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Abstract

Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However,
the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-
borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features
that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental
factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine
which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested
sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-
related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and
activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the
spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall
associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the
density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our
understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other
infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.
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Introduction

Predicting the course and geographic spread of an infectious

disease is critical for its control [1]. It enables health agencies to

respond to a disease wave by implementing preventive measures to

limit contagion, i.e., through vaccination or animal movement

restrictions [2–8]. Knowledge of the main factors influencing the

speed of spread is needed to plan such interventions, which can

reduce greatly the consequences of the disease. Numerous factors

drive the spread of a vector-borne disease such as bluetongue (BT)

[9]. These factors can be abiotic (suitability of the environment for

disease transmission), vector-related (abundance, activity), or host-

related (host availability, immunity). The major Bluetongue Virus

Serotype 8 (BTV-8) outbreak experienced by northern Europe in

2006–2008 offers an opportunity to identify the major factors

influencing the velocity of BT spread in a temperate climate

context.

Bluetongue Virus (BTV) is transmitted to ruminants by biting

midges of the genus Culicoides. In southern Europe, Africa and Asia

the major BT vector is Culicoides imicola. In northern Europe, where

C. imicola is absent, species of the Obsoletus Group, i.e., Culicoides

obsoletus, Culicoides scoticus, Culicoides dewulfi and Culicoides chiopterus

[10], have been identified as major BT vectors [11–15].

Unfortunately the biology of Culicoides, specifically of these

indigenous Palaearctic vector species, is poorly understood

[16,17]. In particular, there is scant information about the life

history traits of midges affecting the spread of BT [18,19]. After

the introduction of BTV-8 in the Netherlands in the summer of

2006, BT spread rapidly across northwest Europe; by the end of

2008, more than 86,000 holdings in 14 countries were reported to

be affected by BTV-8 [17]. France was impacted heavily with

more than 43,000 holdings affected over the 2007–2008 period.

The epidemic wave progressed from north-eastern to south-

western France at an average velocity of 5.6 km/day [20].

However, the disease did not spread at the same velocity

throughout the country. The infection progressed more rapidly

in some geographic areas that seemed to act as corridors

facilitating the spread of the disease (see Figure 6 in Pioz et al.

2011 and online Appendix video in [21] www.cdc.gov/EID/

content/16/12/1861-appV.htm). On the other hand, some areas

were characterized by a slow progression of the infection. In the

absence of detailed knowledge of Culicoides biology, determining
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the ecological characteristics of areas associated with rapid and

slow BT spread is crucial to enhancing knowledge on the

epidemiology of BT.

Since the BTV-8 outbreak in northern Europe, much research

has been devoted to modelling BTV epidemics and developing

models that assess the risk of BT or the probability of vector

presence based on a set of eco-climatic factors [5,18,21–31].

Statistical models have explored the relationship between a range

of predictor variables and the occurrence of BT cases, but none

have investigated the relationship between predictor variables and

the velocity of spread of the infection. The identification of the

most important factors influencing the velocity at which the

travelling wave of BT diffused across large areas would comple-

ment other modelling efforts, such as transmission models for BTV

or predictive models of BT spread. However, as environmental

and ecological data generally show spatial autocorrelation, we

advocate the use of Simultaneous Autoregressive (SAR) models

[32], which account for spatial autocorrelation, to investigate the

environmental drivers influencing the velocity of disease spread.

This approach, which is applicable to any infectious disease,

renders it possible to disentangle the main environmental features

that influence the velocity of disease spread. A variety of models

can be used to study the spatial spread of disease. Individually-

based models, which account for the spatial interaction between

hosts distributed on a landscape, and integro-differential equa-

tions, which use a spatial transmission kernel, were both used to

model the foot-and-mouth disease spread in the United Kingdom

in 2001 [33,34]. Reaction-diffusion models, which assume local

transmission and rely on spatial diffusion of hosts to spread the

infection, were used to model the spread of rabies in red fox Vulpes

vulpes [35]. Metapopulation models were used to investigate the

spread of phocine distemper virus in harbour seal Phoca vitulina

[36] or the spread of rabies in raccoon Procion lotor [37]. These

modeling approaches are sophisticated and require biological

knowledge on the disease transmission as well as complex

parameterization. Instead, our modelling approach is simpler in

the sense that transmission is not explicitly modelled, but it still

allowed us identifying the environmental features that influence

the velocity of BT spread. Such knowledge would facilitate the

adoption of relevant containment strategies. Indeed, as landscape

features may serve as barriers or gateways to the spread of diseases,

understanding the way they impact disease spread could lead to

improved control strategies. For example, vaccination is an

effective tool to control BT spread [5,38], but the timing of

vaccination of susceptible populations is crucial [38,39]. Vaccina-

tion failed to control and stop BT spread in France in summer

2008 because it was implemented late regarding the disease

wavefront. Susceptible animals need to be vaccinated ahead of the

disease wavefront, and early enough to achieve full protection.

Hence, identifying environmental conditions that slow down or

speed up the disease spread would help health agencies to foresee

where and when the wavefront of the disease would reach each

area, and consequently adapt the vaccination strategy. The

objective of this study was therefore to explore the environmental

factors that impacted the velocity of BT spread in France during

the 2007–2008 epizootic wave.

