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Abstract: The paper discusses a way to configure a stepped-frequency continuous wave (SFCW)
radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple
transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel
for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how
commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can
thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and
an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one
transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of
the received I/Q signals have to be retrieved, preferably without employing an additional receiver
and components to retain the system low-cost and simple. The present paper illustrates that the
difference between the phases of TX and RX LO signals varies when the LO frequency is changed
because of the timing of the commencement of the mixing. The paper then proposes a technique to
compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to
reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and
the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed
method for the compensation are demonstrated by experiments at a single frequency and sweeping
frequency, respectively. The results show that the proposed method can compensate for the LO initial
phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a
low-cost SDR.

Keywords: local oscillator (LO); phase compensation; radar; software-defined radio (SDR); stepped-
frequency continuous wave (SFCW); ultra-wideband (UWB)

1. Introduction

Radar in the microwave frequency range is finding an increasing number of appli-
cations in many fields, such as imaging buried and concealed objects non-destructively,
automotive, biomedical, and material characterization. The measurement configuration
and set-up may need to be customized and optimized for a specific application to maximize
the performance before going into production. Therefore, prototyping a radar system is an
important process for exploring new applications. A flexible instrument is required for pro-
totyping because various measurement parameters need to be tuned. Stepped-frequency
continuous wave (SFCW) radar based on a commercial vector network analyzer (VNA)
has been commonly employed for this purpose, especially for ultra-wideband (UWB) and
near-range radar applications, as it allows users to easily control various parameters and
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set-up such as the frequency range and measurement sequences. However, commercial
VNAs usually have too many functions, which are not always necessary to configure a
simple SFCW radar, and are therefore often too expensive for only prototyping; moreover,
their typical large size and heavy weight may constrain the system configuration. For these
reasons, although commercial VNAs are suitable for prototyping radar systems, they may
not always be the best choice. Therefore, other cheaper, smaller, and more lightweight
solutions would be appreciated.

Software-defined radio (SDR) is a tool that is primarily intended to be used to test
and prototype various communication applications such as wireless communications
and the Global Navigation Satellite System (GNSS). For example, these include mobile
telecommunication [1,2], multi-static multiple-input and multiple-output (MIMO) com-
munication [3–5], Wi-Fi [6], characterizing radio-frequency identification (RFID) tags [7,8],
prototyping a global positioning systems (GPS) receiver [9,10], locating satellites [11], and
indoor positioning [12]. The use of SDR is becoming popular because of the fully digital
in-phase and quadrature (I/Q) interface, which provides flexibility in signal generation
and postprocessing of received signals. An SDR typically employs a direct conversion
(homodyne, zero-IF) transmitter and receiver architecture to make it simple, compact,
and inexpensive compared to general-purpose RF instruments such as the VNA and the
spectrum analyzer. For example, the price of low-cost SDRs can be one-hundredth that of
mid-grade VNAs. Therefore, it is suitable for prototyping.

Some previous studies have prototyped radars using SDRs for various applications.
For example, a frequency-modulated continuous wave (FMCW) radar for exploring polar
ice sheet [13], a random noise radar for through-the-wall surveillance [14], multi-static
MIMO radar for monitoring moving targets [15], a waveform adaptive MIMO radar [16],
and a forward scatterer radar for profile reconstruction [17]. It is straightforward to build
an FMCW radar using the instantaneous (modulation) bandwidth of an SDR at a selected
carrier or local oscillator (LO) frequency (see, e.g., in [13,15,18]) and an SFCW or orthogonal
frequency division multiplexing (OFDM) radar within the instantaneous bandwidth (see,
e.g., in [19]). Radars using the instantaneous bandwidths of SDRs require only one TX
and RX streaming to obtain a waveform. The TX and RX streaming must be synchronized,
but it can be easily done by using a function provided by the API of SDRs, e.g., by using
timestamps. Therefore, it is simple to build an UWB radar using an SDR if the SDR offers a
wide enough instantaneous bandwidth. For example, the authors of [20,21] constructed an
SDR with 800 MHz bandwidth, which can achieve approximately 20 cm resolution. An
SDR used for a random noise radar system in [14] has 400 MHz instantaneous bandwidth
and achieved 37.5 cm range resolution. These wideband SDRs are typically more expensive
than low-cost ones in the market that this work is targeting. Low-cost SDRs are intended
to be used primarily for communication, the instantaneous bandwidth is thus typically
not very wide. The pulse width cannot be narrow enough to achieve a high time or range
resolution by using the instantaneous bandwidth of low-cost SDRs. For example, SDR-
based radars using 25 MHz modulation frequency bandwidth achieved a pulse width of
approximately 10 m [18,19]. The pulse width obtained in this manner is not narrow enough
for a near-range radar.

