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Long noncoding RNAs (LncRNAs) are transcripts of nucleic acid sequences with a length
of more than 200 bp, which have only partial coding capabilities. Recent studies have
shown that lncRNAs located in the nucleus or cytoplasm can be used as gene expression
regulatory elements due to their important regulatory effects in a variety of biological
processes. Wilms tumor (WT) is a common abdominal tumor in children whose
pathogenesis remains unclear. In recent years, many specifically expressed lncRNAs
have been found in WT, which affect the occurrence and development of WT. At the same
time, lncRNAs may have the capacity to become novel biomarkers for the diagnosis and
prognosis of WT. This article reviews related research progress on the relationship
between lncRNAs and WT, to provide a new direction for clinical diagnosis and
treatment of WT.

Keywords: wilms tumor, long noncoding RNAs (lncRNAs), endogenous competing RNAs (ceRNAs), prognosis,
therapeutic targets
INTRODUCTION

Wilms tumor (WT) is a common abdominal tumor that accounts for more than 90% of all
malignant renal tumors in children (1–3). The incidence of WT is approximately 1/10,000, and the
tumor is known to be highly malignant, to grow fast, and to be prone to metastasis (4–8). In most
patients, the first symptom typically involves a palpable abdominal mass. Furthermore, some
patients tend to exhibit symptoms such as hematuria, fever, urinary tract infection, varicocele,
hypertension or hypotension, and anemia (9–11). Surgical resection combined with postoperative
chemotherapy and radiotherapy can significantly improve the 5-year survival rate of WT in children
(12–14). However, WT treatment still faces several challenges that need to be overcome to improve
the effective rate of treatment, such as multi-drug resistance and the frequency of chemotherapy side
effects. In addition, our understanding regarding the pathogenesis and the transformation
mechanisms of WT remains insufficient, and there is a lack of corresponding effective targeted
Abbreviations: lncRNAs, long nocoding RNAs; WT, wilms tumor; ceRNAs, endogenous competing RNAs; mRNAs, Message
RNAs; snoRNAs, small nucleo-lar RNAs; gRNAs, guide RNAs; snRNAs, small nuclear RNAs; siRNAs, small interfering RNAs;
shRNAs, small hairpin RNAs; sdRNAs, sno derived RNAs; piRNAs, Pi-wi interacting RNAs; circRNAs, circular RNAs; IKKa,
component of inhibitor of nuclear factor kappa B kinase complex; SNHG6, small nucleolar RNA host gene 6; TAK1, nuclear
receptor subfamily 2 group C member 2; JNK, mitogen-activated protein kinase 8; MIAT, myocardial infarction associated
transcript; DGCR8, DGCR8 microprocessor complex subunit; HOXA11-AS, HOXA11 antisense RNA; FOXP2, forkhead box
P2; CCND2, cyclin D2; CRNDE, colorectal neoplasia differentially expressed; miRNA, micro RNA; XIST, X inactive specific
transcript; Wnt11, Wnt family member 11; MYLK-AS1, MYLK antisense RNA 1; TCF7L2, transcription factor 7 like 2;
CCNE1, cyclin E1; MEG3, maternally expressed 3.
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therapy (15–18). Therefore, it is urgent to identify specific
predictors and therapeutic targets for the prognosis of WT.

