cleaning fluids, soaps, shampoos, 
face or body washing, facial goods, skin cleaner, epoxy, Hemen Sarma and Rupshikha Patowary Hazarika: first authorship 
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vehicles, glass construction, sports protective equipment, 
medical laboratories and equipment, chairs, and reusable 
bottles contain plastics.

Plastic has recently been identified as a pollutant in the 
context of the international economic and environmental 
crisis, owing to its ability to last for several decades (Worm 
et al. 2017). According to research, the aquatic environment 
in several regions has been polluted by plastic debris (Bar-
letta et al. 2019; Wagner et al. 2014). Large plastic particles 
have long been known to interact with a variety of aquatic 
species via processes such as entanglement and ingestion 
(Duncan et al. 2017). Multiple genera, ranging from inver-
tebrates to vertebrates, are affected by marine MPs pollution 
(Deudero and Alomar 2015).

Plastics can easily enter water bodies along with waste-
water (Wu et al. 2020). These plastics can persist in the 
water bodies or break down into smaller parts as a result of 
physical stress, ultraviolet radiation, temperature changes, 
wave impacts, and also biological processes (Wu et  al. 

2019). Figure 1 shows the mechanism of the production of 
MPs. These MPs can make up more than 95% of marine 
litter that accumulate and spread over marine environment 
matrixes, water surfaces and water columns, marine sedi-
ments, coastlines, sea floors, and even inj marine species, 
and show major spatial and temporal variations (Barboza 
and Gimenez 2015; Bergmann et al. 2015). MPs have been 
globally distributed throughout the marine ecosystem due to 
hydrodynamic processes and diffusion mechanisms (Kuku-
lka et al. 2012). MPs enter marine environments via sewer, 
wind, and tidal processes (Zalasiewicz et al. 2016), putting 
organisms at risk due to their consumption (Guo et al. 2020; 
Wang et al. 2016).

MPs infiltration on algae has been reported (Besseling 
et al. 2014), which not only harms the algae but may also 
pose a risk to humans, as some seaweeds are popular in 
many countries. This could be an example of MPs entering 
the food chain and eventually reaching higher trophic levels, 
including humans (Reisser et al. 2014; Van Cauwenberghe 

Fig. 1  Mechanism of production of MPs. Tiny plastics are manufac-
tured for various industrial applications e.g., cosmetic production, 
medicine formulations, etc. (primary sources of MPs). Larger-sized 

plastics are degraded into smaller fragments by natural processes and 
MPs are produced (secondary  source of MPs)
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et al. 2015). Much attention to MPs is given because of their 
detection in human-related foods such as honey, beer, milk, 
table salts, etc. (Zhang et al. 2020). MPs pollution has sig-
nificant adverse consequences upon public health and global 
economy.

MPs can lead to serious health hazards and can inflict 
toxic effects on individuals through oral or dermal infusion, 
and inhalation. MPs have also been reported to be inhaled 
along with air (Vethaak and Legler 2021). Strict regulatory 
guidelines and strategies are warranted to minimize MPs 
penetration into the aquatic as well as the marine ecosys-
tems. Even though many countries have adopted different 
strategies for this purpose, most countries are unable to 
effectively regulate plastics penetration into the environ-
ment (Reisser et al. 2014; Guo et al. 2020; Wang et al. 2016).

Keeping in mind the detrimental effects of plastics and 
MPs, the present review focuses on the primary sources of 
MPs, its hazardous effects, and possible measures to miti-
gate the pollution sustainably. It also discusses the future 
prospects of research in the concerned area, so that in-depth 
knowledge on MPs is obtained which will eventually help 
in arousing awareness among the masses.

Plastics and microplastics

Plastic accounts for approximately 85% of marine litter. 
Plastics and microplastics are persistent pollutants that are 
increasingly found in the littering of every environmental 
niche on a global scale (Barletta et al. 2019; Jambeck et al. 
2015). Plastic waste is becoming a major concern due to its 
persistent nature and impact on aquatic organisms as well 
as humans (Thompson et al. 2009). The pores in MPs can 
absorb various chemicals from their surroundings and can 
transport toxic components to living organisms (Yuan et al. 
2020; Wu et al. 2019). MPs have been shown in studies to 
inhibit growth, reduce immune function, and cause oxida-
tive stress in marine organisms (Avio et al. 2015). Plastic 
particle aggregation in the ecosystem has toxic effects on 
biodiversity (Dawson et al. 2018; Gall and Thompson, 2015; 
Lu et al. 2016). As a result, immediate management strate-
gies are required to reduce or eliminate potential threats to 
organism life (Barletta et al. 2019; Bour et al. 2018; Daiwile 
et al. 2015).