Materials and Methods

Estimates of bluetongue velocity
We used the velocities of BTV-8 spread across France in 2007–

2008 that were estimated from a Trend-Surface Analysis model

combined with a spatial error Simultaneous Autoregressive model

(trend SARerr model) to account for spatial autocorrelation [20].

In the Pioz study [20], velocities were estimated for 10,994 French

municipalities, i.e., the smallest French administrative subdivision,

based on the date of the first BTV-8 clinical case reported in the

municipality. Given that the aim of the present study was to

identify the major environmental factors influencing the velocity of

BT spread, we had to use the most accurate estimations of velocity

of BT spread. With regard to the 10,994 municipalities, we could

assume that the estimated velocity of BTV-8 spread was close to

the real velocity at which the infection spread in the area if the

predicted date of the first case was close to the observed one. The

difference between the predicted and observed date of the first

clinical case ranged between 2221 and +162 days (mean = 0 day,

standard deviation = 32.3 days). The method used for the

estimation of the velocity, i.e., the trend surface analysis, is known

to be sensitive to edge effect, so that interpretation at the edges of

the study area should be made with caution. Given that most

municipalities with a large error regarding the predicted date were

situated at the edge of the study area, edge effect was indeed

probably the main reason for the incorrect prediction. In the

present study, we consequently restricted the dataset to the 5,993

municipalities for which the difference between the observed date

of the first clinical case and the date predicted by the model of Pioz

et al. [20] was less than 16 days. However, we checked that the

range and characteristics of the environmental factors in the

restricted dataset remained similar to that one in the full dataset.

The response variable is the velocity of BTV-8 spread in 5,993

French municipalities in 2007–2008.

Ecological variables
Sixteen covariates defining five thematic groups of related

variables were tested (Table 1). Host availability, vaccination,

elevation and landscape-related variables were obtained at the

municipality-level. Meteorological-related variables were obtained

on an 868 km square grid through the SAFRAN database

supplied by Météo-France [40]. Restrictions on animal move-

ments in France following Directive 2000/75/EC and Commis-

sion Regulation No 1266/2007 prevented all movement of

infected farm animals from restricted zones (70-km radius around

the contaminated farms) to non-restricted zones. As we studied the

velocity of spread of the BT front-wave, we focused on the BT

spread over newly-contaminated areas, and considered that the

movements of infected farm animals explaining the velocity of

spread was negligible due to the ban (see [20] for a discussion on

the negligible effect of movements of infected animals).

Host availability variables. Density of beef cattle and dairy

cattle in September 2007 was obtained from the French National

Cattle Register (BDNI). Because of maternal immunity, we only

considered cattle over 2 months old to reflect the population size

of susceptible hosts. Sheep density was obtained from the

exhaustive census realized throughout France by the French

Ministry of Agriculture in 2000, the most recent estimates we

could obtain. Overall, the global number of sheep decreased

between 2000 and 2007 in France. However, the relative

differences of sheep density across geographical areas were similar

between 2000 and 2007. We therefore assumed that the 2000

census approximately reflected the relative number of sheep per

municipality in 2007. Densities were expressed in number of

animals per km2. A change in the host density is expected to

modify the velocity of BT spread as it will change the probability

of transmission from vector to host. Furthermore, different host

species may change the velocity in different ways because of

differences in susceptibility, capability to transmit the disease and

management practices. Consequently, the density of sheep, beef

Factors Influencing Velocity of Bluetongue Spread
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cattle and dairy cattle were not expected to have the same

influence on the velocity of BT spread.

Vaccination. Precise data on BTV-8 vaccination were not

available so we defined a proxy to estimate the level of immunity

in the municipality when the first clinical case was detected.

Hypothesizing that there was a delay of two to three weeks

between the arrival of vaccine doses in a department and their use

in the field by veterinarians, we used the percentage of vaccine

doses acquired in a department two months prior to the date of the

first BTV-8 clinical case in a municipality as a proxy of the relative

immunity in a municipality (see Text S1 for details). We expected

the slowest velocities of BT spread in areas with a high relative

level of immunity.

Elevation. Average elevation of each municipality measured

in meters above sea level was extracted from the database

GEOFLAH 2002, edition 6, of the Institut Géographique National

(IGN). Average elevation is calculated by IGN from elevation

obtained at a resolution of 50 meters. Elevation may influence the

velocity of BT spread through its effect on vector abundance and

Culicoides species composition.

Landscape-related variables. Municipality-specific land

cover data were extracted from the 2006 version of the CORINE

(Coordination de l’Information sur l’Environnement) Land Cover

database (CLC), provided by the European Environment Agency

at a resolution of 100 meters [41]. Landscape components may be

important in defining favourable environments for BT [28].

Durand et al. [21] identified three landscape associated with BTV-

8 seropositivity: forests, pastures and arable land. Furthermore, the

breeding habitat of Culicoides obsoletus sensu stricto (and possibly C.

scoticus), the major vector involved in BTV-8 transmission in

northern Europe, is the leaf litter of deciduous trees such as the

common beech Fagus sylvatica [42,43]. We consequently discarded

coniferous forests from the analysis and extracted from the 44

CLC landscape classes the proportion of the municipality area

covered by deciduous and mixed forests, arable land and pastures

(Table S1). For each pair of these classes, we calculated the edge

density, which is the length of the edges between two classes

divided by the municipality area (3 variables in m/hectare).

