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Abstract. Glycogen synthase kinase 3β (GSK 3β), a multifunc-
tional serine and threonine kinase, plays a critical role in a variety 
of cellular activities, including signaling transduction, protein 
and glycogen metabolism, cell proliferation, cell differentiation, 
and apoptosis. Therefore, aberrant regulation of GSK 3β results 
in a broad range of human diseases, such as tumors, diabetes, 
inflammation and neurodegenerative diseases. Accumulating 
evidence has suggested that GSK 3β is correlated with tumori-
genesis and progression. However, GSK 3β is controversial due 
to its bifacial roles of tumor suppression and activation. In addi-
tion, overexpression of GSK 3β is involved in tumor growth, 
whereas it contributes to the cell sensitivity to chemotherapy. 
However, the underlying regulatory mechanisms of GSK 3β 
in tumorigenesis remain obscure and require further in-depth 
investigation. In this review, we comprehensively summarize 
the roles of GSK 3β in tumorigenesis and oncotherapy, and 
focus on its potentials as an available target in oncotherapy.
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1. Introduction

Glycogen synthase kinase 3 (GSK3), a member of the 
mitogen‑activated protein (MAP) kinase superfamily, has two 
highly conserved homologous isoforms, GSK 3α (51 kDa) 
and GSK 3β (47 kDa). Discovered in 1980, both of these two 
isoforms are multifunctional serine and threonine protein 
kinases, and they are widely expressed in all eukaryotes (1-3). 
Encoded by the human chromosome 19q13.2 and 3q13.33, 
respectively, GSK 3α and GSK 3β share 98% identical 
sequences in their kinase domains (4,5). Despite structural 
similarities, their functions are different by phosphoryla-
tion at distinctive sites (5). For the activation of GSK 3α and 
GSK 3β, tyrosine 279 (Y279) and tyrosine 216 (Y216) are 
phosphorylated by upstream signaling molecules respectively, 
and these two sites are located at the T-loop of GSK 3 (acti-
vation domain) (Fig. 1). Notably, GSK 3α and GSK 3β are 
inactivated by site‑specific phosphorylation, which is tightly 
controlled by diverse mechanisms (6). All these mechanisms 
for the inactivation of GSK 3α at Ser21 and GSK 3β at Ser9 
have been revealed to be attributed to the phosphoinositide3 
kinase (PI3K)‑dependent mechanism (7). Activated by PI3 
kinase, protein kinase A (PKA), protein kinase B (PKB) 
(also termed as Akt), protein kinase C (PKC) and p90Rsk 
contribute to the inactivation of GSK 3, which ultimately leads 
to the dephosphorylation of GSK 3 substrates (8). Initially, the 
inactivation of GSK 3 was considered to be a critical mediator 
in glycogen metabolism and insulin signaling, since it could 
give rise to the phosphorylation of glycogen synthase and 
could promote glycogen synthesis (9). Currently, emerging 
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evidence has demonstrated that GSK 3, particularly GSK 3β, 
is well-established as a vital component in signaling pathways 
of cell regulation, involving cell proliferation, differentiation, 
motility, apoptosis and the cell cycle (1,2,10). As an attractive 
therapeutic target, GSK 3 has been revealed to be implicated in 
the pathogenesis of numerous human diseases, such as diabetes, 
inflammation, Alzheimer's disease, cardiovascular and bipolar 
disease (11-13). In addition, GSK 3β has been demonstrated to 
be a transcription factor regulating tumor progression, invasion 
and metastasis (14,15). In different types of cancers, GSK 3β 
plays a controversial role as a tumor suppressor or a tumor 
promoter (16,17). Furthermore, GSK 3β has been demonstrated 
to be a key regulator of chemo-resistance and radio-resistance 
in tumor treatment (18,19). Therefore, the regulative roles of 
GSK 3β in tumor development and progression require eluci-
dation. In addition, to date, it has been revealed that GSK 3β 
inhibitors are potential therapeutic drugs in cancer therapy, 
thus, pre-clinical and clinical studies of GSK 3β inhibitors are 
also presented.