By contrast, SFCW can use the full carrier (modulation) frequency bandwidth of SDR,
which is usually wide to adapt to a wide range of frequency bands for various applications.
With SFCW, it is thus possible to construct a UWB radar, and it is more suitable for near-
range radar. The key operation of the SFCW radar is to coherently measure the amplitude
and phase of CW signals at a number of frequencies. However, the phase of the CW signals
cannot be directly obtained due to the unknown initial phase the of LO signals when low-
cost SDRs, which have only one TX and RX channel, are used. There are a few examples of
SFCW radar based on SDRs with multiple RX channels [22,23]. Such SDRs usually cost
significantly more than low-cost ones. Employing RF switches is another way to retrieve
the phase coherently [24,25]; however, it also costs for the additional components. The
paper proposes an alternative method of circumventing the incoherent phase by using the
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internal RF loopback of the transceiver chip and with no additional components unlike
previous studies, thus while retaining the important feature of SDRs—low cost—is retained.
Additionally, the cause and mechanism of the random phase in relation with the proposed
method is discussed thoroughly.

The next section discusses the mechanism underlying the unknown initial phases of
the LO signals, which are contained in sampled CW signals and proposes a compensation
technique. Section 3 presents experiment results that illustrate the effect of the unknown
initial phase. In addition, an experiment with a model of SFCW radar using the cable
through configuration is presented to demonstrate how the proposed method works and
how a short pulse can be obtained. Note that the work presented here was developed
using a commercial off-the-shelf and low-cost SDR, Nuand bladeRF, which employs the
RF transceiver LimeMicro LMS6002D. The method of implementing the proposed method
may depend upon the model of SDR used. Nuand bladeRF is chosen in this work because
it has I/Q input/output, full duplex capability, and a relatively wider carrier frequency
bandwidth compared with other low-cost SDRs available in the market. These are necessary
features to build a near-range UWB SFCW radar. Note also that the paper extends the
previous work [26] and also provides more comprehensive explanations of the unknown
initial phase of LO signals and experiment results.

2. SDR-Based SFCW Radar

The working principle of SFCW radar is reviewed and how it can be implemented
into an SDR is discussed in this section to illustrate the issue of the LO initial phase. To
address the issue, a solution using the internal RF loopback channel of the transceiver chip
is presented.

2.1. Working Principle

The SDR consists of a transmitter (TX) path, which modulates baseband signals by a
local oscillator (LO) and up-converts them to an RF frequency, and a receiver (RX) path,
which demodulates received signals by another LO and down-converts them to a baseband
signal, i.e., a direct conversion (also known as homodyne and zero-IF) detector is used,
in contrast to the super-heterodyne detector used in commercial VNAs. Because DC
offset and I/Q imbalance can cause a serious deterioration in performance in the direct
conversion detector, an I/Q baseband signal xb(t) at a frequency ωb, which corresponds to
an intermediate frequency (IF) signal, is digitally generated in the host computer as

xb(t) = exp(jωbt) (1)

The generated digital baseband signal xb(t) is then transferred to the SDR. Note that for
simplicity the amplitude of the I/Q baseband signal is assumed to be 1 here; however,
one may want to scale the signal so that it fully spans the dynamic range of digital-to-
analogue converter (DAC) of the SDR to have a better signal-to-noise ratio. The transferred
I/Q baseband signal is converted to an analogue signal for the in-phase and quadrature
channels separately at the DACs in the SDR. The signal is then mixed by an image rejection
mixer (IRM) or I/Q mixer with the LO signal for the in-phase channel and with the 90◦

phase-shifted LO signal for the quadrature channel at the carrier frequency ωLO which is
equivalent to multiplying with xLO(t) = exp(jωLOt), as

x(t) = xb(t) · xLO(t)

= exp(jωbt) · exp(jωLOt)

= exp{j(ωLO + ωb)t} (2)

The baseband signal is up-converted to the frequency ωLO + ωb by the mixing as seen in
the above equation. The mixed signal at the frequency ωLO + ωb is then transmitted to the
TX antenna from the TX port and radiated. The RX signal y(t) received by the RX antenna
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and entering the RX port can be modeled as the TX signal with changes in amplitude Aω

and phase φω due to the signal propagation and reflection at the frequency ω = ωLO + ωb:

y(t) = Aωx(t) exp(jφω)
= Aω exp{j(ωLO + ωb)t + jφω}

(3)

The received signal y(t) is mixed with the complex conjugate of the RX LO signal yLO(t) =
exp(jωLOt) at the carrier frequency ωLO:

yb(t) = y(t) · y∗LO(t)
= Aω exp{j(ωLO + ωb)t + jφω} exp(−jωLOt)
= Aω exp(jωbt + jφω)