Finally, we calculated an index of diversity to characterize the

landscape diversity in each municipality. Simpson’s Diversity

Index (SIDI) is a popular diversity measure in community ecology

[44]. It has an intuitive interpretation as it represents the

probability that any 2 randomly selected pixels would be different

patch types. SIDI = 0 when the landscape contains only 1 patch,

and approaches 1 as the number of different patch types increases,

and the proportional distribution of area among patch types

becomes more equitable. Overall, seven landscape-related vari-

ables were tested. Landscape-related variables may change the

velocity of BT spread through their influence on Culicoides

abundance and species diversity as well as on the probability of

contact between hosts and vectors.

Meteorological-related variables. Both the BTV transmis-

sion cycle and the lifecycle of its Culicoides vectors are affected by

temperature and humidity [18,45]. Short term meteorological

conditions rapidly can change the age structure and density of

Culicoides populations, thus modifying the number of midges that

can transmit the virus, and consequently the rate of disease

transmission [46]. Meteorological conditions also affect the daily

flight activity of Culicoides vectors [47]. We thus were interested in

capturing the meteorological conditions around the period at

which the first animal became infected in a municipality. To

account for the uncertainty of the date of the infectious bite, we

investigated the effect of temperature and rainfall up to two

months prior to the date of the first clinical case reported in each
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municipality (see Text S1 for details). We consequently considered

the monthly average of maximal daily temperatures and monthly

total rainfall one month and two months before the first case of

BTV-8. These meteorological covariates are referred to as one

month-lag and two month-lag, respectively.

To identify non-monotonic and nonlinear responses and

determine whether the covariates should be considered as

continuous or categorical, we examined the linearity of the

relation between each continuous covariate and the response

variable. Based on biological relevance, each continuous covariate

was discretized: it was divided into four classes of approximately

similar size, with the exception of the vaccination covariate which

was divided into three classes. The response variable, i.e., the

velocity of BT spread, was then plotted against each discretized

categorical variable, and we visually examined each graph to

detect nonlinear variations. If the variation was approximately

linear between each class, we used the continuous covariate as a

candidate variable in the model; otherwise, we used the categorical

covariate. Finally, we obtained 4 continuous and 12 categorical

candidate variables. Their characteristics are summarized in

Table 1. To prevent multicollinearity, we avoided including

highly correlated covariates simultaneously in a model. Before

discretization, correlations among all the candidate variables were

assessed using Spearman’s rank correlation r because the

covariates were not normally distributed. All of the r were lower

than |0.64|. The covariates were not highly correlated and could

be included simultaneously in a model. Only plausible two-way

interactions were considered, i.e., the interaction between temper-

ature and rainfall at the same lag time, and the interaction

between sheep density and each of the cattle densities (dairy and

beef). Overall, 16 candidate covariates along with 4 plausible

biological interactions between candidate variables were tested.

Statistical analysis
Model selection. The original dataset of 5,993 municipalities

was split randomly into a ‘‘model building’’ dataset (75% of the

data) and a ‘‘validation’’ dataset (25% of the data), representing

4,495 municipalities and 1,498 municipalities, respectively

(Figure 1). We initially applied standard linear regression methods

based on ordinary least squares (OLS) on the model building

dataset. However, a strong spatial autocorrelation of the residuals

indicated that the assumption of independent errors was violated.

We consequently extended the model to account for the spatial

dependency and used a simultaneous autoregressive model (SAR)

[48]. All of the statistical analyses were realized using R software

v2.13.1 [49]: spatial models were fitted using the package spdep

[50] and geoR [51], respectively. We determined the type of

spatial dependence model to use (spatial lag or spatial error) based

upon the largest value of the robust Lagrange Multiplier indicators

[1,52], which were obtained by using the lm.LMtests function of

Figure 1. Spatial distribution of the 5,993 French municipalities. The 4,495 municipalities of the building dataset and the 1,498 municipalities
of the validation dataset are represented by red stars and black stars, respectively.
doi:10.1371/journal.pone.0043360.g001
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the spdep package [50]. Based on the results of the Lagrange

Multiplier tests (Table S2), we applied the spatial error form of the

SAR model (hereafter referred to as spatial error model or SARerr

model) [48,53]. Details on SARerr models are provided in Text S2.

Based on the semi-variogram of the OLS residuals (Figure 2),

residuals were autocorrelated until 200 km. We consequently

considered a 200 km radius spatial neighbourhood. We used a

neighbourhood matrix with a variance stabilizing ‘S’ coding style

[54], and with the weights set to be proportional to the inverse

distance between the centroids of the municipalities (see Text S2

for details).