2. Regulation of GSK 3β

It has been revealed that the activity of GSK 3β could be regu-
lated in a substrate‑specific manner, which comprises four key 
mechanisms: Phosphorylation, subcellular localization, the 
formation of protein complexes and the phosphorylation status 
of GSK 3β substrates (12). Among them, phosphorylation is 
deemed to be the most important regulatory mechanism of 
GSK 3β, which would lead to the inactivation of GSK 3β at Ser 9. 
The activated PI3K/Akt signaling pathway phosphorylates 
GSK 3β at inhibitory serine residues and the phosphorylation 
may result in the activation of transcription factors in response 
to carcinogenesis, for instance activating protein‑1 (AP‑1), 
cyclic adenosine monophosphate (cAMP)‑response element 
binding protein (CREB), β-catenin, c-Myc and nuclear 
factor-kappa (NF-κB) (1,20). In addition, upstream proteins 
of GSK 3β, including P70S6 kinase, extracellular signal-regu-
lated kinases (ERKs), p90sk (also called MAPKAP kinase‑1), 
protein kinase C (PKC) and cAMP‑dependent protein kinase 
[protein kinase A, (PKA)], could lead to the inactivation of 
GSK 3β (1,21,22). Each regulatory kinase is influenced 
by GSK 3β distribution, while scaffolding proteins could 
restrain the interaction between kinases (6) (Fig. 2A). It has 
been established that the phosphorylation of tyrosine at 216 
site of GSK 3β (Tyr216) is regulated by calcium-dependent 
tyrosine kinase, proline-rich tyrosine kinase 2 (PYK2), 
cAMP‑activated protein tyrosine kinase, Zaphod kinase 1 
(ZAK1) or Fyn (23,24). Additionally, phosphorylation of 
GSK 3β at Tyr216 is regulated by mitogen-activated protein 
kinase (MEK1/2) (25). Generally, GSK 3β is classified as an 
active constituent enzyme in the cytoplasm of resting cells. 
When activated, GSK 3β is accumulated in the nucleus and 
mitochondria (26) (Fig. 2B). Notably, by activating the genes 
of downstream transcription factors and recruiting the aggre-
gation of these transcription factors, nuclear translocation of 
GSK 3β regulates a great number of transcription factors (27).

More than 40 proteins are downregulated by GSK 3β. 
These proteins are involved in a broad range of cellular 
processes, including protein synthesis, cell differentiation, 
proliferation and apoptosis (2,10,14). Substrates that are closely 

related to tumorigenesis and cancer development tend to be 
dephosphorylated. In the canonical Wnt signaling pathway, 
β-catenin, an important element of Wnt signaling, is controlled 
by GSK 3β (28). With the absence of Wnt signaling, activated 
GSK 3β forms a complex with adenomatous polyposis coli 
(APC) and the transcriptional co‑activator β-catenin, and 
therefore the complex binds with the scaffolding protein Axin. 
This newly formed complex enables GSK 3β to phosphorylate 
β-catenin and leads to the degradation of β-catenin. Conversely, 
the Wnt signaling pathway could inactivate GSK 3β and 
prevent the phosphorylation of β-catenin by GSK 3β (29). In 
addition, β-catenin binds to the T-cell factor (TCF)/lympho-
cyte enhancer factor (LEF), and ultimately promotes the 
transcription of TCF/LEF transcription factor family-related 
genes, including proto-oncogenes, such as c-Myc, cyclin D1 
and the vascular endothelial growth factor (VEGF), as well 
as genes that regulate cell invasion and migration, including 
matrix metalloproteinase-7 (MMP-7) (30-32). Therefore, as 
the upstream gene of β-catenin, GSK 3β plays a pivotal role in 
cell proliferation, migration, metastasis and differentiation by 
controlling Wnt signaling. Additionally, other proto‑oncogenic 
or tumor suppressing transcription factors (such as p53) and 
translation factors are the substrates of GSK 3β. With regard 
to DNA damage studies, the increasingly activated GSK 3β in 
the nucleus and mitochondria promotes the expression of the 
tumor suppressor protein p53, and forms a complex with p53, 
which enhances the response of p53-induced apoptosis (33,34). 
Furthermore, GSK 3β directly phosphorylates Kruppel-like 
factor 6 (KLF6), a zinc‑finger transcription factor which is a 
tumor suppressor, inhibiting the tumor growth by increasing 
KLF6-mediated growth suppression through p53-independent 
transactivation of p21 (35) (Fig. 3).

3. Role of GSK 3β in tumorigenesis

For decades, accumulating research has been exploring the 
role of GSK 3β in human oncology. Based on the studies of 
the GSK 3β signaling mechanism, the regulation of GSK 3β in 
cancer progression is intricate (14,36). It has been demonstrated 
that GSK 3β acts as a tumor suppressor in prostate cancer, 
by inhibiting androgen receptor-mediated cell growth (37). 
Conversely, it has been observed in colon cancer cell lines and 
colorectal cancer patients that the expression levels and the 
enzyme activities of GSK 3β were higher than normal cells, 
therefore GSK 3β appears to be a tumor promoter (38). Herein, 
in order to further elucidate GSK 3β as a potential therapeutic 
target for various cancers, a comprehensive review about the 
multiple roles of GSK 3β in tumorigenesis is provided.

GSK 3β as a tumor suppressor. Since GSK 3β downregulates 
numerous proto-oncogenic proteins and cell cycle checkpoint 
proteins, GSK 3β has been generally recognized as a tumor 
suppressor by inhibiting cell proliferation (39). Previous 
studies have demonstrated that PI3K inhibitor LY294002 and 
tumor suppressor phosphatase and tension homolog deleted 
on chromosome 10 (PTEN) stimulate GSK 3β-mediated 
degradation of β‑catenin by inhibiting the PI3K/Akt pathway, 
thereby inhibiting the progression of prostate tumors (40,41). 
In addition, GSK 3β is phosphorylated and inactivated by the 
activation of PI3K/Akt pathway, and therefore, inactivated 
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GSK 3β prevents the phosphorylation of cyclin D1, inhibits 
the expression of cyclin D1 gene (CCND1), and accumulates 

cyclin D1 at the nucleus of breast cancer cells (42). Moreover, it 
has been revealed that adiponectin could prevent Akt‑induced 

