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Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with 
high rates of metastasis and recurrence. Conventional clinical treatments are ineffective for it as it lacks 
therapeutic biomarkers. Figuring out the biomarkers related to TNBC will be beneficial for its clinical 
treatment and prognosis.
Methods: Five independent datasets downloaded from the Gene Expression Omnibus database were 
merged to identify differentially expressed genes between TNBC and non-TNBC samples by using 
the MetaDE.ES method followed by mapping the differentially expressed genes into a protein-protein 
interaction network. Meanwhile, the weighted gene co-expressed network analysis (WGCNA) of The 
Cancer Genome Atlas data was performed to screen the hub genes. The gene functional analyses were 
conducted by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis. The correlation between gene expression level and patient overall 
survival was evaluated by survival analysis.
Results: A total of 11 differentially expressed genes (CDH1, SP1, MYC, FAF2, IFI16, MDM2, AR, DBN1, 
HSPB1, FLNA, YWHAB) were obtained from the protein-protein interaction network with degree >10. 
WGCNA revealed 5 hub genes (TPX2, CTPS1, KIF2C, MELK, CDCA8) that were significantly associated 
with TNBC. Cell cycle, oocyte meiosis, spliceosome were the pathways significantly enriched in these genes 
according to GO functionally annotated terms and KEGG pathways analysis. The Kaplan-Meier curves 
showed that the expression levels of HSPB1, IFI16, TPX2 were significantly associated with the survival time 
of TNBC patients (P<0.05).
Conclusions: A total of 16 genes significantly associated with TNBC were identified by bioinformatic 
analyses. Among these 16 genes, HSPB1, IFI16, TPX2 might be able to be used as biomarkers of TNBC.
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Introduction

Triple-negative breast cancer (TNBC) is a subtype of 
breast cancers that lacks expression of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor type 2 (HER2) (1). Although TNBC 
only accounts for about 15–20% of all breast cancers, it is 
more aggressive than other subtypes of breast cancers (2). 
Moreover, TNBC patients have high rates of metastasis and 
recurrence, especially within the first 5 years after diagnosis 
(1,2). All these unfavorable factors collectively lead to poor 
prognosis of TNBC patients. Unfortunately, due to lack of 
expression of hormone receptors (ER and PR) and HER2, 
conventional hormone therapy (e.g., tamoxifen) and anti-
HER2 antibody therapy (e.g., trastuzumab) are ineffective 
for TNBC. Surgery combined with chemotherapy and 
radiotherapy is still the most commonly used clinical 
therapeutic strategy for TNBC (3). Hence, it is urgent to 
identify biomarkers of TNBC, which would be beneficial 
for TNBC early detection, prediction of prognosis, and 
development of TNBC targeted drugs.

With the prevalence of microarray technologies, efforts 
were devoted to identifying the TNBC-sensitive and 
specific signatures (4,5). Although microarray-based studies 
are informative, some studies reported that the results of 
single microarray analyses were not reproducible or not 
robust (6,7). Meta-analysis is a statistical technique that 
includes multiple studies to yield a more precise and reliable 
evaluation of differentially expressed genes (DEGs) (8). The 
weighted gene co-expressed network analysis (WGCNA) 
has been proven as an effective method to group genes that 
have similar expression patterns into a model related to the 
desired traits (9). These two bioinformatics methods have 
been commonly applied to identify interested gene sets.

In this study, an integrated analysis was applied to 5 
independent datasets of TNBC and non-TNBC samples, 
which identified 361 dysregulated genes. The protein 
and protein interaction (PPI) network was subsequently 
employed to seek the hub genes. WGCNA was used to seek 
highly correlated genes among modules that correlated to 
TNBC, which may share important biological regulatory 
roles. A panoramic view of molecular mechanisms related 
to TNBC was obtained through using a series of functional 
annotations including Gene Ontology (GO) analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis. Finally, identification of potential prognostic 
molecules was achieved based on patients’ clinical survival 
data and candidate genes in both analyses. Our study 
not only provides promising therapeutic and prognostic 

targets of TNBC, but also promotes understanding of the 
molecular mechanisms of TNBC. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-5989).