We used backward model selection based on AIC to select the

best model based on both model fit and model complexity [55]. As

recommended by Burnham and Anderson [55], we considered

that two nested models differing by less than 2 AIC points received

identical support from the data. In such a situation, the model with

fewer parameters was preferred. However, the large number of

candidate variables meant that a huge number of models could be

considered. Thus, for practical reasons, we used a hierarchical

approach that allows us to isolate independently for each of the

three thematic sets of variables (host-, meteorological- and

landscape-related covariates) a combination of variables best

fitting the data. These three combinations were then added in a

global model from which the final backward selection was made.

In order to evaluate the difference in direction, magnitude and

significance of coefficients before and after correction for spatial

autocorrelation, we also presented the result obtained from the

best OLS model. Because the assumption of independence is

violated in the presence of autocorrelation, the traditional R2

measure of fit is not applicable to the spatial autoregressive model.

In the literature several pseudo-R2 have been defined and used for

spatial models. One of the most popular and frequently used

measure is the coefficient of determination, i.e., the squared

Pearson correlation r between predicted and observed values

[32,56]. The squared Pearson’s r provides a measure of goodness

of fit of the model. We also calculated the Root Mean Squared

Error (RMSE). RMSE is one of the most widely used measures of

model uncertainty and quantifies the precision of the prediction

error [57]. RMSE is a good measure of how accurately the model

predicts the response, with lower values of RMSE indicating a

better fit.
Model validation. We used the 1,498 municipalities of the

validation dataset to evaluate the predictive power of the model.

Although one can not expect an explanatory model to be optimal

in terms of predictive power, it should show some degree of

accuracy [58]. As for the training dataset, we calculated the

squared Pearson correlation between the observed and predicted

velocities as well as the Root Mean Squared Error (RMSE).
Model interpretation. To assess the relative importance of

environmental variables in the selected SARerr model, we

evaluated the contribution of each covariate to model fit with a

likelihood ratio (LR) test for nested models [48,59]:

LR~{2 lredlfullð Þ

where LR is the likelihood ratio test statistic, and lred and lfull are

the log-likelihoods of the reduced and full models, respectively.

The full model is the SARerr model and the reduced model

contains all but one of the variables of the full model. The

contribution of the omitted variable is thus evaluated, larger LR

values indicating a greater contribution to model fit. LR values for

the best OLS model also were calculated to compare the relative

importance of environmental variables in the OLS and SARerr

models.

Results

Model selection
Hierarchical model selection conducted within each of the three

sets of models, i.e., meteorological-, landscape- and host-related

covariates, as well as the final model selection, conducted after

combining the remaining predictors, are detailed in Table S3. The

final SARerr model contained thirteen covariates and three

interactions (Table 2). The edge density between arable lands

and pastures, the percentage of area of deciduous and mixed

forests in municipality, and the density of beef cattle were dropped

from the final model. The fit of the best model was satisfactory

(squared Pearson’s r = 0.93, RMSE = 0.52 km/day with an

average velocity of BT spread equaling 5.5 km/day). In contrast

to the OLS model, inspection of the residuals from the final

SARerr model showed low spatial autocorrelation (Figure 2).

Residual autocorrelation was still present, but greatly reduced in

comparison to the OLS regression, underscoring the greater fit of

the data by the spatial model. In comparison, the OLS model with

the lowest AIC had a R2 = 0.57, a greater amount of autocorre-

lation (Figure 2), and showed some differences in the selected

covariates (Table S4).

Model validation
Overall, the model performance in term of predictive power

may be seen as relatively low (squared Pearson’s r = 0.43, RMSE

= 1.42 km/day). However, this was expected as the model is an

explanatory model, which is not devoted to making predictions.

Model interpretation
The contribution of covariates to model fit was assessed through

the comparison of the LR-values of each covariate (Figure 3). The

comparison of LR-values from the final SARerr model (Figure 3B)

with those from the best OLS model (Figure 3A) shows that the

effect of the covariates was reduced and more contrasted when

autocorrelation was accounted for. Furthermore, the relative

importance of covariates shifted across the OLS and SARerr

models. Regarding the SARerr model, six out of thirteen covariates

Figure 2. Semi-variogram of the OLS model (dashed line) and
the SARerr model (solid line).
doi:10.1371/journal.pone.0043360.g002
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Table 2. Parameter estimates, 95% Confidence Interval (CI) and p-values of the selected final SARerr model for the 4,495 French
municipalities.