Figure 2. Regulatory mechanisms of GSK 3β. The activity of GSK 3β can be inactivated by multiple pathways. PI3K/Akt, P70S6K, p90sk, ERKs and PKA/PKC 
can attenuate GSK 3β enzymatic activity by phosphorylating GSK 3β at Ser9. Inhibition of GSK 3β activity leads to the stabilization and accumulation of 
β-catenin in the cytosol. GSK 3β inactivation is also involved in glycogen synthesis, protein synthesis, cell proliferation and cell invasion. Additionally, PYK2, 
Ca2+, ZAK1 and Fyn are able to phosphorylate GSK 3β at Tyr216, which increases the GSK 3β activity. Subsequently, activated GSK 3β phosphorylates down-
stream target β-catenin. GSK 3β, glycogen synthase kinase3β; PI3K, phosphoinositide3 kinase; P70S6K, P70S6 kinase; ERKs, extracellular signal-regulated 
kinases; PKC, protein kinase C; PKA, protein kinase A; HKII, hexokinase II; AP‑1, activating protein‑1; MDM2, murine double minute 2; PYK2, proline‑rich 
tyrosine kinase 2; ZAK1, Zaphod kinase 1; APC, adenomatous polyposis coli.

Figure 1. Functional domains and tertiary structures of GSK 3β (Homo sapiens). GSK 3β is a 47-kDa protein consisting of 433 amino-acids in human. The 
protein contains an N-terminal domain, kinase domain and C-terminal domain. Phosphorylation at Tyrosine (216) in the N-terminal region of GSK 3β acti-
vates this kinase. Phosphorylation at Serine (9) in the N-terminal region of GSK 3β leads to the inactivation of this kinase. The BD includes GSK 3β specific 
binding sites for substrates and protein complexes. GSK 3β, glycogen synthase kinase 3β; BD, binding domain.
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phosphorylation of GSK 3β and decrease intracellular accumu-
lation and nuclear activity of β-catenin, subsequently reducing 
the expression of cyclin D1 (43). This mechanism leads to the 
apoptosis of breast cancer cells MDA‑MB‑231 and T47D, and 
induces the cell cycle arrest of MDA‑MB‑231 cells at G0‑G1 
phase. Additionally, it has been revealed by in vivo experi-
ments that the adiponectin-mediated suppressive effect on the 
GSK 3β/β-catenin signaling pathway could reduce mammary 
tumorigenesis in female nude mice (43). Therefore, GSK 3β 
is perceived as a tumor suppressor in the tumorigenesis and 
progression of breast cancer (Fig. 4).

Emerging evidence has revealed that GSK 3β phosphory-
lates various tumor factors (TFs), including cyclin D1, cyclin 
E, AP‑1, c‑Jun, p53, p65, Snail, c‑Myc and β-catenin, which 
would facilitate their degradation and prevent them from 
entering the nucleus. Thereby, their activities are downregu-
lated in oral squamous cell carcinoma (OSCC) (44-51). It has 
been indicated that activated GSK 3β binds to the mesenchymal 
Snail gene. Then it inhibits the phosphorylation, degradation 
and cytoplasmic translocation of Snail, and subsequently 

inhibits p-cadherin-induced development and homeostasis of 
epithelial architecture. Consequently, GSK 3β may reverse the 
p-cadherin-contributed oncogenesis in OSCC (52). In addition, 
it has been demonstrated that the overexpression of focal adhe-
sion kinase (FAK) may activate NF‑κB by inactivating GSK 3β, 
and therefore promotes cancer cell migration. In addition, the 
inactivation of GSK 3β has also been revealed to suppress 
cell apoptosis in pre-invasive and invasive OSCC (51,53,54). 
Furthermore, as the induction of intracellular reactive oxygen 
species (ROS) stimulates cell apoptosis (55), constitutively 
activated GSK 3β has been reported to increase the mito-
chondrial membrane potential and to promote ROS (56,57). In 
addition, several matrix metalloproteinases (MMPs) can also 
facilitate the migration of cancer cells, thereby upregulating 
and activating tumor factors, such as Snail, AP‑1 and NF‑κB 
in OSCC (58,59). Collectively, GSK 3β could be a potential 
therapeutic target for the treatment of OSCC by suppressing 
tumorigenesis (Fig. 4).