Methods

Identification of DEGs and hub genes in PPI network

Gene expression profile datasets that met the inclusion 
criteria were retrieved from the Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/geo/) database. The 
inclusion criteria included: (I) mRNA expression profiling 
by array of homo sapiens; (II) tissue samples from TNBC 
and other kinds of breast cancer; (III) number of samples 
>15. Five microarray datasets containing 63 TNBC samples 
and 169 non-TNBC samples were collected (Table 1), 
including GSE27447, GSE36295, GSE61724, GSE43358, 
and GSE75678. The raw data (CEL files) of the first 
four datasets were downloaded followed by background 
correction, normalization, and median polish summarization 
with the Robust Multichip Average algorithm analysis (10). 
The normalized data (txt files) of the dataset GSE75678 was 
also downloaded. The probe IDs were converted to official 
gene symbols according to the annotation files. The probes 
without mapped genes were discarded while the average 
expression value of the multiple probes mapped to the 
identical gene was obtained.

After merging 5 datasets and filtering non-expressed and 
non-informative genes, quality control (QC) was carried 
out to determine whether a study should be included 
or excluded by using the MetaQC package (11), which 
provided six QC measurements: (I) internal homogeneity of 
co-expression structure among studies (IQC); (II) external 
consistency of co-expression structure correlating with a 
pathway database (EQC); (III) accuracy of DEG detection 
(AQCg) or pathway identification (AQCp); (IV) consistency 
of differential expression ranking of genes (CQCg) or 
pathways (CQCp). The MetaDE.ES method was adopted 
to identify DEGs (12). Firstly, the heterogeneity test which 
was used to determine gene expression differentiation 
among various datasets indicated no heterogeneity with the 
thresholds: Q P value (Qpval) >0.05 and τ2=0. Secondly, 
genes with a false discovery rate (FDR) <0.01 were 
considered as DEGs between TNBC and non-TNBC.

The gene interactions of humans in the Human Protein 
Reference Database (www.hprd.org/, HPRD Release 
9) and Biological General Repository for Interaction 
Datasets (thebiogrid.org/, BioGRID Version 3.5.165) 

https://www.sciencedirect.com/topics/medicine-and-dentistry/estrogen-receptor
https://www.sciencedirect.com/topics/medicine-and-dentistry/progesterone-receptor
http://dx.doi.org/10.21037/atm-20-5989
http://www.ncbi.nlm.nih.gov/geo/
http://www.hprd.org/, HPRD
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were downloaded (13,14). The interactions of identified 
DEGs based on these two databases were subjected to 
Cytoscape 3.6.1 for visualization (15). In the PPI network, 
“nodes” represented proteins, and “edges” represented the 
interactions between two proteins. “Degree” described the 
quantitative relationship of edges between different nodes. 
That is, a gene with more degrees implies more important 
roles in biological processes.

WGCNA analysis of hub genes

Firstly, Gene expression data of all breast cancer samples 
were downloaded from The Cancer Genome Atlas (TCGA; 
https://cancergenome.nih.gov/). TCGA level 3 expression 
data of breast cancer and corresponding trait information 
including 1,090 samples (https://cdn.amegroups.cn/static/
public/10.21037atm-20-5989-1.docx) were used as input. 
Outlier samples were removed, and missing values were 
filtered. A matrix of similarity was constructed according 
to Pearson’s correlation coefficient among all genes. The 
soft threshold parameter which satisfied the scale-free co-
expression network relationship was set to 4. Secondly, 
the topological overlap matrix was transformed from the 
adjacency matrix, and the corresponding dissimilarity was 
calculating to identity hierarchical clustering genes through 
the dynamics cut tree algorithms. Different modules 
eigenvectors (MEs) were achieved to merge modules with 
high similarity at the height cut of 0.75. The relevance 
between modules and clinical traits (TNBC and other 
molecular subtypes of breast cancers) was shown with 
heatmap to figure out modules most closely associated with 
TNBC. Gene significance (GS) was defined to measure 
the correlation between the gene and the trait, and another 
term named module membership (MM) was used to 

quantify the correlation of the MEs and the gene expression 
profile. Hub genes in the key modules were defined by high 
MM and GS, i.e., genes in the key modules with MM >0.8 
and GS >0.2 were selected for further analysis. WGCNA 
was implemented by the WGCNA package in R (16).

Functional analysis of gene sets

To investigate the biological roles of gene sets obtained 
from meta-analysis and WGCNA in TNBC, KEGG 
pathway enrichment, and GO enrichment analysis which 
represented 3 categories including Biological Process (BP), 
Molecular Function (MF), and Cellular Component (CC) 
were performed. GO analysis and pathway analysis of 
DEGs were based on online website DAVID (https://david.
ncifcrf.gov/) and KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/), 
respectively. Additionally, functional analysis of key modules 
was performed by using the clusterProfiler package in R (17). 