(4)

where ∗ denotes the complex conjugate. The received signal is down-converted to the RX
baseband signal at the baseband (IF) frequency ωb. The RX baseband signal is sampled by
analogue-to-digital converters (ADCs) separately for the in-phase and quadrature channels,
and is digitally output from the SDR to the host computer. The baseband signal can then
be digitally filtered and mixed with a CW signal with frequency ωb, i.e., exp(−jωbt), to
further down-convert to DC, which corresponds to the complex amplitude, i.e., amplitude
and phase, or I/Q data at the frequency ω = ωLO + ωb. However, due to noise, LO leakage,
I/Q imbalance or various reasons, the mixed signal may not be down-converted exactly
to DC and may fluctuate. Therefore, the sample mean of the signal is calculated to obtain
stable I/Q data:

S(ω) = 1
T
∫

T yb(t) exp(−jωbt) dt
= 1

T
∫

T Aω exp(jφω) dt
= Aω exp(jφω)

(5)

Repeating the operation for various carrier (LO) frequencies ωLO allows us to collect the
complex amplitudes for a wide range of TX frequencies ω = ωLO + ωb, which correspond
to the forward transmission S-parameter, i.e., S21, between the TX and RX ports. Therefore,
the impulse response can be obtained by the inverse Fourier transform of the obtained
complex amplitudes for a range of frequencies. This is how SFCW radar acquires a
UWB pulse.

2.2. Implementation in SDR and Compensation of the Initial Phase of the LO Signal

The working principle of SFCW radar discussed in the previous section is imple-
mented into a low-cost SDR, Nuand bladeRF. The specification is summarized in Table 1.
The SDR uses an RF transceiver, LimoMicro LMS6002D, which has two phase-locked loops
(PLLs) as separate LOs for the TX and RX as shown in Figure 1. The outputs of the PLLs,
i.e., carrier or LO signals, are mixed with the TX baseband signal xb(t) in the TX path and
with the RX signal y(t) in the RX path. The phase of the mixed signals contains the initial
phases of the LO signals φTX and φRX, which vary every time depending on the timing of
the mixing. The situation is schematically illustrated in Figure 2. A TX baseband signal
xb(t) (middle left) is entering the mixer at time τTX and is mixed with a TX LO signal xLO(t)
(top left). Because the TX LO signal is free-running, the phase at the time τTX cannot be
controlled, and thus the TX LO signal appears to have an initial phase that depends entirely
on the phase at the commencement of mixing τTX. In the figure, the TX LO signal could be
in black or gray depending on the timing, for example. The initial phase can be represented
by that relative to the time when the mixing begins, τTX; i.e., φTX = φTX,1 for the signal in
black or φTX,2 for the signal in gray. The TX LO signal can thus be written explicitly with
the initial phase φTX as

xLO(t) = exp(jωLOt + jφTX) (6)
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Mixing with the TX LO signal xLO(t) and TX baseband signal xb(t) results in the TX signal
x(t) with the initial phase of the TX LO signal φTX:

x(t) = exp(jωt) · exp(jωLOt + jφTX)
= exp{j(ωLO + ωb)t + jφTX}

(7)

As one can see in the figure, the TX signal x(t) (bottom left) retains the initial phase of the
TX LO signal φTX. The TX signals therefore exhibit different phases for ones produced by
the TX LO signals with the initial phases φTX,1 and φTX,2 as shown in black and gray in the
figure. As seen in the above equation and illustrated in the figure, the initial phases of the
mixed TX signals x(t) relative to the commencement of mixing correspond to those of TX
LO signals, φTX,1 and φTX,2 in the figure, assuming the initial phase of the TX baseband
signal xb(t) is zero.

Table 1. RF specification of a low-cost SDR, Nuand bladeRF, which is based on an RF transceiver, LimeMicro
LMS6002D [27,28].

Carrier frequency range 300 MHz to 3.8 GHz
Instantaneous bandwidth 1.5, 1.75, 2.5, 2.75, 3, 3.84, 5, 5.5, 6, 7, 8.75, 10, 12, 14, 20, 28 MHz

(programmable)
Maximum RF output power +6 dBm (typ.)
Maximum RF input power +23 dBm
ADC/DAC sampling rate 0.16–40 MHz
ADC/DAC resolution 12 bits
TX gain control 56 dB range, 1 dB step
TX LO leakage −50 dBc
RX noise figure 3.5 dB (LNA1 @ 0.95 GHz), 5.5 dB (LNA2 @ 1.95 GHz),

10 dB (LNA3 @ 1.95 GHz)
RX gain control 61 dB range, max. 1 dB step (RXVGA1), 3 dB step (RXVGA2)
Reference clock frequency 38.4 MHz
Accuracy of the reference clock 1 ppm (typ.)