Origin and sources of MPs

According to the United States Department of Commerce's 
National Oceanic and Atmospheric Administration (NOAA), 
plastic is now a significant type of aquatic junk particle (West-
phalen and Abdelrasoul 2017). MPs are difficult to be traced 
back to their origins due to their fragmented existence and 

small size. Understanding the origins of both plastic materi-
als and MPs will aid in the development of effective methods 
for reducing their entry into marine environments. MPs are 
commonly introduced into the environment via (1) wastewater 
treatment plants (Murphy et al. 2016), (2) drainage systems 
(Wagner et al. 2018), (3) litter from ships and recreational 
events, (4) dissolution from agricultural polyethylene foils, 
(5) washing and cleaning of cloths (Mintenig et al. 2017), (6) 
car tire abrasions, (7) fertilizer runoff (Dubaish and Liebezeit 
2013). The origin of the sources, the size of the particles, and 
the transfer of MPs through ocean waves and currents—all 
these factors affect variation in an aquatic ecosystem (Kukulka 
et al. 2012). MPs are derived from two sources: primary and 
secondary (Fig. 2).

Primary MPs

Primary MPs are those that are designed for specific indus-
trial applications and can be as small as nanoscale. Further-
more, these small particles are used in the manufacturing of 
consumer goods as resin pellets or catalysts (Duis and Coors 
2016). Mechanical exfoliants include: microfiber clothing, 
adhesive scrub sheets, and wide range of cosmetic products 
such as handwash, facewash, eyeliner, scents, beauty talc, hair 
care products, nail polish, sunscreen, insecticides, and tooth-
paste’ in which primary MPs have been widely used (Auta 
et al. 2017). These products are freely used and discarded 
(Castaneda et al. 2014). These MPs are also widely used in 
wind turbines. Again, MPs are involved in clinical applica-
tions, such as serving as carriers in medicines and producing 
products used by dental surgeons to clean teeth (Lassen et al. 
2015; Auta et al. 2017).

Secondary MPs

Secondary MPs are formed in marine environments as a result 
of the fragmentation of larger plastic products into fine particu-
late matter. Secondary MPs are released into the water from 
hard plastic, synthetic fibers, clothing, pipes, plastic sheets, 
bottles, and nets, to name a few. MP fiber has been found in 
aquatic ecosystems as a result of secondary MPs production 
processes such as oxidation, photothermal degradation, and 
mechanical abrasion (Wagner et al. 2014). Plastics have been 
reduced in size in coastal areas due to excessive ultraviolet 
light, physiological tide erosion, and the availability of oxygen 
(Shim and Thomposon 2015).
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Factors influencing MPs bioavailability

Size

MPs are bioavailable due to their small size. Because of their 
small size, MPs can be mistaken by natural predators during 
regular feeding activities and consumed passively. Certain 
zooplankton species consume MPs ranging in size from 0.5 
to 816 m (Cole and Galloway 2015; Desforges et al. 2015).

Density

The bioavailability of plastic debris in the water column 
would be assessed by its density. Filter feeders, even sus-
pension eaters are likely to experience sustainable, lower-
density plastics on their ocean face in planktivores' sur-
face waters, such as polyethylene (PE). For example, PE 
20 × 28 cm long food bags showed a well-developed biofilm 
within one week, and due to the neutral elasticity, these PE 
bags started to drain after third week under the ocean's sur-
face (Lobelle and Cunliffe 2011).

Affluence (abundance)

MPs are typically more prevalent in marine environments. 
Certain types of MPs are more abundant in certain regions, 
whereas other types of MPs may be abundant in other areas. 
According to one study, expanded polystyrene was more 

abundant in Eastern and South-Eastern Asia, whereas poly-
ethylene and polypropylene were found elsewhere (Shahul 
Hamid et al. 2018). Furthermore, seasonal variation was 
discovered to influence MP abundance (Kang et al. 2015). 
The greater the abundance of MPs in a given environment, 
the greater the chance of their consumption by organisms.

Colour

The colour of the MPs can significantly influence their con-
sumption by aquatic organisms. The bioavailability of MPs 
may be enhanced by microplastic colours, and the similar-
ity of MPs to prey particles may increase the likelihood of 
consumption (Wright et al. 2013). Only a few studies have 
looked at the effect of MP colour on zooplankton. Euphausi-
ids and copepods are important MP grazers in the North-
Eastern Pacific coastal waters, where they are mostly black, 
red, and blue in colour (Desforges et al. 2015).