Survival analysis

To screen prognostic signatures, the critical genes obtained 
from meta-analysis and WGCNA were selected for survival 
analysis, which was performed based on TCGA gene 
expression and clinical information. Kaplan-Meier survival 
curves were plotted by the “survival” package in R to show 
the relationship between overall survival (OS) and gene 
expression level. The log-rank test was used to generate P 
values. Genes with a threshold of P<0.05 were considered to 
have a significant difference during patients’ survival time.

Statistical analysis

All analyses were performed using R (version 3.6), 

Table 1 Characteristics of individual studies included in meta-analysis

GEO accession Chip
Number of 

probes
Sample size

Number of 
TNBC

Number of 
non-TNBC

GSE27447 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 33297 19 5 14

GSE43358 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 54675 57 17 40

GSE36295 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 33297 38 11 27

GSE61724 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 33297 64 16 48

GSE75678 Agilent-014850 Whole Human Genome Microarray 45220 54 14 40

Total 232 63 169

GEO, gene expression omnibus; TNBC, triple-negative breast cancer.

https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-1.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-1.docx
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/download_file.php?type=seq_pep&filename=ko.pep.fasta.gz
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Table 2 MetaQC quantitative quality control measures for selected datasets.

Dataset IQC EQC CQCg CQCp AQCg AQCp Rank

GSE43353 4.91 4 59.48 23.64 41.5 25.54 2.00

GSE75678 0.61* 3.82 97.4 62.92 68.53 36.21 2.08

GSE27447 3.14 4 17.81 3.39 11.45 8.21 3.42

GSE36295 4.91 3.82 14.14 17.3 5.53 10.24 3.67

GSE61724 5.31 3.7 15.31 7.95 8.53 5.38 3.83

*, low performance. IQC, internal quality control; EQC, external quality control; CQCg, consistency quality control of differential expression 
ranking in genes; CQCp, consistency quality control of differential expression ranking in pathways; AQCg, accuracy quality control of 
differentially expressed gene detection; AQCp, accuracy quality control of pathway identification.

online website DAVID and KOBAS 3.0. The DEGs 
were identified by combining effect sizes in the meta-
analysis. The functional analysis was conducted using the 
hypergeometric test. The survival analysis was performed 
by the log-rank test. P<0.05 was considered as statistically 
significant in all analyses except for the meta-analysis, which 
adopted FDR <0.01.

Results

Quality assessment and DEGs screening

The results of QC are listed in Table 2. All datasets were 
included for further analysis as all datasets satisfied the 
selection criteria, i.e., datasets with good performance in 
at least 5 QC measures. Using the metaDE.ES method, 
361 DEGs between TNBC and non-TNBC samples were 
identified with the screening criteria: Qpval >0.05, τ2=0, 
and FDR <0.01, including 146 up-regulated genes and 215 
down-regulated genes (https://cdn.amegroups.cn/static/
public/10.21037atm-20-5989-2.docx).

Hub genes in PPI network

After mapping 361 DEGs into the PPI database, the 
PPI network comprised of 222 nodes and 375 edges was 
constructed (Figure 1). According to network analysis,  
11 genes with degree >10 were listed in Table 3.

TNBC-associated modules and hub genes in WGCNA

As shown in Figure 2A, 16 modules were identified by 
average linkage hierarchical clustering based on expression 
values of 19,641 genes. Genes in the grey module were 
excluded as it contained genes that were not able to be 

clustered into other modules. At the height cut of 0.75, 
the blue module and pink module were grouped into the 
blue module. The black module and magenta module were 
grouped into the black module. As a result, 14 modules were 
achieved eventually. Next, we correlated genes and modules 
with clinical features. Based on the correlation between 
ME and clinical traits shown in the heatmap (Figure 2B), 
we found cyan module (r=0.64, P=1e-121) and yellow module 
(r=0.56, P=7e-85) were significantly positively associated 
with TNBC. Apart from this, the correlation between ME 
and ER-, PR-, HER2--breast cancers roughly showed a 
consistent tendency with TNBC. Comparing GS in each 
module, the results showed that cyan and yellow modules 
had the strongest correlation with TNBC (Figure 2C).  
The cluster analysis and heatmap shown in Figure 2D 
further strengthened the evidence that these two modules 
were highly related to TNBC. For each gene in these two 
modules, GS, MM, and intramodule connectivity (KME) 
were calculated to draw scatterplots, respectively. It was 
obvious that GS was highly positively connected with MM 
in the cyan module (Figure 2E), while genes with high GS 
had relative lower KME in the cyan module (Figure 2F). GS 
was also highly positively correlated to MM in the yellow 
module (Figure 2G), but genes with high GS had higher 
KME in the yellow module (Figure 2H). Hub genes in the 
yellow modules were TPX2, CTPS1, KIF2C, MELK, and 
CDCA8 (Figure 2I), while no hub genes with GS >0.2 and 
MM >0.8 were found in the cyan module.