Figure 1. Functional block diagram of an RF transceiver, LimeMicro LMS6002D, which is employed
by a low-cost SDR, Nuand bladeRF [28]. bladeRF supplies 38.4 MHz reference clock to the chip.
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The same applies to the RX path: the RX signal y(t) (middle right) is mixed with an
RX LO signal yLO(t) (top right) starting at time τRX. The RX LO signal has an initial phase
depending on the timing, e.g., φRX,1 or φRX,2 in the figure. The RX LO signal yLO(t) with
the initial phase φRX can thus be written as

yLO(t) = exp(jωLOt + jφRX) (8)

The mixing of the RX signal y(t) with the RX LO signal yLO(t) results in the RX baseband
signal yb(t) (bottom right) down-converted to the frequency ωb. The mixed RX signal
again retains the initial phase of the RX LO signal as shown in black and gray in the figure.
Note that the initial phase of the RX baseband signal corresponds to the additive inverse
of the that of the RX LO signal because the complex conjugate of the RX LO signal is
mixed to down-convert. Because the RX signal can be modeled as the amplitude-altered
and phase-shifted version of the TX signal x(t), respectively, by Aω and φω as shown in
Equation (3), the RX baseband signal yb(t) also carries the initial phase of the TX LO signal
φTX in addition to that of the RX LO signal φRX:

yb(t) = y(t) exp(−jωLOt− jφRX)
= Aω(t) exp(jφω) exp(−jωLOt− jφRX)
= Aω exp(jωbt + jφω + jφTX − jφRX)

(9)

As mentioned, the TX and RX LO signals xLO(t) and yLO(t) are freely running, and the
initial phases of the LO signals φTX and φRX depend upon the timing of the commencement
of the mixing. The initial phases of the TX signal x(t) and RX baseband signal yb(t) would
become zero and the I/Q data obtained by simply applying the processing discussed in the
previous section become phase coherent if the TX and RX mixing begins where the initial
phases of LO signals were zero. However, it may not be viable on most of low-cost SDRs as
it requires the very fine timing control. For example, the LO signals could be in gigahertz
frequency range whereas the TX baseband signal may be sampled in megahertz sampling
frequency. The sample shift of the TX baseband signal is not fine enough to control the
initial phase of the TX LO signal. The timing of RX signals coming into the RX port cannot
be controlled in general as they are not predictable in radar application. Therefore, the
terms of the LO initial phases in Equation (9) are unknown and vary every time; however,
they need to be either known or canceled to retrieve the phase of the complex amplitude φω .

The most straightforward way to compensate for the initial phases of the LO signals
is to employ an additional receiver, commonly referred to as a reference receiver, which
is implemented in commercial VNAs [29] and SDRs that have two or more synchronized
receivers. Reference receiver is connected at the output of an LO source to directly sample
each LO signal. However, only one receiver per port is available in the case of low-cost
SDRs, which makes it difficult for such SDRs to be used for SFCW radar. A few previous
studies attempted to circumvent the problem by employing additional components. For
example, the authors of [24] used two single pole double throw (SPDT) switches, one
each at the TX and RX ports, to configure two signal paths, which are a device under test
(DUT) path with antennas and a reference path with cable through. The authors of [22,23]
employed an SDR with two RX ports, and TX signals can thus be directly input to the second
RX port by using a splitter at the TX port. The authors of [25] performed measurements
in reflection mode (i.e., S11) by employing a circulator, SPDT, and 50 Ω terminator. These
previous works succeeded to obtain phase-coherent I/Q data and UWB pulses. However,
employing additional components increases the overall cost and complexity of a system
which may not be taking the full advantage of using an SDR and may be better to avoid
if possible.

In this study, the internal RF loopback shown in the functional diagram of the
transceiver chip in Figure 1 is used. In this way, no additional components are needed.
Instead, TX and RX streaming need to be performed twice to measure two paths, i.e., the
DUT and the internal RF loopback paths. The RX baseband signal through the loopback
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path has the same initial phases as that in the DUT path (a detailed explanation is provided
later), but a different delay φω,LB due to the difference of the path lengths:

yb,LB(t) = Aω,LB exp(jωbt + jφω,LB + jφTX − jφRX) (10)

The unknown phase can be canceled by diving the RX baseband signal in the DUT path
yb(t) by the loopback path yb,LB(t) as follows to obtain the phase coherent RX baseband
signal ȳb(t):

ȳb(t) = yb(t)
yb,LB(t)

= Aω
Aω,LB

exp(jφω − jφω,LB)
(11)

The frequency component at the baseband frequency ωb can also be cancelled and down-
converted to the DC. The complex amplitude at ω = ωLO + ωb can therefore be obtained
by taking the average:

S(ω) = 1
T
∫

T ȳb(t) dt
= Aω

Aω,LB
exp(jφω − jφω,LB)

(12)

The obtained amplitude
Aω

Aω,LB
and phase φω − φω,LB are both relative to those of the

RF loopback path, Aω,LB and φω,LB. Similar to the response calibration in the VNA, the
amplitude and phase of a DUT alone, Aω and φω, can be obtained by dividing the data
using a cable through data, which further cancels the frequency response of the cables and
also the loopback path, Aω,LB and φω,LB.