covariates classe coefficient 95%CI p-value

intercept 4.93 4.752; 5.117 ,0.001

elevation b 0.07 0.020; 0.126 0.01

c 20.26 20.332; 20.185 ,0.001

d 20.62 20.716; 20.531 ,0.001

DensDairy_Cattle b 20.07 20.132; 20.013 0.02

c 20.16 20.223; 20.089 ,0.001

d 20.38 20.448; 20.309 ,0.001

DensSheep b 20.09 20.168; 0.009 0.08

c 20.07 20.152; 0.011 0.09

d 20.07 20.147; 0.014 0.11

vaccination b 20.15 20.203; 20.096 ,0.001

c 20.22 20.275; 20.164 ,0.001

Rain_lag1 b 0.04 20.046; 0.133 0.34

c 20.05 20.146; 0.050 0.34

d 20.19 20.291; 20.090 ,0.001

Tmax_lag1 b 0.07 20.031; 0.174 0.17

c 0.41 0.294; 0.526 ,0.001

d 0.34 0.223; 0.459 ,0.001

Rain_lag2 b 0.00a 20.107; 0.099 0.94

c 0.15 0.043; 0.258 0.01

d 0.12 0.014; 0.220 0.03

Tmax_lag2 b 20.08 20.186; 0.023 0.13

c 20.01 20.122; 0.106 0.89

d 0.01 20.104; 0.124 0.86

SIDI 20.17 20.329; 20.020 0.03

p_arable 0.00b 0.003; 0.005 ,0.001

p_pasture 0.00 c 0.003; 0.005 ,0.001

arable-forest b 0.02 20.027; 0.067 0.40

c 0.04 20.009; 0.092 0.11

d 0.11 0.058; 0.172 ,0.001

forest-pasture b 0.03 20.021; 0.081 0.24

c 0.05 20.003; 0.110 0.06

d 0.09 0.025; 0.153 0.01

interactions

1st term 2nd term

DensDairy_Cattle b DensSheep b 0.01 20.106; 0.131 0.83

DensSheep c 20.03 20.146; 0.090 0.64

DensSheep d 0.03 20.083; 0.145 0.60

DensDairy_Cattle c DensSheep b 0.02 20.113; 0.149 0.79

DensSheep c 0.07 20.061; 0.203 0.29

DensSheep d 0.03 20.112; 0.167 0.70

DensDairy_Cattle d DensSheep b 0.23 0.097; 0.357 ,0.001

DensSheep c 0.34 0.207; 0.467 ,0.001

DensSheep d 0.29 0.140; 0.442 ,0.001

Tmax_lag1 b Rain_lag1 b 20.06 20.193; 0.077 0.40

Rain_lag1 c 0.09 20.046; 0.2227 0.20

Rain_lag1 d 0.40 0.260; 0.538 ,0.001

Tmax_lag1 c Rain_lag1 b 20.23 20.357; 20.101 ,0.001
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had a relative higher importance on influencing the velocity of

spread: elevation, the four meteorological-related variables, and

the density of dairy cattle. Four other variables, the index of

vaccination in the municipality, the percentage of pastures, the

density of sheep and the percentage of arable land also influenced

the velocity of spread. The three remaining landscape-related

variables only influenced the velocity of BT spread slightly.

The effect of environmental covariates on velocity is reported

holding all the other covariates constant, and for an average

velocity of BT spread across the country of 4.9 km/day (Table 2).

Regarding the ten most important covariates, the velocity of BT

spread was negatively associated with elevation: velocity decreased

by 0.26 km/day for elevation range between 222 and 358 m, and

by 0.62 km/day for elevation .358 m. The effects of meteoro-

logical-related variables are presented in Figure 4 and Tables S5A

and B. As rainfall changed the effect of temperature, the two

covariates had to be interpreted together both at the one month-

lag and two month-lag. Considering the effect of weather at the

one month-lag, the highest velocities were observed when the

monthly average of maximum daily temperature was between 21

and 26uC with minimal monthly rainfall (,43 mm). The lowest

velocities were observed for maximal rainfall (.84.5 mm)

associated with the lowest and highest classes of temperatures

(,18.9 or .23.1uC). Considering the effect of weather at the two

month-lag, the highest velocities were observed when the monthly

average of maximum daily temperature was around 20uC with

medium values of rainfall (between 75 and 106 mm). The lowest

velocities were observed for maximal rainfall (.106 mm) associ-

ated with the highest temperatures (.22.2uC). Overall, the effect

of weather on the velocity of spread was higher at the one month-

lag than at the two month-lag (Figure 3B).

The effect of host availability variables is presented in Figure 5

and Table S5C. The velocity of BT spread was associated with

dairy cattle and sheep densities, while the density of beef cattle had

no effect. Moreover, the effect of dairy cattle density was modified

by sheep density. The highest and lowest values of velocity were

observed when sheep is absent, the highest velocities being observed

for minimal density of dairy cattle (,4 dairy cattle/km2) and the

lowest velocities with maximal density of dairy cattle (.40 animals/

km2). Furthermore, for a given density of sheep, increasing the

density of dairy cattle decreased the velocity of BT spread.

The level of immunity in cattle herds of a municipality,

measured by the percentage of bovine vaccine doses acquired in

the department 2 months prior to the first clinical case reported in

the municipality, also influenced the velocity of BT spread. As

expected, vaccination was associated negatively with the velocity of

BT spread. In comparison to the velocity in municipalities where

no vaccine was acquired in the department, the velocity decreased

by 0.22 km/day when more than 30% of the vaccines were

acquired in the department, and by 0.15 km/day when the

percentage of vaccines acquired ranged between 1 and 30%, for

an average velocity of 5 km/day across the country.

Regarding the five landscape-related variables, two variables

had a larger influence on the velocity of BT spread (Figure 3B): the

percentage of surface covered by pastures and by arable lands.

Both were positively associated with the velocity of spread with a

similar effect: a 10% increase in the percentage of pastures or

arable land increased the velocity by 0.04 km/day.

Finally, the range of velocities obtained while changing each

covariate across its observed range and holding all other covariates

constant is presented in Figure 6. The graph allows one to visualize

if the observed values of a given covariate mainly induced a

decrease or an increase in velocity compared to its average value of

5 km/day.