In the eukaryotic genome, the proportion of protein-encoding
genes is very small because approximately only 1.5% of the DNA
in the Homo sapiens genome has the ability to perform this
specific function (19). In the process of gene expression, DNA
follows the principle of base complementary pairing, and is
transcribed under the catalysis of RNA polymerase (20, 21).
The transcription products are divided into two types according
to their protein-encoding ability. One of these two types is RNA
that can encode proteins. In contrast, message RNAs (mRNAs), a
type of RNA that cannot encode proteins, are collectively
referred to as noncoding RNAs (ncRNAs) (22, 23). At present,
noncoding RNAs are mainly classified based on their sequence
length, and they are divided into small ncRNAs, which have a
sequence length of less than 200 nucleotides, and lncRNAs,
which have a sequence length of more than 200 nucleotides
(24, 25). LncRNAs are mainly in the form of RNA in epigenetic,
transcription, and post-transcriptional regulation of gene
expression levels (25–28). Most lncRNAs are also catalyzed
and transcribed by RNA polymerase II, but their sequences are
not highly conserved, their expression abundance is low, and
they display strong specificity in tissues and cells (29–32). The
mechanism of action of lncRNAs is also relatively complicated
and has been continuously explored in recent years. However,
some of the known mechanisms include affecting the
transcription of the upstream promoter region of the encoding
protein gene and interfering with the expression of downstream
genes (33), and inhibiting IIIIA polymerase II or mediating
chromatin remodeling and histone modification, thus affecting
the expression of downstream genes (34). The transcript forms a
complementary double-strand that interferes with mRNA
shearing, thus forming different forms of shearing (35) and a
complementary double-strand with the transcript of the gene
encoding protein, while also generating endogenous siRNA
under the action of the Dicer enzyme (36), binding to a
specific protein to regulate the activity of the corresponding
protein (37), acting as a structural component to form a nucleic
acid-protein complex with a protein (38) and as a precursor
molecule for small RNAs (miRNAs, piRNAs) (39), and also
binding to a specific protein to change the cellular location of the
protein (40).

At present, many studies have shown that lncRNAs play an
indispensable role in tumor occurrence and progression. Lnc-
CCLM is downregulated in cervical cancer tissues and is closely
related to the lymphatic metastasis of cervical cancer patients
(41). Lnc-GAS6-AS1 is downregulated in lung adenocarcinoma
tissue, and it has been related to the patients’ clinicopathological
characteristics and survival rates (42). Zhao et al. found that the
low expression of lncRNA EMX2OS was associated with the
poor prognosis of WT subjects (43). In addition, Zhang et al.
showed that lncRNA SOX21-AS1 acts as an oncogenic lncRNA
in WT. Knockdown of lncRNA SOX21-AS1 inhibits WT cell
proliferation and colony formation, and induces cell cycle arrest
by upregulating p57 expression (44). Besides, lncRNA also plays
an indispensable role in the occurrence and progression of
Frontiers in Oncology | www.frontiersin.org 2
childhood tumors. Kesherwani et al,. have confirmed the
lncRNA expression profile in the pediatric MB subgroups and
related molecular pathways and the prognostic significance of
lncRNAs and unique lncRNAs associated with each MB
subgroup were determined and verified (32591022). They
identified important lncRNA DELU2, CASC15, LINC01355
and GAS5 exists in each subgroup, which can further explore
the functional analysis of different MB subgroups. In addition,
they also found that SOX2, PRKCD, and EZH2 are related to the
functional network of each subgroup and may be important drug
targets. Smith et al. summarize the abnormally expressed
ncRNAs in childhood tumors (45). They found that miRNAs
and long non-coding RNAs play a key role in the development of
these cancers. In addition, their functional contributions and
molecular interactions during tumor formation. Baldini et al,.
made an overview. The aim is to briefly summarize the latest
findings about the involvement of certain lncRNAs in NB disease
by focusing on the mechanism of action of certain lncRNAs
involved in NB disease and revealing the possible role in the
pathogenesis and progression of NB (45). Liu et al. identified a
ceRNA network consisting of 38 DElncRNAs, 18 DEmiRNAs
and 99 DEmRNAs was established and 7 prognostic-related
RNAs by analyzing the TCGA database (46). It was found
through analysis that two RNAs were related to clinical staging
and organization. The scientific classification is significantly
related, and the 7 RNAs may be considered as new prognostic
biomarkers and potential therapeutic targets for WT treatment.
In addition, the ceRNA regulatory network can provide new
strategies for the further study of lncRNA and miRNA in WT.