It has been indicated that the overexpression of macro-
phage migration inhibitory factor (MIF) is associated with 

Figure 3. GSK 3β regulates the key signaling proteins of the Wnt pathway. In the presence of Wnt, β-catenin is stabilized and can induce gene transcription. 
Wnt binds with its co‑receptors Frizzled and LRP5/LRP6. Axin and APC interact with phosphorylated GSK 3β at Tyr216, which leads to β-catenin stabiliza-
tion and cytosol accumulation. Subsequently, β-catenin is transferred into the nucleus where it activates the transcription of related genes by forming a complex 
with transcription factors as TCF/LEF. Then, TCF/LEF upregulates the proto-oncogenes (c-Myc and cyclin D1) and cell invasion/migration-related genes 
(MMP-7 and Cdc37). GSK 3β, glycogen synthase kinase 3β; APC, adenomatous polyposis coli; TCF, T‑cell factor; LEF, lymphocyte enhancer factor; MMP‑7, 
matrix metalloproteinase-7.
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the development and progression of esophageal squamous 
cell carcinoma (ESCC) (60,61). Further study has demon-
strated that the deletion of MIF attenuates Akt‑dependent 
GSK 3β phosphorylation and restores tumor suppressor 
activity of GSK 3β (61). After MIF knockdown, the activa-
tion of GSK 3β prevents the transcription and expression 
of Snail gene, one of activators of epithelial-mesenchymal 
transition (EMT) (62). Moreover, it has also been revealed to 
inhibit the expression of E-cadherin in ESCC (61). GSK 3β 
not only inhibits cell survival and proliferation, but also 
restrains tumor invasion and metastasis. GSK 3β interacts 
with Slug, the zinc‑finger‑containing transcriptional repressor, 
by suppressing E-cadherin expression and promoting cancer 
cell migration, invasion and metastasis in the non-small cell 
lung cancers (NSCLCs) (63). Notably, GSK 3β also reduces 
the stability of Slug protein by promoting the C-terminus of 
Hsc70-interacting protein (CHIP)-mediated Slug degradation. 
Conversely, GSK 3β inhibitors could induce the accumulation 
of non-degradable Slug, which increases the migratory and 
invasive capabilities of lung cancer cells (63). Collectively, the 
activation of GSK 3β may offer a new prospect for inhibiting 
the tumorigenesis and development of tumors (Fig. 4).

GSK 3β as a tumor promoter. GSK 3β also plays a critical 
role in tumor cell proliferation. Overexpression of GSK 3β has 
been observed in various tumor types, including colon, liver, 
ovarian and pancreatic tumors (14,64). It has been previously 
reported that GSK 3β inhibitors (SB‑216763 and AR‑A014418) 

significantly suppress the growth of patient‑derived xenograft 
(PDX) colon cancer, and GSK 3β inhibitors are anticipated to 
be therapeutic agents for colon cancer (64). The overexpres-
sion of nuclear GSK 3β and the loss of membrane β-catenin 
are substantially correlated with poor survival, distant metas-
tasis and worse prognosis of colon cancer patients (65). It is 
further discovered that the formation of nuclear GSK 3β and 
β-catenin could decrease the transcription of TCF/LEF target 
gene (66). In addition, it has been clarified that troglitazone, 
an agonist of peroxisome proliferator activated receptor γ 
(PPARγ), could suppress the activity of NF-κB by inhibiting 
the activity of GSK 3β, reducing the expression of G0/G1 
phase regulatory proteins including Cdk2, Cdk4 and cyclin B1, 
and increasing the cleavage of apoptosis-associated proteins, 
such as caspase-3 and caspase-9 of human colon cancer and 
prostate cancer (67,68). A previous study has revealed that 
p53+/+ colorectal cancer cells treated with GSK 3β inhibitor 
or GSK 3β silencing RNAs could facilitate the increase of 
p53-dependent apoptosis, instead of cell cycle arrest (69). 
Furthermore, the activation of PI3K/Akt signaling would 
result in the inactivation of GSK 3β, which promotes cell 
growth by inhibiting apoptosis‑related proteins including Bcl‑2 
family in 1, 2-dimethylhydrazine (DMH)-induced colorectal 
cancer (70).

In addition, the overexpression of GSK 3β and the nuclear 
transcription of NF-κB play critical roles in the survival and 
proliferation of pancreatic cancer cells (71). However, GSK 3β 
knockdown has been revealed to decrease the expression of 

Figure 4. Tumor inhibitory role of GSK 3β. LY294002, adiponectin and PTEN suppress GSK 3β-participated β-catenin degradation and cell cycle arrest by 
inhibiting the PI3K/Akt pathway in prostate tumor and breast cancer. The deletion of MIF attenuates Akt‑dependent GSK 3β phosphorylation and restores 
tumor suppressor activity of GSK 3β in esophageal squamous cell carcinoma. Additionally, GSK 3β phosphorylates various tumor factors, facilitates their 
degradation, and prevents them from entering the nucleus. GSK 3β, glycogen synthase kinase 3β; PTEN, phosphatase and tension homolog deleted on chromo-
some 10; AR, androgen receptor; CCND1, cyclin D1 gene; FAK, focal adhesion kinase; MMPs, matrix metalloproteinases; AP‑1, activating protein‑1.
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Bcl‑2 and VEGF, and ultimately result in the growth arrest 
of tumors (72). In addition, by increasing the expression of 
cyclin D1 and facilitating the proliferation of ovarian cancer 
cells, activation of GSK 3β could promote the activation of 
NF-κB and lead to cell cycle entering of tumor cells into 
the S phase (73). Accumulating evidence has revealed that 
GSK 3β could affect intracellular glucose metabolism by 
restraining the p53-, NF-κB‑ and c‑Myc‑mediated pathways, 
and thereafter promote the proliferation and survival of 
glioblastoma cells and protect them from apoptosis (20,74). 
Markedly, GSK 3β could transfer from the cytoplasm to the 
nucleus in glioblastoma (GBM) when stimulated by ionizing 
radiation (IR), and could bind to p53 binding protein 1 (53BP1) 
at Ser166. The binding of GSK 3β with 53BP1 results in the 
increased DNA double‑strand break (DSB) repair in GBM 
after IR (75) (Fig. 5). Notably, GSK 3β inhibitor, SB216763, 
comparatively decreases the proliferation of GBM cells 
and induces apoptosis of GBM cells by halting DSB repair. 
Similarly, it has been revealed that GSK 3β inhibitor could 
block the NF-κB pathway and reduce the NF‑κB‑mediated 
transcription in osteosarcoma (OSA) (76).