Shape

MPs can be introduced into the environment directly as 
cylindrical beads used in the treatment of sewage in treat-
ment plants, in clothes-washed fibers and cosmetic products 
(Napper and Thompson 2016; Thompson 2015). MPs in the 
form of shaped components can be found improperly due to 
the weathering and deterioration of large plastic materials. 
A recent study has discovered that  zooplankton Calanus 

Fig. 2  Sources of MPs that infil-
trate the marine environment
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finmarchicus easily consume microbeads, including micro-
plastic fragments of size less than 30 mm (Vroom et al. 
2017).

MPs’ impacts on the marine environment

In many cases, aquatic organisms mistake MPs as food, 
while other species may intentionally use them as food 
(Lönnstedt and Eklöv 2016). Chemical and physical paral-
ysis occurs if MPs are consumed by aquatic species. The 
binding of plastic with the cell surfaces can block flexibility 
as well as create blockages in the digestive system; addition-
ally, it can also lead to hepatic stresses and reduced growth 
(Setala et al. 2016).

The MPs might carry organic compounds, such as 
diethylhexylphtalate (DEHP), which are harmful to aquatic 
organisms (Bakir et al. 2014). Table 1 shows a few MPs 
that have been reported to be consumed by aquatic organ-
isms. Furthermore, different chemicals and metals can 
remain associated with MPs that can have additional nega-
tive impacts on aquatic organisms (Mammo et al. 2020). 
The neurotoxic effect of MPs has also been reported in 
previous studies, where acetylcholinesterase activity was 
measured under laboratory setup (Oliveira et al. 2013; Bar-
boza et al. 2018). MPs can also lead to oxidative stress that 
causes lipid peroxidation of cellular membranes (Alomar 
et al. 2017). The detection of MPs in several commercially 
important edible fishes poses the threat of its transfer to 
higher organisms including human beings (Fossi et al. 
2018). Campananle et al. (2020), discussed the effect of 

MPs in humans that include respiratory troubles, accu-
mulation in the gastrointestinal tract and the circulatory 
system (Campanale et al. 2020). Figure 3 depicts the hier-
archical distribution of MPs across the organism system. 
Several studies on the effect of MPs exposure among vari-
ous test organisms such as crustaceans, molluscs, fish, etc., 
interpret the induction of physical and chemical toxicity, 
genotoxicity, oxidative stress, behavioural changes, high 
transgenerational effects on the populations (Avio et al. 
2015; Fonte et al. 2016; Barboza et al. 2018; Zhu et al. 
2019). Another study (Sussarellu et al. 2016) found the 
detrimental effect of polystyrene MPs in reproduction and 
feeding of oysters affecting egg count and sperm count. 
Penguins were also reported to be affected by the con-
sumption of MPs along with water (Bessa et al. 2019). 
The zooplankton community is also severely affected by 
MPs. Two economically valuable zooplanktons, Euphasia 
Pacific (Euphausiid) and Neocalanuscristatus (calanoid 
copepod), have been examined for MPs detection in the 
North Atlantic using the acid digestion method (Desforges 
et al. 2015).

Methods of identification of MPs

MPs can be identified using both physical and analyti-
cal/instrument-based methods. Instrument-based methods 
are more accurate and reliable. Table 2 depicts the meth-
ods of identification as well as their characteristics and 
disadvantages.

Table 1  Aquatic organisms consume MPs and the resultant effects

Type of plastic Organism Mechanism Effect References

Polyethylene Mytilus edulis (Bivalves) Ingestion Aggregation in soft tissues Van Cauwenberghe and Janssen 
(2014)

Polyethylene or polystyrene 
beads

Artemia nauplii (Brine shrimp) Ingestion Swelling of liver and aggrega-
tion in liver

Batel et al. (2016)

Polyethylene, polypropylene Balaenoptera
Physalus (Whale)

Ingestion Toxicity symptoms increases Fossi et al. (2016)

Polyethylene, polystyrene Mytilus edulis (Blue mussel), 
Allorchestes compressa 
(Amphipods)

Ingestion Granulocytoma formulation, 
destabilization/vector for 
aggregation of POPs

Avio et al. (2015), Chua et al. 
(2014) and von Moos et al. 
(2012)

Polylactic acid, Polyethylene Ostrea edulis (European flat 
oysters), Arenicola marina 
(Lugworm)

Ingestion Respiratory rate exaltation, 
metabolic rate increases

Besseling et al. (2013) and 
Green (2016)

Polystyrene Calanus helgolandicus, Cen-
triscus cristatus, Euphasia-
pacifa (Copepod)

Ingestion Feeding decreases, reproduc-
tion decreases

Cole et al. (2016) and Desforges 
et al. (2015)