This article aims to systematically review the latest research
progress of LncRNAs in the field of WT, hoping to provide a
theoretical basis for LncRNAs as possible biomarkers and
potential therapeutic targets for WT in the future.
OVERVIEW OF LncRNAs

Definition and Classification of LncRNAs
In recent years, as the research on ncRNAs continues to heat up,
the function and mechanism of lncRNAs have gradually
attracted significant attention from researchers. LncRNAs are
types of noncoding RNAs with a length of more than 200
nucleotides (26, 47). Similar to mRNA, most lncRNAs are the
products of RNA polymerase II transcription that have a polyA
tail and a promoter structure. At the same time, there are
significant differences between lncRNA and mRNA because
lncRNAs mainly exist in the nucleus, and they also have lower
expression levels compared to mRNAs (48–50). Besides,
lncRNAs are relatively low conserved, and their expression has
temporal and spatial specificity (51–53). Traditionally, it is
believed that lncRNAs do not have protein-encoding abilities,
but recent studies have identified that a small number of
lncRNAs can indeed encode small molecule peptides, thereby
regulating biological processes.

There are no clear and unified standards for the classification
of LncRNAs. LncRNAs can be classified according to their
January 2022 | Volume 11 | Article 780925
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relative positions to the coding genes and can thus be divided
into five categories: sense lncRNAs: the transcription direction is
the same as that of the neighboring mRNAs; antisense lncRNAs:
the transcription direction is opposite to the transcription
direction of the neighboring mRNAs; bidirectional lncRNAs,
can be transcribed from the same and opposite directions as
adjacent mRNAs at the same time; intergenic lncRNAs,
produced by transcription between two genes; and intronic
lncRNAs, produced by transcription from the intron region of
genes (33, 54–56). Furthermore, lncRNAs can be classified
according to their respective role, which can be roughly
divided into four categories: signal, decoy, guide, and scaffold
molecules (32, 57–64).

Biological Functions of LncRNAs
LncRNAs Act as Diagnostic Markers of Diseases
The mechanisms of disease occurrence are complex and diverse,
mainly due to the abnormal levels of biological macromolecules
such as nucleic acids and proteins in the body, which affect
normal life activities to varying degrees (65–67). With the
advancement of sequencing technology and the emergence of
high-throughput sequencing technology, it provides effective
help for systematically searching for lncRNAs. At present,
through a large number of transcriptome sequencing (RNA-
seq), many lncRNAs that are abnormally expressed in diseases
have been discovered and identified (68, 69). Compared with
normal organisms, lncRNAs with high or low expression must
Frontiers in Oncology | www.frontiersin.org 3
play an important regulatory role in the occurrence of diseases
(Figure 1A). As a diagnostic marker for many diseases. LncRNA
DPP10-AS1 is highly expressed in lung cancer tissues, and its up-
regulation predicts poor prognosis of patients (70). Lnc-FRLnc1
is significantly up-regulated in the serum and serum exosomes of
patients with gastric cancer. The up-regulation of FRLnc1
expression is closely related to lymph node metastasis and
TNM staging (71). The high expression of Lnc-SCHLAP1 is
significantly related to the adverse clinicopathological
characteristics of prostate cancer, including grade group, high
pT staging, aggressive cribriform growth/prostatic intraductal
carcinoma, and reactive stroma (72).