However, as the present inhibitors are not specific but 
targeting both GSK 3α and GSK 3β, the oncogenic role of 
GSK 3β has been explored by gain and loss-of-function 
approaches of transgenic mice, including both knockout and 

knock‑in animal models. A study by Kerkela et al revealed that 
the GSK 3β-/- mice exhibited hypertrophic myopathy, which was 
caused by cardiomyocyte hyperproliferation with increased 
expression and nuclear localization of three important regu-
lators of proliferation (GATA4, cyclin D1, and c‑Myc) (77). 
Furthermore, Hoeflich et al reported that disruption of the 
GSK gene resulted in embryonic lethality caused by severe 
liver degeneration during mid-gestation with the activation of 
the transcription factor activation NF-κB, and the apoptotic 
sensitivity of GSK 3β-/- fibroblasts was a direct consequence 
of GSK 3β deficiency (78). Using GSK 3β knock-in mice, 
studies have revealed that GSK-3 supports the maintenance 
of MLL leukemia cells by promoting continuous degradation 
of the cyclin-dependent kinase inhibitor p27Kip1 (79,80). In 
addition, phosphorylation of mTOR, p70S6K, and 4E‑BP1 
were impaired in GSK 3β knock-in mice (81). Therefore, 
GSK 3β can be perceived as an oncogenic protein and GSK 3β 
inhibitors are potential new drugs in cancer therapy.

4. Role of GSK 3β in oncotherapy

GSK 3β is also considered to be a pivotal mediator in regulating 
the sensitivity of tumor cells for chemotherapy and radio-
therapy. It has been observed that the expression of GSK 3β 
is significantly increased in paclitaxel-resistant ovarian 

Figure 5. Molecular pathways revealing how GSK 3β influences tumor sensitivity to different chemo‑therapeutic agents. In glioblastoma, GSK 3β inhibition 
improves temozolomide sensitivity by regulating the Mdm2/P53 and c-Myc/MGMT signaling pathways, which upregulate the methylation of MGMT promoter. 
Additionally, GSK 3β inhibitor enhances the sensitivity of pancreatic cancer to gemcitabine by negatively regulating the cyclin D1/CDK4/6 complex-dependent 
phosphorylation of Rb tumor suppressor protein. GSK 3β, glycogen synthase kinase 3β; DNMT3A, DNA methyltransferase 3 alpha; Mdm2, mouse double 
minute 2; MGMT, O6‑methylguanine DNA methyl transferase; TP53INP1, tumor protein 53‑induced‑nuclear‑protein 1; IR, ionizing radiation; 53BP1, p53 
binding protein 1; CDK 4/6, cyclin-dependent kinase 4/6; Rb, retinoblastoma; E2F, E2 transcription factor.
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carcinoma cell line (SKOV3) (82). Moreover, downregulation 
of GSK 3β increased the therapeutic effect of 5‑fluorouracil 
(5-FU), abolished cell viability and colony growth, and reduced 
the xenograft tumor mass in various drug-resistant p53-null 
colon cancer cell lines, which implies that GSK 3β inhibitor, in 
combination with chemotherapy, may represent a novel strategy 
for the treatment of chemotherapy-resistant tumors (83). 
GSK 3β inhibition was revealed to allow chemo-resistant 
carcinoma cells to become more susceptible to the synthetic 
multi-kinase inhibitor (sorafenib) which inhibits cell growth 
and angiogenesis (84). In addition, the increased expression of 
GSK 3β phosphorylation at Ser9 has been revealed to promote 
the chemo-sensitivity in cisplatin-resistant CP70 cells. The 
pGSK 3β (Ser9) increased the cisplatin resistance of ovarian 
carcinomas by reducing the GSK 3β regulated stabilization of 
p53 expression (85). Furthermore, LY294002, a PI3K inhibitor, 
has been revealed to enhance chemotherapy-induced apoptosis 
and the cleavage of caspase-8 by promoting GSK 3β dephos-
phorylation at Ser9 (86). Similarly, in MCF-7 breast cancer 
cells, selective inhibition of GSK 3β attenuated cytotoxicity 
induced by histone deacetylase inhibitor trichostatin A (87). 
Additionally, GSK 3β inhibition also enhanced the sensitivity 
of glioblastoma cells to radiation (75). In glioblastoma, GSK 3β 
inhibition improved the therapeutic effect of temozolomide 
by modulating the expression of O6‑methylguanine DNA 
methyl transferase (MGMT) promoter via c-Myc signaling 
pathway (74,88). Moreover, GSK 3β inhibitor enhanced the 
sensitivity of pancreatic cancer to gemcitabine by decreasing 
the expression of tumor protein 53-induced-nuclear-protein 1 
(TP53INP1), a pro‑apoptotic stress‑induced or DSB 
repair-mediated p53 target gene, and by downregulating the 
CDK4/6 complex-dependent phosphorylation of Rb tumor 
suppressor protein (89,90) (Fig. 5).