Polystyrene microbeads Paramecium sp. strain RB1 
and Tetrahymena sp. strain 
RB2

Ingestion Can aid in the transmission 
and bioaccumulation of MPs 
in freshwater food webs

Bulannga and Schmidt (2022)
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Measures to control pollution caused by MPs

The prevalence of MPs in our everyday life has resulted in 
their release into aquatic bodies. Because of the growing 
demand for plastic components, production is increasing at 
an exponential rate (Plastics Europe 2019). Plastics account 
for approximately 80% of marine litter, and they keep on 
piling in the environment, affecting living organisms (Ryan 
et al. 2009). As a result, it is extremely important to control 
the release of plastics into the environment.

Strict regulations and Initiatives

The United Nations Convention on the Law of the Sea 
(UNCLOS) was proposed in 1982 to regulate all aspects of 
the sea's resources (United Nations 1982). It focused on a 
variety of issues including navigation rights, economic juris-
diction, territorial sea limits, the legal status of resources on 
sea-beds, and measures for marine environmental protection, 
including the protection of marine living organisms. Article 
210 of the UNCLOS states that nations must develop frame-
works to control marine pollution caused by waste dump-
ing. Following the UNCLOS, several other programmes 

and frameworks, such as the United Nations Environment 
Program (UNEP) and the Marine Debris Program (MDP), 
were designed to reduce marine pollution (da Costa et al. 
2020). In 2017, the UNEP met in Kenya and adopted a draft 
resolution on marine litter and MPs (UNEP 2017). The draft 
primarily addresses the use of unnecessary plastics and 
promotes the use of eco-friendly alternatives. In addition, 
United Nations (UN) has declared the period 2021–2030 
as the "Decade of Ecosystem Restoration" (United Nations 
2020). The UN has set 17 sustainable development goals 
(SDGs); SDG14 focuses on underwater life conservation and 
sustainable ocean and sea resource utilisation.

To better implement the goals, the theme 'our ocean, 
our future, call for action' was introduced in 2017. The UN 
countries have made efforts to reduce plastic pollution in the 
ocean by minimising the use of plastics; a focus on reducing 
single-use plastics and single-use plastic packaging is also 
encouraged. The initiative's goal is to focus on long-term 
pollution management as well as plastic litter control. The 
European Union implemented a variety of waste manage-
ment strategies to reduce marine litter from both the sea and 
the land (European Parliament 2019). Plastic restrictions in 
marketplaces, thereby encouraging the use of sustainable 

Fig. 3  Transfer of MPs to organisms across the food chain
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alternatives, are among the measures being considered. 
Various regulatory frameworks such as the Marine Strategy 
Framework Directive (MSFD) (European Parliament 2008), 
which focuses on marine economic and social activities, 
have been designed to protect the marine environment and 
control the dumping of plastic litter (Gago et al. 2016).

Several companies and organisations are taking steps to 
adopt environment-friendly practises such as prohibiting 
single-use plastics and excluding plastics from a variety of 
goods (Eschener 2019). Ban on use of plastic bags has been 
implemented in several counties, with the goal of eradicat-
ing disposable plastic goods (Vesilevskaia 2018). However, 
due to the the scarcity of other cost-effective alternatives, 
such bans have become quite unrealistic in practise and not 
implemented properly. Many countries have imposed man-
datory plastic bag surcharges in market areas in order to 
promote the use of biodegradable bags and reduce the usage 
of plastics. But so far these measures have not proven to be 
very effective.