Functional analysis of interesting gene sets

KEGG pathway enrichment and GO enrichment were 
performed for DEGs and genes in TNBC-associated 
modules (Figure 3, https://cdn.amegroups.cn/static/
public/10.21037atm-20-5989-3.docx,  https://cdn.

https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-2.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-2.docx
https://cdn.amegroups.cn/static/public/ATM-20-5989-supplementary.pdf
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Figure 1 PPI network of DEGs. Red nodes represent higher expression in TNBC samples than non-TNBC samples, while green nodes 
represent lower expression in TNBC samples than non-TNBC sample. PPI, protein-protein interaction; DEGs, differentially expressed 
genes; TNBC, triple-negative breast cancer.

Table 3 Top 11 genes with degree >10 in PPI network

Gene Expression Degree Q.value Qpval τ2 FDR

CDH1 Down 42 1.33884 0.85475 0 0.0053

MYC Up 23 2.55752 0.63437 0 0.0006

IFI16 Up 18 3.96701 0.41049 0 8.89E-03

AR Down 18 1.67509 0.79524 0 3.25E-19

HSPB1 Down 15 3.70639 0.44720 0 3.25E-19

YWHAB Down 15 0.47565 0.97583 0 0.0074

SP1 Down 14 2.23518 0.69259 0 0.0029

FAF2 Down 13 2.37068 0.66793 0 0.0011

MDM2 Down 13 2.95618 0.56519 0 0.0099

DBN1 Up 11 1.77908 0.77631 0 0.0023

FLNA Up 11 2.86412 0.58082 0 0.0023

PPI, protein interaction; Qpval: Q P value; FDR: false discovery rate.



Cao et al. Novel prognostic biomarkers of TNBC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):205 | http://dx.doi.org/10.21037/atm-20-5989

Page 6 of 11

Figure 2 The process of WGCNA analysis. (A) Hierarchical clustering dendrograms of identified co-expressed genes in modules. (B) 
Module-trait relationships. The Y axis is the modules which are represented by “ME + color”. The X axis is the clinical features. Patho_
T, Patho_M, and Patho_N stand for the TNM system. Patho_stage is stage of cancer. Lym_nodes_pos means lymph node positive. ER_
Neg, PR_Neg, Her2_Neg represent ER negative, PR negative, HER2 negative, respectively. (C) Boxplots showing GS (Y axis) across each 
module (X axis). (D) Cluster analysis of modules and TNBC to find TNBC-related modules. (E) Scatterplots of correlation between MM 
(X axis) and GS (Y axis) in cyan module. (F) Scatterplots of correlation between intramodule connectivity (X axis) and GS (Y axis) in cyan 
module. (G) Scatterplots of correlation between MM (X axis) and GS (Y axis) in yellow module. (H) Scatterplots of correlation between 
intramodule connectivity (X axis) and GS (Y axis) in yellow module. (I) List of hub genes. WGCNA, weighted gene co-expressed network 
analysis; MM, module membership.

Module-trait relationshipsCluster dendrogramA

C

E

I

B

D

GF H
Module membership vs. gene 

significance 
cor=0.76, P=3e−140

Module membership vs. gene 
significance 

cor=0.89, P=9.2e−56

Gene significance across modules, P value=0

yellow cor=0.65, P=4.6e−90cyan cor=0.78, p=5.5e−34
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Table 4 Top 10 enriched pathways of DEGs

KEGG term KEGG ID P value Gene symbol

PI3K-Akt signaling 
pathway

hsa04151 6.51E-06 EIF4B, RPLR, YWHAB, MAPK3, CDC37, COL4A2, SOS2, CDKN1B, MDM2, GNB4, OSMR, 
MYC, PPP2R5D, PPP2R5E, CREB3L4, MYB, SPP1