Discussion

Several studies modeled the risk of BTV infection in relation to

ecological correlates [21,22,25,28,60], but none investigated

environmental factors facilitating the spread of the infection.

Table 2. Cont.

covariates classe coefficient 95%CI p-value

Rain_lag1 c 20.16 20.301; 20.025 0.02

Rain_lag1 d 20.13 20.280; 0.018 0.09

Tmax_lag1 d Rain_lag1 b 20.19 20.322; 20.055 0.01

Rain_lag1 c 20.14 20.287; 20.002 0.05

Rain_lag1 d 20.22 20.367; 20.074 ,0.01

Tmax_lag2 b Rain_lag2 b 0.17 0.035; 0.311 0.01

Rain_lag2 c 0.14 20.001; 0.282 0.05

Rain_lag2 d 0.08 20.057; 0.214 0.26

Tmax_lag2 c Rain_lag2 b 0.17 0.021; 0.315 0.03

Rain_lag2 c 20.08 20.225; 0.069 0.30

Rain_lag2 d 20.25 20.406; 20.103 ,0.01

Tmax_lag2 d Rain_lag2 b 20.08 20.212; 0.053 0.24

Rain_lag2 c 20.36 20.499; 20.202 ,0.001

Rain_lag2 d 20.37 20.541; 20.193 ,0.001

lambda 0.89

See Table 1 for description of covariates. SARerr Simultaneous Autoregressive Error model.
a20.0043.
b0.0039.
c0.0041.
doi:10.1371/journal.pone.0043360.t002
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While some studies investigated the impact of environmental

factors on the diffusion of Culicoides [61–64], our work is the first

attempt to model the velocity of BT spread while accounting for

ecological variables related to i) vector abundance and activity

(meteorological-related variables, elevation), ii) host-availability,

and iii) landscape-related variables. We found that ecological

variables related to Culicoides vectors (elevation, temperature and

rainfall) were the main factors influencing the velocity of BT

spread, although both host-availability and landscape-related

variables also played a role.

Geography and climate have a strong influence on the spread

and transmission of BTV because the distribution, abundance,

activity and competence of adult vectors are influenced by weather

[45,65]. Indeed, many Culicoides life cycle parameters are related

strongly to meteorological conditions: temperature, humidity,

wind speed [47,65–67]. Temperature is particularly important as

it influences the recruitment, development, activity, survival and

competence of Culicoides vectors [45]. Accordingly, temperature

was identified as an important factor in determining the

magnitude of the basic reproduction number R0 for BTV

[18,26,27,31]: BT transmission is optimal at a mean temperature

of 20–25uC and decreases at warmer and cooler temperatures.

Precipitation and daily maximum temperature also were the most

useful climatic variables in predicting the BT infections status of

cattle herds in Australia [67,68], and Boyer et al. [69] found a

positive association between the risk of BTV seropositivity and

temperature in the United States. However, the effect of

meteorological conditions on BT transmission rate is complex.

In Australia, Ward [70] showed that the incidence rate of cattle

herds depends on the total monthly rainfall recorded two months

before the seroconversion of cattle as well as temperature recorded

one month before seroconversion. Moreover, in addition to the

crude abundance of Culicoides, their flying activity is important for

disease transmission. Two studies reported the effect of meteoro-

logical conditions on flying activities [47,71]. Broadly speaking,

larger Culicoides catches were associated with higher temperatures,

Figure 3. Likelihood ratio (LR) statistics for environmental variables in A) OLS and B) SARerr models. Larger LR values indicate a greater
contribution to model fit. P-values and parameter estimates of the OLS and SARerr models are given in Tables S4 and 4, respectively. See Table 1 for
descriptions of environmental variables.
doi:10.1371/journal.pone.0043360.g003
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lower wind speeds and no rainfall at sunset. Heavy rainfall

inhibited the flying activity of Culicoides populations. Overall, our

findings are consistent with these studies. We observed the highest

velocities of BT spread when the monthly average of maximum

daily temperature at the one month-lag was between 21 and 26uC
with minimal monthly rainfall. In contrast, the lowest velocities

were observed for maximal rainfall associated with extreme

temperature at the one month-lag and for maximal rainfall

associated with maximal temperature at the two month-lag. Heavy

rainfall thus decreased the velocity of spread of BTV while

medium temperatures (around 20uC) increased it.

In addition to the effect of meteorological conditions, elevation

was the most important ecological factors influencing the velocity

of BT spread, with the lowest velocities observed at the highest

elevation range. This may be due to the barrier effect associated

with mountain areas, which may limit the dispersal of Culicoides. In

Australia, speed of dispersal of C. brevitarsis is influenced by

elevation with increasing altitude acting as barriers [61]. However,

in contrast with C. imicola, which is never found at high altitudes in

temperate regions, large populations of the Obsoletus Complex

can be found in European areas above 1,000 m [42,72]. The

presence of vectors nevertheless does not imply viral activity.