Collectively, GSK 3β regulates various responses to 
chemotherapy among a variety of tumor cell types, which is 
not entirely consistent with its role as a tumor suppressor or 
tumor promoter. On the one hand, GSK 3β inhibitor acts as 
a tumor promoter to attenuate the sensitivity of breast cancer 
cells to chemotherapy. On the other hand, GSK 3β functions as 
a tumor promoter for pancreatic cancer and GSK 3β inhibitor 
enhances the sensitivity of pancreatic cancer cells to chemo-
therapy. Therefore, the mechanisms of the GSK 3β signaling 
pathway in tumorigenesis and drug responses are significantly 
diverse, and require further investigations.

5. GSK 3β inhibitors in antineoplastic treatment

GSK 3β has been revealed to play a critical role in the regulation 
of a variety of cellular functions, including cell proliferation, 
differentiation, motility, apoptosis and the cell cycle (1,2,10). 
In addition, GSK3 inhibitors may be appropriate for the treat-
ment of certain diseases, including diabetes, bipolar disorder, 
inflammation and certain types of cancer (91). Inhibitors of 
GSK 3β are categorized as GSK 3β-selective or non-selective 
and ATP‑competitive or non‑ATP‑competitive (92‑121).

Lithium, a well-documented inhibitor of GSK3, can 
promote phosphorylation of GSK 3β at Ser9 and inhibit the 
activity of GSK 3β by competing with magnesium (Mg2+) rather 
than ATP or its substrate. It has been indicated that lithium has 
become a gold standard for the treatment of bipolar mood and 

nervous disorders (92,93). Additionally, lithium has an effect 
on embryonic development by promoting the differentiation 
of epithelial cells, increasi calcngium (Ca2+) storage in the 
bones, and hindering the entering of the cell cycle (94-96). 
Lithium has been revealed to induce apoptosis in both Jurkat 
cells and differentiated immortalized hippocampal neurons 
by stimulating the death domain-containing receptor Fas (97). 
Notably, the treatment with lithium was revealed to increase 
the levels of p21WAF/Cip1 (a protein with anti-apoptotic function) 
and survivin (a protein that supports the growth of cells by 
suppressing apoptosis and promoting cell proliferation) in 
human GBM cells (98). Furthermore, lithium was revealed to 
inhibit cell motility and compromise the invasive phenotype of 
v-Src-transformed cells, which was mediated by the activation 
of phospho-tyrosine phosphatases via the regulation of the cell 
redox status (99).

To date, several compounds targeting GSK 3 are still 
under pre-clinical studies, and few of them are in clinical 
trials (Table I). The mechanisms of GSK3 inhibition greatly 
vary. Both lithium and SB216763 have been demonstrated to 
have effects on tumor growth by inhibiting cell proliferation, 
however 9‑ING‑41 tends to induce apoptosis (100). SB216763, 
an ATP‑competitive inhibitor of GSK 3β, has been revealed 
to downregulate AR‑mediated prostate cancer cell growth 
in vitro and in vivo (101,102). It has also been revealed to 
potentiate the death ligand-induced apoptotic response 
in pancreatic cancer cells (PANC1 and MIA PaCa‑2) by 
activating the c-Jun N-terminal kinase (JNK) pathway (103). 
Similarly, SB‑415286, another ATP‑competitive inhibitor 
specific for GSK 3β, was demonstrated to induce the expres-
sion of a β-catenin-LEF/TCF regulated reporter gene (104). Its 
treatment potentiated TRAIL‑ and CH‑11‑induced apoptosis 
in HepG2 cells, and induced growth arrest and apoptosis 
in multiple myeloma (MM) cells (105,106). Additionally, 
it decreased the viability of Neuro‑2A cells, and induced 
G2/M arrest (107). Non‑ATP competitive GSK 3β inhibitors, 
including LiCl, TDZD‑8 and L803‑mts, could also induce 
significant inhibition of tumor growth (108). A previous 
study has revealed that TWS119 could reverse the effects 
of tamoxifen on β-catenin and Snail expression thereby 
inhibiting GSK-3β/β-catenin activation (109). Furthermore, 
TWS119 exhibited different effects on CD4+ and CD8+ T 
cells in tumor‑infiltrating lymphocytes (TILs) by stimulating 
the expansion of naive T cell and CD8 stem cell-like memory 
T cells, and inducing CD8+ effector T-cell proliferation in 
TILs (110). The selective GSK 3β inhibitor, manzamine A, 
can reduce the metastatic potential of AsPC‑1 pancreatic 
cancer cells and promote TRAIL‑induced cell apoptosis (111). 
Inhibition of GSK 3β with AR‑A014418 was also revealed 
to increase the sensitivity of PANC1 cells to gemcitabine by 
regulating the Rb/E2F pathway (93) (112).