The previous work [26] digitally down-converts the sampled baseband signals in DUT
and loopback channels separately by mixing a CW signal in the host computer, and the
down-converted signal in the DUT channel is divided by that in loopback channel. The
way thus performs the down-conversion and LO phase compensation separately. The
method presented in this paper combines the steps by dividing DUT baseband signal by
loopback channel. They are mathematically identical.

As mentioned earlier, the initial phases of the TX and RX LO signals must change
every time. However, the unknown phase term in Equation (9), i.e., φTX − φRX, is the
relative phase difference of the TX and RX LO signals, each initial phase φTX and φRX can
be defined relative to the input timings of the TX baseband signal xb(t) and RX signal
y(t), respectively, and the timing relative to another must remain the same if the timing
relationship between the TX and RX LO signals is kept unchanged. Therefore, the absolute
phases of the LO signals at the τTX and τRX may change every time, but their difference
φTX − φRX remains the same, and the division by RF loopback data thus works. It requires
the TX and RX LO signals to be synchronized. In the case of LMS6002D, the two PLLs for
the TX and RX share the same clock signal. The difference of the initial phases between TX
and RX LO signals changes if the frequencies of the TX and RX LO signals are re-tuned
because it changes the relative phase between the LOs. Therefore, the two TX and RX
streaming for the DUT and loopback paths must be performed one right after another
without frequency tuning. The method does not work if the TX and RX LO signals are
set to different frequencies because the relative phase between the signals with different
frequencies constantly varies.
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xLO(t) t

φTX,1

φTX,2

T = 2π
ωLO

⊗

xb(t) tτTX

T = 2π
ωb

⇓

x(t)
t

φTX,1

φTX,2 T = 2π
ωLO+ωb

yLO(t) t

φRX,1

φRX,2 T = 2π
ωLO

⊗

y(t)
tτRX

T = 2π
ωLO+ωb

⇓

yb(t) t

−φRX,1

−φRX,2

T = 2π
ωb

Figure 2. Schematic illustration of phase difference in TX signal and RX baseband signals due to the initial phases of LO
signals. A TX baseband signal xb(t) (middle left) is mixed at time τTX with a TX LO signal xLO(t) (top left). Depending on
the timing of the mixing, the TX LO signal exhibits the initial phase φTX,1 (signal in black) or φRX,2 (signal in gray). The
mixed signals x(t) (bottom left) exhibit different initial phases, which correspond to the phases of the TX LO signals relative
to that of the TX baseband signal. The same applies to signals in the RX path (signals on the right side); a RX signal y(t)
(middle right), which has zero initial phase in this example, begins to be received at time τRX and commences to be mixed
with a RX LO signal yLO(t) (top right). The two RX LO signals with different initial phases φRX,1 (signal in black) and φRX,2

(signal in gray) yield the RX baseband signals yb(t) (bottom right) with different phases of which the difference corresponds
to the phase difference of the RX LO signals. Note that only the in-phase components of signals are drawn for simplicity.
Furthermore, the LO frequency may be much higher than baseband frequency, i.e., ωLO � ωb, e.g., three to five orders, in
reality, but they are illustrated to be comparable for clarity.

3. Experiments

The method of compensating for the initial phases of LO signals by using the internal
RF loopback of a transceiver chip as the reference channel discussed in the previous section
is demonstrated by experiments using Nuand bladeRF x40.

3.1. At a Single Frequency

The relationship between the TX and RX LO signal phases discussed in the previous
section is first demonstrated at a single frequency in this section.

The TX and RX ports of bladeRF are connected by a 25 cm cable with a 20 dB attenuator
as shown in Figure 3. A TX baseband signal at 1 MHz is generated in the host computer
and input to the SDR. The TX and RX LO frequencies are both set to 1 GHz. The set-up is
summarized in Table 2. TX and RX streaming, which are synchronized based on the FPGA
timestamp, are repeated 10 times under two conditions: one with the LO frequency tuned
to 1 GHz before every streaming and the other with the LO frequency tuned only once
before the first streaming.
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The in-phase component of the received RX baseband samples for 10 repetitions is
shown in Figure 4. All the baseband signals consistently start being received at approxi-
mately 1.5 µs in both cases. This indicates that the TX and RX streaming are synchronized.
This yields the identical power spectra shown in Figure 5. However, the phase of the
received signals varies when frequency tuning is performed every time (Figure 4a), and
the signals thus exhibit randomly varying phase spectra (Figure 6a). This may be caused
by the slightly different timings of the frequency lock of the TX and RX PLLs, which
changes the relative phase between the TX and RX LO signals. By contrast, when frequency
tuning is performed only once at the beginning (Figure 4b), a consistent phase is obtained,
which yields the identical phase spectra shown in Figure 6b. The phase of the TX and
RX LO signals where the signals start being mixed (i.e., φTX and φRX in Figure 2) must be
different for the 10 repetitions of streaming. However, because frequency tuning is not
performed during the repetition, the relative phase between the TX and RX LO signals is
kept unchanged. Therefore, the unknown phase term φTX− φRX in Equation (9) is also kept
unchanged, and all the RX baseband signals have the same phase. The result verifies the
discussion in the previous section and implies that phase compensation using a loopback
signal works as long as the two streaming for the DUT and internal RF loopback paths are
performed immediately in quick succession without frequency tuning.