Indeed, both vector competence, i.e., the ability of a vector to

support virus infection, replication and dissemination, and

vectorial capacity, i.e., the ability of the vector population to

transmit a pathogen, are subject to environmental modifications

[73]. Obsoletus Complex midges caught in different regions of

United Kingdom showed variations in susceptibility to BTV

infection [74]. One may also expect that populations of vector

located at higher altitudes possibly present lower competence and

vectorial capacity because of lower temperatures, which would

then decrease the velocity of spread of the infection at higher

elevations. Further studies on the competence of the Obsoletus

Complex are needed to elucidate the change in vector competence

or vectorial capacity in relation to the geographical characteristics

of the vector populations.

Interestingly, among the host-availability variables, the dairy

cattle density had a large influence on the velocity of BT spread

with the slowest velocities associated with the highest densities.

Similarly, a negative relationship between the density of dairy

cattle farms and BTV-4 occurrence was found in northern Spain

[25]. The negative association between velocity of BT spread and

dairy cattle density may be due to dairy cattle management

practices. First, unlike sheep and beef cows, which may pasture far

from the farm buildings with herds disseminated throughout

landscape, dairy cows pasture close to buildings, creating localized

clusters of hosts and more discontinuous host pattern availability.

Because of the limited active dispersion of Culicoides, pattern of host

regularly spaced within landscape is more favorable to BT

diffusion than having locally clustered hosts, and it thus may

explain the negative association of BT velocity with dairy cattle

density. Second, after the milking process in the late afternoon,

dairy cows often are kept indoors over-night to facilitate milking

the following morning. Dairy cows thus may be less exposed to

biting midges during times of maximum vector activity, i.e., from

dusk to sunrise [45]. In the Netherlands, Santman-Berends et al.

[30] found a higher BTV-8 seroprevalence rate in cattle that

grazed outdoors throughout the day and night compared to that in

cattle pasturing only during the day. Similarly, Baylis et al. [75]

showed that stabling could be useful to decrease BTV transmission

by decreasing the risk of animals receiving bites from C. obsoletus.

Several other factors also affected the velocity of BT spread, but

with a slighter effect. Regarding landscape-related variables, the

percentage of surface covered by pastures or arable land as well as

the edge density between forest and each of these two land cover

were positively associated with the velocity of BT spread (Table 2).

Furthermore, the percentage of pastures and arable land had a

larger influence than edge density variables (Figure 3B and 6). The

highest velocities of BT spread were observed for municipalities

with the highest percentage of surface covered by pastures or

arable land as well as for municipalities with the highest edge

density between forest and pasture or forest and arable land.

Overall these findings are consistent with previous results: high

lengths of edges of woodland and open prairies were associated

with high BT risk in Corsica [28], and edge densities between

arable land and forests, and between pastures and forests, were

identified as BTV-8 seropositivity risk factors for cattle in France

[21]. As suggested by these authors, edges may provide meeting

points between hosts (domestic and wild ruminants) and vectors

(Culicoides). Pastures are occupied by domestic ruminants and also

may serve as feeding areas for wildlife during the night. Forests

provide breeding [42,43] and resting [72] sites for Obsoletus

Group as well as resting areas for wild ruminants. Finally, arable

land may serve as feeding areas for wild ruminants [21]. Edges

between these three habitats may thus facilitate contacts between

BT vectors and hosts, while large surface covered by pastures or

Figure 4. Effect of meteorological conditions on the velocity of
BTV-8 spread in France in 2007–2008. The effect of the interaction
between the monthly average of maximum daily temperatures and
monthly total rainfall is represented through the value of the predicted
velocity associated with each combination of temperature and rainfall
at A) one month-lag, and B) two month-lag.
doi:10.1371/journal.pone.0043360.g004
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Figure 5. Effect of host availability on the velocity of BTV-8 spread in France in 2007–2008. The effect of the interaction between the
densities of dairy cattle and sheep is represented through the value of the predicted velocity associated with each combination of cattle and sheep
densities.
doi:10.1371/journal.pone.0043360.g005

Figure 6. Empirical range of variations in velocities. Range of velocities obtained while changing each covariate across its observed range and
holding all other covariates constant. The large horizontal bar represents the range of velocities obtained when the covariate varies between its
maximal and minimal observed value, the average velocity of 4.9 km/day is represented by the small vertical stroke crossing the horizontal bar.
doi:10.1371/journal.pone.0043360.g006
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arable land may indicate large populations of domestic and wild

hosts. Overall, these landscape characteristics may ultimately

increase the rate of BT transmission. The only landscape-related

variable that was negatively associated with the velocity is the

Simpson’s diversity index: the areas with higher diversity, i.e.,

higher Simpson’s diversity index, were associated with a lower

velocity of spread. An increase of 0.1 in Simpson’s diversity index

decreased the velocity by 0.02 km/day. Similarly, Guis et al. [28]

found a negative relationship between landscape diversity and the

risk of BT due to C. imicola in Corsica.

Finally, we found that BT spread was slower in municipalities

with a higher immunity. It is worth noting that despite the very

crude proxy used to estimate the immunity of the cattle population

(the percentage of vaccines acquired in a department two months

prior to the date of the first clinical case in the municipality), the

effect of vaccination was still identified. Further studies including

more precise information on the vaccination rate would enable the

amount by which vaccination decreases the velocity of BT spread

to be quantified precisely.