Notably, 9-ING-41 [benzofuran-3-yl-(indol-3-yl)
maleimide], a maleimide‑based ATP‑competitive small 
molecule GSK-3β inhibitor, has been demonstrated to be 
more selective for GSK 3β than for other related kinases (113). 
In vitro cell line studies and in vivo animal models have 
revealed the antitumor effects of 9-ING-41 in various cancers, 
including bladder cancer (114), renal cancer (115), neuroblas-
toma (116), B‑cell lymphoma (117), breast cancer (118) and 
glioblastoma (119). A previous study on 9‑ING‑41 revealed 
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that it upregulates the phosphorylation of the inhibitory serine 
residue of GSK 3β in ovarian cancer cells, and subsequently 
induces the apoptosis of ovarian cancer cells (120). A study 
from Ugolkov et al demonstrated that 9-ING-41 leads to the 
regression of patient-derived xenograft (PDX) tumors from 
metastatic pleural effusions obtained from patients with 
progressive, chemo-refractory breast cancer (118). Their 
group also revealed that 9-ING-41 significantly enhanced 
1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) anti-
tumor activity in chemo‑resistant PDX models of GBM by 
decreasing tumor size and increasing overall survival (119). 
In addition, 9-ING-41 could attenuate the progression of 
pulmonary fibrosis by improving lung functions and inhibition 
of myofibroblast differentiation in lung fibroblasts ex vivo and 
pulmonary fibrosis in vivo (121). With significant pre‑clinical 
antitumor activity, 9-ING-41 is under phase 1/2 clinical 
trials in patients with refractory hematologic malignancies 
or solid Tumors (Clinical Trials ID: NCT03678883) 
(https://clinicaltrials.gov/ct2/show/NCT03678883).

6. GSK 3β in cancer immunotherapy

A previous study has revealed the immune‑regulatory role 
of GSK 3β via the phosphorylation of two important tran-
scription factors, NF-κB and CREB (122). Moreover, the 
phosphorylation of these two transcription factors could result 
in proteasomal degradation. In addition, the inactivation of 
GSK 3β has been revealed to lead to the nuclear transfer of 
NF-κB and CREB, which stimulate the secretion of inflamma-
tion-related cytokines (123,124).

For the innate immune system, the NK lymphocyte plays 
a critical role, and its activation relies on specific receptors 
including NKG2D/2B4 or NKG2D/DNAM‑1. However, these 
activators may inhibit the activity of GSK 3β via the ERK 
or Akt signaling pathways (125,126). Studies on GSK 3β 
knockdown and its inhibitors revealed that the inactiva-
tion or silencing of GSK 3β leads to NK cell activation and 
enhanced function (127,128). A study on MM cells indicated 
that the inhibition of GSK3 upregulated MICA transcription 
and translation both in MM cell lines and in tumor cells 
isolated from MM patients, without significant effects on the 
basal expression of the MICB and DNAM‑1 ligand polio-
virus receptor/CD155. Moreover, GSK 3 inhibitors increased 
NK-mediated cytotoxicity of MM cells by activating NK cell 
degranulation. In addition, combined with lenalidomide or 
melphalan, treatment with GSK‑3 inhibitors induced MICA 
expression and increased NK cell-mediated tumor killing 
by promoting NKG2D recognition in NK cells. Therefore, 
GSK-3 inhibitors could be novel therapeutic drugs targeting 
MICA expression and improving immune response in MM 
patients (129). For the acute myelogenous leukemia (AML) 
patients, NK cells expressed high levels of GSK 3β. Therefore, 
treatment with the GSK 3 inhibitors or the genetic inactiva-
tion of the GSK 3 led to the increased activity of NK cells 
to kill AML cells. Furthermore, GSK3 inhibition promoted 
the formation AML‑NK cell conjugates by upregulating LFA 
expression on NK cells and by inducing ICAM‑1 expression 
on AML cells (130). Another study on GSK 3 revealed that its 
inhibitor significantly upregulated transcription factors associ-
ated with late-stage NK-cell maturation, such as E-box binding 

Table I. Specific and non‑specific GSK 3β inhibitors.

Compound Specificity Inhibition mode Applications/mechanisms (Refs.)