SDR
TX

RX

20 dB
att.

25 cm
coaxial cable

(a)

Nuand bladeRF

TX port

RX port

20 dB
att.

25 cm
coaxial cable

(b)

Figure 3. Measurement set-up of the experiment at a single frequency with 25 cm coaxial cable and
20 dB attenuator. (a) Schematic illustration and (b) photo.

Table 2. Set-up of the experiments.

Single Frequency Frequency Sweeping

LO frequency 1 GHz 249 MHz–3.749 GHz, 50 MHz step
Baseband frequency 1 MHz 1 MHz
Sampling frequency 32 MHz 32 MHz
Sampling length 4096 points = 128 µs 4096 points = 128 µs
Instantaneous bandwidth 2.5 MHz 2.5 MHz

DUT 25 cm cable, 20 dB attenuator
(1) 25 cm cable, 20 dB attenuator,

(2) 25 cm + 1.219 m cable,
20 + 10 dB attenuator
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Figure 4. In-phase component of the RX baseband signals at 1 MHz for 10 repetitions of TX and
RX streaming (a) with frequency tuning every time and (b) with frequency tuning only once at the
beginning. TX and RX LO frequencies are both set to 1 GHz. The baseband signals exhibit different
phase when frequency is re-tuned.
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Figure 5. Power spectra of the RX baseband signals for 10 repetitions of TX and RX streaming (a)
with frequency tuning every time and (b) with frequency tuning only once at the beginning. Both
cases give the same power spectra for 10 repetitive streams because the envelope of the baseband
signals are the same although the phases are different (Figure 4). Frequency components at 1 MHz
are the baseband signals and are the desired components. Components at DC are caused by DC
offset, and those at −1 MHz are the image of baseband signals caused by I/Q imbalance.
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Figure 6. Phase spectra of the RX baseband signals for 10 repetitions of TX and RX streaming (a) with
frequency tuning every time and (b) with frequency tuning only once at the beginning. Subfigure (a)
shows randomly varying phases at 1 MHz whereas phases at 1 MHz are consistent in subfigure (b).
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3.2. Frequency Sweeping

To construct a UWB radar in the step frequency manner, frequency responses in a wide
frequency range have to be collected. The LO frequency of the SDR must thus be swept
through a wide frequency range as SDRs typically have a narrow instantaneous bandwidth
that is not enough to reconstruct a short pulse. This section demonstrates sweeping the LO
frequency in the cable through configuration and shows that an SDR can be used to build a
UWB radar.

The TX baseband signal fixed at 1 MHz is again generated in the host computer and
transferred to the SDR. The TX and RX LO frequencies are swept so that the frequencies of
the signals transmitted from the TX port (i.e., the sum of the baseband and LO frequencies)
range from 250 MHz to 3.75 GHz, which is almost the full bandwidth of the LO frequency
of the SDR, with a step size of 50 MHz. At each LO frequency, two streaming for the DUT
and loopback paths are performed immediately in quick succession without frequency
tuning, as discussed in the previous section. The TX and RX sampling frequencies and the
number of baseband samples are respectively set to 32 MHz and 4096. In this experiment,
the DUT is a 25 cm coaxial cable and 20 dB attenuator that configure cable through between
the TX and RX ports as shown in Figure 7a and as in the test described in the previous
section. Moreover, another measurement is performed with an additional 1.219 m (4 ft)
cable and 10 dB attenuator extending the cable through set-up as shown in Figure 7b. The
set-up of the experiment is summarized in Table 2.