Metabolic pathways hsa01100 6.10E-06 COX6C, DNMT1, SUCLG2, MGAT4A, UXS1, AGL, AKR1B1, UQCRC2, NDUFB1, POLD4, 
NDUFV2, DCTD, EXT1, DHCR24, PTDSS1, PGM1, CTPS1, GLS, SPTLC2, PNP, ASAH1, 
ATP5I, CERS2, COX7C, SEPHS1, POLR3K, ATP5G2, B4GALT2, MCCC2, PPCS, UQCRQ, 
SPR, COQ5

Protein processing 
in endoplasmic 
reticulum

hsa04141 6.10E-06 PDIA4, HYOU1, STUB1, TRAM1, BAG1, DNAJC1, SAR1B, RRBP1, UBE2J1, LMAN1, 
CALR, DNAJB11

Viral carcinogenesis hsa05203 0.00026 LTBR, YWHAB, MAPK3, LYN, CDKN1B, MDM2, GTF2H2C_2, SRF, SND1, CREB3L4, 
ACTN1

Huntington's disease hsa05016 0.00076 LTBR, UQCRQ, MAPK3, LYN, SP1, COX6C, DENND1B, CREB3L4, ATP5G2, UQCRC2

Oxidative 
phosphorylation

hsa00190 0.00163 LTBR, MAPK3, LYN, COX6C, ATP5I, UQCRQ, ATP5G2, UQCRC2

Parkinson's disease hsa05012 0.00216 LTBR, MAPK3, LYN, COX6C, UBE2J1, UQCRQ, ATP5G2, UQCRC3

Epstein-Barr virus 
infection

hsa05169 0.00371 CDKN1B, LYN, MDM2, POLR3K, SHFM1, SND1, MYC, YWHAB, HSPB1

Proteoglycans in 
cancer

hsa05205 0.00371 MAPK3, FLNA, EIF4B, MDM2, SDC4, MYC, RDX, FRS2, SOS2

Alzheimer's disease hsa05010 0.00412 NDUFB1, MAPK3, COX7C, C5orf24, NDUFV2, UQCRQ, DNAJB11, UQCRC2

DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of Genes and Genomes.

amegroups.cn/static/public/10.21037atm-20-5989-4.docx). 
The top BP enrichment GO terms of DEGs were negative 
regulation of apoptotic process, establishment of protein 
localization, and protein transport. The top 3 enriched 
pathways of DEGs were PI3K-Akt signaling pathway, 
metabolic pathways, and protein processing in endoplasmic 
reticulum (Table 4).

For the cyan module,  epidermis  development, 
specific granule lumen, and RAGE receptor binding 
were most s ignif icantly enriched in BP, CC, and 
MF, respectively (https://cdn.amegroups.cn/static/
public/10.21037atm-20-5989-5.docx, Figure 3A). Only 
the p53 signaling pathway was enriched in the cyan 
module (Figure 3C, Table S1). For the yellow module, 
mitotic nuclear division, chromosomal region, and 
chromatin binding were most significantly enriched in 
BP, CC, and MF, respectively (https://cdn.amegroups.cn/
static/public/10.21037atm-20-5989-7.docx, Figure 3B).  
Cell cycle, DNA replication, and spliceosome were 
the top 3 most significantly enriched pathways in 
the yellow module (https://cdn.amegroups.cn/static/
public/10.21037atm-20-5989-8.docx, Figure 3D).

Comparing the pathways in DEGs and yellow module, 
cell cycle, oocyte meiosis, spliceosome, and pathogenic 
Escherichia coli infection were identified as enriched 
pathways in both processes.

Prognosis-related genes revealed by survival analysis

According to survival analyses of hub genes in the PPI 
network and yellow module, we noticed that three key 
molecules (HSPB1, TPX2, and IFI16) can predict TNBC 
patients’ survival time (Figure 4). High expression of 
HSPB1 was associated with worse OS in TNBC patients  
(Figure 4A), while low expressions of TPX2 (Figure 4B) and 
IFI16 (Figure 4C) lead to worse OS in TNBC patients.