LncRNAs Act as Competitive Endogenous RNA to
Regulate mRNA Expression
Competing endogenous RNAs (ceRNAs) are considered to be
mRNAs, pseudogenes, and lncRNAs that “communicate” with
each other through microRNA response elements (MREs) (73–
75). LncRNAs can competitively bind to miRNAs, so that
mRNAs can be expressed normally. miRNAs are a type of
short-sequence non-coding RNA, which can complement the
partial sequence of target mRNAs through MREs, thereby
inhibiting the expression of mRNAs (76, 77). There are
multiple sites on each mRNA sequence that can bind to
miRNAs, which means that one miRNA can bind to multiple
mRNAs, or multiple miRNAs can act on the same mRNA.
However, as many functions of lncRNAs are gradually being
January 2022 | Volume 11 | Article 780925
FIGURE 1 | Potential mechanism of lncRNAs in human cancer. (A) LncRNAs can act as latent biomarkers; (B) LncRNAs can serve as a ceRNA to sponge
miRNAs to regulate target genes expression; (C) LncRNAs can bind to various proteins (such as transcripition factors); (D) LncRNAs have the potential to
encode peptides.
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discovered, lncRNAs, as competitive endogenous RNAs, can
compete with mRNAs to bind miRNAs through MREs and
achieve the effect of protecting the expression of mRNAs
(Figure 1B). Lnc-APF can inhibit autophagy and myocardial
infarction by regulating the expression of ATG7 in combination
with miR-188-3p (78). The expression of Lnc-AGAP2-AS1 is
increased in lung cancer cells and tissues from radiation-sensitive
and radiation-resistant patients, and is closely related to the
patient. M2 macrophage-derived exosomes AGAP2-AS1
promotes NOTCH2 expression by binding to miR-296 To
enhance the radiotherapy immunity of lung cancer (79). The
expression of LncRNA OXCT1-AS1 is up-regulated in
glioblastoma. The high expression of OXCT1-AS1 indicates a
poor prognosis. OXCT1-AS1 may be used as the ceRNA of miR-
195 to enhance the expression of CDC25A and promote the
progression of glioma cells (80).

LncRNAs Can Bind to Proteins
Traditionally, gene regulation in eukaryotes generally refers to
the interaction between protein and protein or the interaction
between protein and DNA to regulate the expression of coding
genes (81–83). However, the regulatory network has a new mode
of regulation, that is, RNA and protein. The interaction between
RNA and DNA. The main function of coding RNA lies in protein
coding, and the regulation of ncRNAs in gene expression has
been gradually discovered. LncRNA can regulate the activity of
various biological macromolecules, and its main mechanism is
that a single lncRNA contains multiple modular domains that
bind to DNA, RNA and proteins. Among them, the modular
pairing of DNA binding and protein interaction is an important
mechanism for lncRNA to perform regulatory functions to
recruit chromatin modified proteins that regulate gene
expression through chemical modification of histones (63, 84).
Of course, the regulation of lncRNAs at the transcription level is
also an important type of ncRNAs, and there are many ways in
the regulation process, such as influencing gene expression by
competing for transcription factors or recruiting protein
complexes (Figure 1C). The expression of LINC00842 is up-
regulated in PDAC and is induced by high concentrations of
glucose through the transcription factor YY1. LINC00842 binds
to acetylated PGC-1a and prevents the deacetylation of
acetylated PGC-1a by the deacetylase SIRT1 to form PGC-1a
(85). LINC00511 can recruit EZH2 to the PTEN promoter and
promote the methylation of the PTEN promoter, which in turn
promotes cell proliferation, migration, stem cell and EMT
process (86). Lnc-ELF3-AS1 is highly expressed in gastric
cancer tissues and indicates a poor prognosis. ELF3-AS1 may
regulate the downstream target gene CC motif chemokine 20 by
binding to the RNA binding protein hnRNPK to promote cell
proliferation, migration and epithelial stroma Transform and
inhibit cell apoptosis (87). Lnc-HoxBlinc can be combined with
the promoter region of the characteristic gene of NPM1c,
through MLL1 recruitment and promoter H3K4me3
modification to control their activation in HoxBlincTg HSPC,
and then act as a cancer-promoting factor to cause the malignant
progression of acute myeloid leukemia (AML) (88). FOXC1 can
Frontiers in Oncology | www.frontiersin.org 4
promote the transcription of LINC00301 to promote its
expression. LINC00301 can be combined with the enhancer of
EZH2 to promote the EAF2 promoter associated with ELL
protein. EAF2 directly binds and stabilizes pVHL, so down-
regulated EAF2 increases the expression of hypoxia-inducible
factor 1 a (HIF1a) by regulating pVHL in non-small cell lung
cancer (NSCLC) cells. In addition, LINC00301 can also act as a
ceRNA against miR-1276 to accelerate the expression of HIF1a
in the cytoplasm of NSCLC (89).