Regarding the model performance in term of predictive power,

the squared Pearson correlation coefficient and RMSE statistics

were high for the training dataset, but relatively low for the

validation dataset. Overall, this discrepancy may be taken as an

indication of over-fitting. Indeed, the final model may capture too

much of the specificity of the spatial dependencies and structure of

the training dataset [76]. Hence, the differences between the two

datasets have probably induced the poor predictive power of the

model. It is consequently worth noting that the model is not

suitable for making predictions for new data observations. It is well

known that ignoring spatial autocorrelation can lead to overesti-

mating environmental effects on species abundance [48,59].

However, this issue still needs to be systematically addressed in

epidemiological studies. In our study, we show how SARerr models

can be used to integrate autocorrelation into the analysis of

environmental factors influencing the spread of an infectious

disease. We demonstrated that using simple OLS and ignoring

spatial autocorrelation would lead to overestimate the effect of

strongly spatially structured environmental variables on disease

spread. Accounting for spatial autocorrelation greatly improved

the model fit, but also changed the conclusions regarding the

relative importance of environmental factors on the velocity of BT

spread. As previously shown in ecological studies on species

diversity and distribution [77–79], such coefficient shifts under-

score how the relative importance of environmental variables can

be misconstrued when spatial autocorrelation is not controlled for.

Accounting for spatial autocorrelation in epidemiological studies

of disease spread is therefore critical to avoid misleading

conclusions. We consequently strongly encourage researchers to

routinely address the issue of spatial autocorrelation.

Finally, three potential weaknesses need to be considered. First,

we did not account for wind-mediated vector movements on BT

spread although it was found to help predict the pattern of BTV

infections on a regional scale [22,24]. The role of wind remains

difficult to study because little is known about the conditions and

characteristics of the wind events (such as height, temperature,

humidity and speed) that can lead to midge transport, and because

wind is highly heterogeneous in space and time hindering its

modelling at fine scales. Second, as precise estimations of Culicoides

abundance and activity were unavailable, we used environmental

conditions known to affect biting midges to approximate both

vector abundance and activity. Using field-collected entomological

data to model vector abundance and activity from meteorological-

and landscape-related variables would help confirm the role of the

different environmental variables and their interpretation. Third,

as mentioned above, a coarse proxy of vaccination was used as a

measure of the level of host immunity. Overall, these shortcomings

can explain that despite our use of spatial simultaneous

autoregressive models, we failed to completely remove spatial

autocorrelation in the residuals. Indeed, the residuals of the SARerr

model remained slightly autocorrelated. Residual autocorrelation

in autoregressive models has been described previously [48,77]

and may be due to missing important variables. Failing to include

or poorly measuring an important explanatory variable that in

itself is highly autocorrelated thus may lead to autocorrelation of

the residuals [1,54,79].

Despite these shortcomings the model presented a good

explanatory power with a squared Pearson correlation coefficient

of 0.93. Further work is still needed to improve our knowledge of

the factors influencing BT spread. Specifically, future research into

the distribution, activity and behavior of Culicoides is crucial. BT is

a vector-borne disease and, as highlighted by our results, its spread

is very much influenced by its Culicoides vectors [17].

Conclusion

In this study we examined environmental factors influencing the

velocity of BT spread and determined which ones were the most

important drivers of disease progression. Our findings emphasize the

importance of ecological factors associated with vector abundance

and activity. Indeed, we found that elevation and meteorological

conditions were the most important drivers of BT diffusion, as well

as the density of dairy cattle, which was negatively correlated with

the velocity of BT spread. These findings add substantially to our

understanding of BT spread in a temperate climate. Importantly, the

modelling approach used in this paper is general enough to be used

easily to investigate the importance of environmental factors

influencing the diffusion of other infectious diseases.
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and abiotic factors influencing distribution and abundance of Culicoides obsoletus

group (Diptera: Ceratopogonidae) in central Italy. Journal of Medical

Entomology 47: 313–318.
73. Mullens BA, Gerry AC, Lysyk TJ, Schmidtmann ET (2004) Environmental

effects on vector competence and virogenesis of bluetongue virus in Culicoides:

interpreting laboratory data in a field context. Veterinaria Italiana 40: 160–166.
74. Carpenter S, Lunt HL, Arav D, Venter GJ, Mellor PS (2006) Oral susceptibility

to bluetongue virus of Culicoides (Diptera: Ceratopogonidae) from the United
Kingdom. Journal of Medical Entomology 43: 73–78.

75. Baylis M, Parkin H, Kreppel K, Carpenter S, Mellor PS, et al. (2010) Evaluation
of housing as a means to protect cattle from Culicoides biting midges, the vectors

of bluetongue virus. Medical and Veterinary Entomology 24: 38–45.

76. Bivand R (2002) Spatial econometrics functions in R: Classes and methods.
Journal of Geographical Systems 4: 405–421.

77. Tognelli MF, Kelt DA (2004) Analysis of determinants of mammalian species
richness in South America using spatial autoregressive models. Ecography 27:

427–436.

78. Keitt TH, Bjørnstad ON, Dixon P, Citron-Pousty S (2002) Accounting for
spatial pattern when modeling organism-environment interactions. Ecography

25: 616–625.
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