Discussion

Application of two different bioinformatics methods 
including meta-analysis and WGCNA ensured successful 
identification of novel therapeutic and prognostic 
biomarkers for TNBC. PPI network analysis showed 11 
DEGs with top degrees (CDH1, SP1, MYC, FAF2, IFI16, 

https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-5.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-5.docx
https://cdn.amegroups.cn/static/public/ATM-20-5989-supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-7.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-7.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-8.docx
https://cdn.amegroups.cn/static/public/10.21037atm-20-5989-8.docx
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MDM2, AR, DBN1, HSPB1, FLNA, and YWHAB) may 
play central roles in TNBC. Meanwhile, hub genes (TPX2, 
CTPS1, KIF2C, MELK, and CDCA8) in the yellow module 
of WGCNA may also be crucial for TNBC.

Among these genes, CDH1, MYC, AR, and MELK have 
been reported highly related to TNBC. CDH1, as a tumor 
suppressor gene, encodes E-cadherin protein, which is 
considered as a promising TNBC marker (18). CDH1-
promoter demethylation could induce de novo E-cadherin 
expression, suppressing invasion, and metastasis of epithelial 
tumors (19). Disproportionately increased expression of 
oncogenic transcription factor MYC was observed in TNBC 
compared with ER, PR, and HER2 receptor-positive breast 
cancer (20). Many studies indicated that MYC contributed 
to cell proliferation and malignant transformation by 
promoting the expression of cell cycle related genes (21,22). 
MYC overexpression combining with inactivity of tumor 
suppressor pathway related to p53 may lead to aberrant 
tumor growth in TNBC (21). AR, a member of the steroid 
hormone receptor family, is expressed in the majority of 
breast carcinoma. The research revealed that tumorigenesis 
and proliferative change in breast cancer cell lines would 
occur due to AR dysregulation (23). MELK is a mitotically 
regulated kinase that could mediate cell survival under 
metabolic stress. Studies have shown that MELK was 
overexpressed in basal-like breast cancer and TNBC, which 
makes MELK a vital target of TNBC (24,25).

In this study, we identified three key genes (HSPB1, 
TPX2, and IFI16) that were related to the prognosis 
of TNBC, which had never been reported in previous 

studies. Contrary to their expression in the meta-analysis, 
higher expression of HSPB1 and lower expression of IFI16 
predicted worse OS in TNBC. HSPB1 is a kind of small 
heat shock protein involved in some cell death pathways 
like necrosis, apoptosis, or autophagy to protect cells 
from lethality. Overexpression of HSPB1 was associated 
with increased tumorigenicity, tumor cells metastasis, 
and chemotherapeutic resistance (26). It was reported that 
high expression of HSPB1 was associated with worse 
overall survival of breast cancer in general (27), while the 
relationship between the expression level of HSPB1 and 
prognosis of breast cancer subtypes is unknown. Our study 
demonstrated that the upregulation of HSPB1 was related 
to the poor prognosis of TNBC. IFI16 is considered as 
a nuclear pathogen sensor that participates in the innate 
immune response by sensing foreign DNA (28,29). Our 
study showed low expression of TPX2 contributed to 
worse OS in TNBC. TPX2 is a tubule-associated protein. 
According to the GO analysis, TPX2 may play an essential 
role in mitotic nuclear division, cell cycle G2/M phase 
transition, and other cell cycle-related biological processes.

In order to reveal the underlying molecular mechanisms, 
pathway enrichment analysis was performed, and the results 
indicated that cell cycle, oocyte meiosis, spliceosome, 
and pathogenic Escherichia coli infection had a strong 
association with TNBC. The first 2 pathways were 
closely associated with cell growth and death, which were 
supported by the expression of genes related to proliferation 
like MYC, IFI16, AR, MDM2, FLNA, MELK, and CDCA8. 

In conclusion, our integrated analysis of microarray 

Figure 4 Kaplan-Meier survival curves, which show that expression levels of 3 deregulated genes (A) HSPB1, (B) TPX2 and (C) IFI16 were 
associated with prognosis in TNBC patients (unadjusted P value <0.05). Y axis is the overall survival rate and X axis is the survival time. 
TNBC, triple-negative breast cancer.

HSPB1 (P=2.418e-02) TPX2 (P=4.416e-02) IFI16 (P=4.83e-02) A B C
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combined with WGCNA provided promising therapeutic 
targets for TNBC. Survival analysis uncovered novel 
prognostic relationships of candidate genes and the overall 
survival of TNBC patients. Additionally, HSPB1, TPX2, 
and IFI16 have the potential to be used as prognostic 
biomarkers of TNBC. Our work identified the TNBC-
related candidate genes and provided new insights into the 
underlying mechanisms of TNBC, which is beneficial for 
improving the outcome of TNBC.
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