Figure 8 shows the in-phase components of RX baseband signals sampled with the
71 LO frequencies in the DUT and reference channels in the configuration with a 25 cm
cable and 20 dB attenuator (Figure 7a). The baseband signals start being received at
approximately 1.5 µs in both channels. It can also be observed that baseband signals have
a DC offset at some frequencies. The sampled signals are bandpass filtered at the baseband
frequency (i.e., ωb = 1 MHz) digitally in the host computer to suppress the influence of
the image component and DC offset due to the I/Q imbalance of the system, which can be
observed in the previous experiment (Figure 5), and to remove noise. I/Q data are obtained
by digitally mixing the filtered baseband signals and 1 MHz continuous wave and taking
the average from 1/4 to 3/4 of the full-time range (i.e., 1025–3072 samples), which is the
steady part. Figure 9 shows the power and phase spectra of the I/Q data with respect to
the TX frequency ω = ωLO + ωb. The power spectra show the frequency responses of the
DUT and RF loopback channels, which seem reasonable. Note that the discontinuities at
1.5 and 3 GHz are caused by changing the gains. On the other hand, the phase spectra
show random variations because the sampled baseband signals are not phase coherent
and contain the initial phases of TX and RX LO signals, which randomly change at each
streaming. As shown in Equation (11), the initial phases of LO signals are canceled by
dividing the samples of the RX complex baseband signals in the DUT channel by those in
the loopback channel. Figure 10 shows the power and phase spectra of I/Q data after the
sample division and average. Because the gain adjustment at 1.5 and 3 GHz are different
amounts for DUT and RF loopback channels, the power spectrum (Figure 10a) still shows
discontinuities, but the frequency response of the PLLs are canceled and become flatter.
Initial phase of the TX and RX LO signals are also canceled and the phase spectrum now
shows the linear change over frequency.

The same postprocessing on sampled baseband signals are applied to the two mea-
surement configurations. The obtained complex numbers correspond to the uncorrected
S21 according to Equations (11) and (12) are shown in Figure 11 as a function of the TX
frequency ω = ωLO + ωb. It shows the system response, the difference between DUT and
loopback paths to be exact, for example, due to variable gain amplifiers (VGAs) in the TX
side and low noise amplifiers (LNAs) in the RX side found in Figure 1, because they are
uncorrected. As expected, the 10 dB power difference due to the additional attenuator and
the difference in phase cycles due to the additional 1.2 m are observed. The inverse Fourier
transform of the spectra shown in Figure 12 exhibits the amplitude and the time delay
difference; however, the pulses are not sharp and are noisy since uncorrected.
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To correct the system response, the complex amplitude of the second measurement
(with the additional 1.2 m cable and 10 dB attenuator) is divided by that of the first
measurement (with the 25 cm cable and 20 dB attenuator), which corresponds to the
response calibration or through calibration for commercial VNAs, so that only the S-
parameters of the additional DUTs in the second measurement (i.e., 1.2 m cable and 10 dB
attenuator) can be obtained. The resulting power and phase spectra are shown in Figure 13.
The power and phase spectra of the first measurement naturally become flat at 0 dB
and 0 rad, respectively. As expected, the power spectrum of the second measurement is
flattened at approximately −10 dB, which is caused by the additional 10 dB attenuator.
The power in the higher frequencies is slightly decreased due to the loss in the coaxial
cable. There are variations at the low- and high-frequency ends, which may be caused
by unsuccessful streaming and indicates that those frequencies are probably not very
accurate. The phase of the second measurement shows faster variation than that of the first
measurement due to the additional 1.2 m cable.

The corrected complex amplitude is inverse Fourier transformed to obtain the time-
domain impulse response as shown in Figure 14. The result shows that two sharp pulses
appeared at approximately 0 and 6 ns, which corresponds to the time for propagating
through the additional 1.2 m cable. The maximum amplitudes in the first and second set-up
are, respectively, 0.0684 and 0.0183, of which the ratio is 0.268, and the amplitude difference
is thus −11.45 dB. It is slightly more than the amplitude drop expected by including the
additional 10 dB attenuator. However, it is a reasonable value considering the attenuation
in the additional 1.2 m cable, as can be seen in Figure 13a. The peak amplitudes in the first
and second set-up are obtained respectively at 0 and 5.859 ns, which gives a velocity factor
of 0.693. The additional 1.219 m cable uses RG-316, whose velocity factor is reportedly
0.695. Therefore, the measurement correctly reflects the time delay of a transmitted pulse,
which is crucial for radar applications. From the result that the amplitude and time delay
of the pulses are correctly captured, it is verified that the method to compensate for the LO
phase using the internal RF loopback works and that low-cost SDRs with only one TX and
RX channel can therefore be used to build UWB SFCW radar.

In the experiment, S-parameters at 71 frequencies ranging from 250 MHz to 3.75 GHz
are collected to reconstruct one time-domain signal as shown in Table 2. It requires 142 TX
and RX streaming in total; 71 streaming the DUT channel and 71 streaming the loopback
channel because the loopback channel has to be measured every time the carrier frequency
is tuned. It is the doubled number of streaming required by using high-end SDRs with
more than two RX channels (e.g., one used in [22,23]). Therefore, the proposed method
requires twice the time required by a more expensive solution to configure SFCW radar.

SDR
TX

RX

20 dB
att.

25 cm
coaxial cable

(a)

SDR
TX

RX

20 dB
att. 25 cm

coaxial cable

10 dB att.