Modern engineering tools for contamination 
prevention and clean‑up of MPs

The recent developments of engineering technology provide 
us with opportunities to remove MPs from the environment. 
Waste water treatment plants (WWTPs) have been used for 
the elimination of plastic particles from waste waters. The 
efficiency of such plants have been evaluated (Talvitie et al. 
2017b; Lares et al. 2018). In order to eliminate high-grade 
MPs, the traditional WWTPs could not be a good option 
and the MPs removal range is below average. Membrane 
agglomeration-coagulation and electrodeposition are gen-
erally used for advanced WWTPs. Membrane bioreactor 
(MBR) is one of the most effective processes in which mem-
brane formulations such as ultrafiltration or microfiltration 
are used to clean wastewater. The conventional activated 
sludge-based process showed 98.3% removal of MPs, but 
the MBR technique showed a 99.4% increase in MPs sepa-
ration performance, which is greater than the conventional 
activated sludge-based process (Talvitie et al. 2017a). MBRs 
have also been constructed with other revolutionary tertiary 
treatments, such as rapid gravity filtration and dissolved air 
flotation, which can lead to more than 95% separation of 
MPs from primary and secondary pollutants. The gravity 
filtration process, as well as dissolved air flotation, is used 
for revolutionary tertiary MBR treatments that can separate 
MPs at a level of up to 95% from primary and secondary 
effluents. High performance for the removal of MPs is also 
demonstrated by biological active filter, i.e., BAF (Talvitie 
et al. 2017a). BAF has been developed for advanced waste-
water treatment plants with approximately 99% of the total 
retention capacity for MPs.Ta
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Another well-known method for the extraction of MPs 
from wastewater streams is electrocoagulation (EC). The 
EC technology is an efficient way for reducing wastewater 
MPs by achieving maximum separation efficiency of 99.24% 
at 7.5 pH (Perren et al. 2018). Harmful effects of pollut-
ants could be treated by using Electro-oxidation (EO) in an 
electrochemical flow reactor using Ti/Pt or Boron Doped 
Diamond, i.e., BDD anodes and cathodes prior to discharge 
of effluents into the marine environment (Durán et al. 2018). 
In the discharge of MPs, the power density used for analy-
sis with Ti/Pt, the BDD anode shows a distinct pattern and 
improved productivity. EO can become an economically 
efficient and effective therapeutic strategy for the remedia-
tion of MPs and other contaminants, particularly with the 
BDD anode.

Increased recycle, recovery and reuse rate of plastic 
materials

Currently the emphasis is on the three R hierarchies of an 
integrated waste management system, namely reduction, 
reuse, and recycling. The use of plastic material can be 
reduced by prohibiting the use of certain types of plastic 
like that for single use. Higher recycling rates can help sig-
nificantly reduce plastics in the marine environment. Plastic 
recycling is a complicated process that includes the follow-
ing steps: (1) consumer waste management, (2) recyclable 
separation and pollutant removal, (3) polymer and colour 
grounding and differentiation, (4) polymer and colour sam-
ple distillation, and (5) recycle products to manufacturing 
(Bing et al. 2014; Walker, 2018). Diverse wastes should 
be properly treated in recycling units, and direct dumping 
should be avoided at all costs. A large number of plastics 
can be found in a large load of waste from medical units. 
In the current situation of the Covid-19 pandemic, the use 
of personal protective equipment (PPE), masks, and covers 
that are typically one-time use have increased exponentially. 
Such wastes should be properly treated, or else it can lead 
to severe environmental pollution in the future, affecting the 
ecosystem (Issac et al. 2021). The pandemic situation should 
not be used as an excuse for ignoring the treatment of such 
wastes. In fact such medical plastic wastes should be treated 
even more seriously. 

Utilization of biodegradable or biological based 
polymer materials

To solve the problem, use of a variety of recyclable products 
such as biodegradable plastics and nano-plastics (Paco et al. 
2019) could be an alternative option. Biodegradable alterna-
tives such as paper, jute, cotton, wool, or other fabrics can be 
used to make carry bags (Iheukwumere et al. 2020). Several 

plant and bacterial material are also being explored for uti-
lisation as bioplastics.

Sustainable bioengineering solutions

Conventional BPA-based plastics can be degraded by vari-
ous types of bacteria, fungi via enzymatic action (Sarma 
et al. 2019). Some plastics may degrade, such as polyeth-
ylene terephthalate (PET) is reported to be degraded by 
Ideonella sakaiensis (Yoshida et al. 2016) and polyethylene 
(PE) by the aquatic fungus Zalerion maritimum (Paco et al. 
2017). Developing on-site biodegradation strategies for MPs 
with the addition of microbes or increasing natural attenua-
tion with the use of native microflora is critical. Since envi-
ronmental and physical conditions have a large impact on 
bioremediation, simulating such factors will make it easier 
and more convenient to accelerate the microbial degradation 
process (Tiwari et al. 2020). Yuan et al. (2020) summarised 
the various bacterial and fungal populations that can utilize 
MPs and help in their removal from the environment.

Conclusion

MPs have become one of the most common marine litter 
wastes. Almost all life forms are affected by the toxic effects 
of MPs in the marine environment. MPs pollution can be 
reduced by implementing proper regulatory framework and 
cutting-edge biotechnology. Even though the government 
and policymakers have enacted numerous laws and regula-
tions, it is the responsibility of individuals and organisa-
tions to ensure that regulations are enforced to protect eco-
systems from the negative effects of plastic litter. Since there 
have only been a few studies on the health effects of MPs, 
future research in this area is important and necessary. Fur-
thermore, using microbes to efficiently remove plastic litter 
from the environment can provide green solution for reduc-
ing MPs pollution and impact on ecosystems.
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