Lithium Non‑specific GSK 3β Mg2+ competitive Bipolar mood and nervous disorders (96)
SB216763 Non‑specific GSK 3β ATP competitive Inhibits AR‑dependent reporter gene activity (96‑99)
SB415286 Non‑specific GSK 3β ATP competitive Induces the accumulation of cells in the G2/M (100‑103)
   phase of the cell cycle and apoptosis in 
   Neuro‑2A cells 
TDZD‑8 Specific GSK3β Non‑ATP competitive Activates the ERK pathway and increases (104)
   expression of EGR-1 and p21 genes, which
   suppresses the proliferation of glioblastoma cells
L803‑mts Specific GSK3β Non‑ATP competitive Significant inhibition of tumor growth in mouse (104)
   xeno graft models of prostate cancer
TWS119 Specific GSK3β ATP competitive Decreases ATP production in cells, resulting in (105 and 106)
   the increase in the AMP/ATP ratio and triggers
   AMPK in prostate cancer cells
Manzamine A Specific GSK3β Non‑ATP‑competitive Inhibits autophagy and tumor growth  (107)
AR‑A014418 Specific GSK3β ATP competitive Mainly suppresses the growth of pancreatic (86 and 108)
   cancer by reducing the phosphorylation of
   GSK3α with concomitant Notch1 reduction
9‑ING‑41 Specific GSK3β ATP‑competitive Inhibits the growth of various cancers and (109‑117)
   attenuates the progression of pulmonary fibrosis

GSK 3, glycogen synthase kinase 3; AR, androgen receptor; ERK, extracellular signal‑regulated kinase; EGR‑1, early growth response‑1; 
AMP, adenosine monophosphate; ATP, adenosine triphosphate; AMPK, AMP‑activated protein kinase.
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homeobox 2 (ZEB2), PR/SET domain 1 (PRDM1), and T‑box 
21 (TBX21) and subsequently increased CD57 acquisition 
and maturation. In addition, NK cells, which were expanded 
ex vivo in the presence of GSK3 inhibitor, produced more 
TNF and IFN-γ, natural cytotoxicity and antibody-dependent 
cellular cytotoxicity (131). Therefore, currently, there are 
several ongoing clinical trials of adaptive NK cells treated 
with GSK 3 inhibitors for relapsed AML, ovarian cancer as 
well as other solid tumors.

Accumulating evidence has demonstrated the significance 
of GSK 3 in T cells. Because it is constitutively active in 
resting T cells, GSK 3 acts as a negative regulator of T-cell 
response by inhibiting CD8+ T-cell proliferation and IL-2 
production (132). The inactivation of GSK 3 can specifically 
downregulate PD-1 expression by enhancing CD8+ CTL func-
tion and clearance of lymphoma cells (133,134). Additionally, 
GSK-3 inhibition was revealed to be as effective as anti-PD-1 
and PD-L1 blocking antibodies in suppressing the growth of 
melanoma and lymphoma in mouse models (135). Therefore, 
GSK-3 was revealed as a central regulator of PD-1 expression. 
Recently, the same group revealed that GSK-3 also negatively 
regulated lymphocyte activation gene‑3 (LAG‑3) expres-
sion on CD4+ and CD8+ T cells. The combination of GSK-3 
inhibitor with LAG‑3 blockade resulted in the suppression 
of B16 melanoma growth and enhancement of tumor clear-
ance, by increasing the expression of the transcription factor 
T‑bet and binding with the LAG‑3 promoter, and subsequently 
increasing granzyme B and interferon‑γ1 expression (136). 
GSK 3β inhibition has been reported to increase the tumor 
cell cytotoxic capacity of CD8+ memory stem T cells in vitro 
against gastric cancer cells (137). Moreover, the inactivation 
of GSK 3β has been revealed to stimulate iTreg differentia-
tion and increase the suppressive activity via the activation of 
the TGF-β/Smad3 signaling pathway (138). Furthermore, 
treatment of GBM‑specific IL‑13 CAR‑T cells with the GSK 
3 inhibitor resulted in reduced PD-1 expression, increased T 
cell survival and proliferation. Therefore, GSK 3 inactivation 
has also been revealed to contribute to the tumor treatment in 
CAR‑T cell immunotherapy (139). Because the polarized‑M2 
phenotype of macrophages affects tumor growth, invasiveness, 
angiogenesis (140), and GSK 3β has been reported to enhance 
the polarization of microglia toward M2 (141), GSK 3β may 
be the potential therapeutic target for cancer immunotherapy. 
Collectively, these studies revealed that GSK 3 inhibition 
could be a new immunotherapeutic strategy for oncotherapy.

7. Conclusion

It has been widely acknowledged that GSK 3β is involved in 
tumorigenesis, cancer progression and metastasis. However, 
there are still controversies about the role of GSK 3β as a tumor 
suppressor or tumor promoter. GSK 3β may function as a tumor 
suppressor which inhibits neoplastic growth in prostate, oral 
and lung cancer when overexpressed or activated (51,142-144). 
Conversely, GSK 3β has also been revealed to facilitate carci-
nogenesis, and is recognized as a ‘tumor promoter’ in colon, 
pancreatic and ovarian cancers (65,89,90,120,145). Therefore, 
based on its pivotal role in tumorigenesis and tumor progression, 
GSK 3β is predicted to be a clinical prognostic indicator for 
certain malignant cancers. In conclusion, a more comprehensive 

understanding of GSK 3β would be comparatively beneficial to 
disease therapy. Targeting GSK 3β may be an ideal therapeutic 
strategy for malignant tumors that are characterized by infinite 
proliferation, metastasis and chemo-resistance, thus providing 
significant insight for the further research of tumor treatment.
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