1.219 m
coaxial cable

(b)

Figure 7. Measurement set-up of the frequency sweeping experiments. (a) Cable through configura-
tion with 25 cm coaxial cable and 20 dB attenuator, which is the same as the previous experiment
shown in Figure 3, and (b) with additional 1.219 m (4 ft) coaxial cable and 10 dB attenuator.
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Figure 8. In-phase components of the RX baseband signals for 71 TX and RX LO frequencies in (a)
the DUT channel (cable through with 25 cm cable and 20 dB attenuator) and (b) the reference channel
(internal RF loopback). All baseband signals start being received at approximately 1.5 µs which
indicates that the TX and RX streaming are synchronized.
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Figure 9. (a) Power and (b) phase spectra of the IQ data obtained directly from the sampled RX
baseband signals measured at frequencies from 250 MHz to 3.75 GHz with a step size of 50 MHz
in the DUT channel with 25 cm cable and 20 dB attenuator. Note that the discontinuities at 1.5
and 3 GHz in the power spectra are caused by gain adjustment. The power spectra (a) shows the
frequency response of the DUT and loopback channels whereas phase spectra (b) look random
because they contain the initial phase of LO signal, which varies randomly.
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Figure 10. (a) Power and (b) phase spectra of the I/Q data obtained by dividing the baseband signals
in the DUT channel by those in the RF loopback channel and taking the average at frequencies from
250 MHz to 3.75 GHz with a step size of 50 MHz for the cable through with 25 cm cable and 20 dB
attenuator. Randomly varying phase in Figure 9b become linear. Note that the discontinuities at 1.5
and 3 GHz in the power spectrum are caused by gain adjustment.
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Figure 11. (a) Power spectra and (b) phase spectra of the uncorrected I/Q data measured at frequen-
cies from 250 MHz to 3.75 GHz with a step size of 50 MHz for the cable through with 25 cm cable
and 20 dB attenuator (blue lines) and with additional 1.2 m cable and 10 dB attenuator (red lines).
The power spectra (a) show 10 dB down caused by the additional attenuator as expected. The phase
spectra (b) show linear variations over frequency and the latter measurement gives faster variation
as also expected due to the longer propagation path. Note that the discontinuities at 1.5 and 3 GHz
in the power spectra are caused by gain adjustment.
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Figure 12. Inverse Fourier transform of the uncorrected I/Q data measured with the cable through
with 25 cm cable and 20 dB attenuator (blue lines) and with additional 1.2 m cable and 10 dB
attenuator (red lines). The time delay between the two pulses seem correct, but the pulses are not
sharp because the spectra in Figure 11 contain the frequency response of the system.
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Figure 13. (a) Power and (b) phase spectra of the I/Q data measured at frequencies from 250 MHz to
3.75 GHz with a step size of 50 MHz for the cable through with 25 cm cable and 20 dB attenuator
(blue lines) and with additional 1.2 m cable and 10 dB attenuator (red lines), corrected by the former
set-up. The power spectra are flatted by correcting the system response.
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Figure 14. Inverse Fourier transform of the corrected I/Q data measured with the cable through with
25 cm cable and 20 dB attenuator (blue lines) and with additional 1.2 m cable and 10 dB attenuator
(red lines). The pulses are sharpened compared to the uncorrected ones in Figure 12.

4. Discussion and Conclusions

The paper discussed the challenge of employing low-cost SDRs for building SFCW
radar, and a solution to the challenge was presented. Low-cost SDRs typically have only
one TX and RX channel, which makes it impossible to directly measure the phase of CW
signals consistently. The phase is necessary for constructing SFCW radar in addition to the
amplitude to reconstruct time-domain signals. The inconsistency of the phase is caused
by the varying timing of the mixing of baseband and LO signals in the TX side and RF
and LO signals in the RX side. The paper proposed a method to compensate for the
unknown phase terms by measuring the internal RF loopback channel in addition to the
DUT channel, which requires two streaming immediately in quick succession without
performing frequency tuning, and dividing signals sample-wise. The operation down-
converts the received baseband signals to DC, but also cancels the unknown initial phases
of the TX and RX LO signals. As a result, the obtained I/Q data are referenced to the RF
loopback signal, i.e., the amplitude and phase are relative to the loopback path. Because
the system responses of the DUT and loopback paths are different, the obtained I/Q data
need to be corrected by the cable through configuration. The experiment described in
the paper shows that the proposed LO phase compensation works and that the UWB
pulse can be reconstructed. Therefore, the low-cost SDR can be used to configure SFCW
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radar without any additional components. Because the method requires two streaming to
obtain I/Q data at a frequency, it may not be suited for time-critical measurements, but
still useful for prototyping a UWB radar. The method does not require any additional
components; therefore, it can keep the hardware set-up simple and low-cost which makes
it more accessible for prototyping and small-lot production of SFCW radar or custom-made
measurement systems that provides S-parameters or time-domain response.
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