LncRNAs Can Encode Polypeptides
Previous studies have shown that lncRNAs do not have the
ability to encode. In recent years, many studies have found that
lncRNAs can encode very short protein or peptide sequences,
and these peptides play an important role in life activities
(Figure 1D). Nelson et al. discovered a putative muscle-
specific long-chain non-coding RNA that encodes a 34 amino
acid peptide and named it dwarf open reading frame (DWORF)
(90). DWORF is located on the SR membrane, where it enhances
the activity of SERCA by replacing SERCA inhibitors,
phospholipids, creatinine, and mymodulin. Xiang et al. proved
that LINC-PINT can encode the peptide PINT87aa, which is
significantly increased in the HCC cell senescence model induced
by hydrogen peroxide (91). Overexpression of PINT87aa induces
growth inhibition, cell senescence and reduction of
mitochondrial autophagy in vitro and in vivo. The peptide
RPS4XL encoded by Lnc-Rps4l can inhibit the process of RPS6
by binding to RPS6 and inhibiting the phosphorylation of RPS6
at the phosphorylation site of p-RPS6 (Ser240+Ser244). RPS4XL
participates in hypoxia-induced PASMC proliferation (92).
LINC00998 can encode a small endogenous peptide called
SMIM30. SMIM30 promotes hepatocellular carcinoma
tumorigenesis by regulating cell proliferation and migration,
and its level is related to the poor survival of HCC patients
(93). In addition, SMIM30 is transcribed by c-Myc and then
drives the membrane anchoring of the non-receptor tyrosine
kinase SRC/YES1.
BIOLOGIC FUNCTION OF LncRNAs
IN WT

At present, the underlying cause of WT is unclear, and may be
related to gene mutations that regulate normal embryonic
development in the urogenital tract. Studies have shown that
lncRNAs are differentially expressed in WT, which can affect
tumor proliferation, invasion, metastasis, and other biological
effects through transcriptional and post-transcriptional
regulation (Table 1). LncRNAs can interact with miRNAs
through a competitive endogenous RNA mechanism, influence
the expression of downstream genes, and thus affect the overall
disease process (Figure 2). LncRNAs can also induce the
malignant progression of WT by regulating related pathways
(Figure 3). In addition, lncRNAs have the potential to become
tumor markers and potential therapeutic targets in
WT (Table 2).
January 2022 | Volume 11 | Article 780925
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LncRNAs Regulate WT Growth and
Metastasis Through Sponging miRNAs
When lncRNAs act as ceRNAs, it can be combined with miRNAs
and “occupy” its MREs. When the content of lncRNAs in the
body increases, the bound miRNAs increase, the binding sites of
miRNAs and downstream target genes decrease, and the
expression of downstream target genes increases. Conversely,
when the expression level of lncRNAs in the body decrease, the
binding sites on the target miRNAs are empty. In addition, more
downstream target genes can be combined with the miRNAs,
and the content of downstream target genes that can be detected
in the body will be reduced. That is, the expression trends of the
two RNAs with the same MRES are consistent. When RNA plays
this role, it is also called “molecular sponge”. It is worth noting
that there can be multiple RNA binding targets on one miRNA,
and one type of lncRNA can also be combined with multiple
miRNAs. At this time, more genes are involved and the
mechanism is more complicated (105, 106). Studies have found
that lncRNA can also be used as ceRNA to regulate the
expression of downstream genes in WT. Current research has
indicated that LncRNAs could be exploited as competitive
endogenous RNAs (ceRNAs) or miRNA sponges. This is
because LncRNAs can control the production of target mRNAs
at the post-transcriptional level by competitively interacting with
miRNAs through their miRNA response elements and reducing
miRNA function and activity (106). Zhu et al. found that
LINC00473 expression was higher in WT tissues than in
normal tissues, and higher levels of LINC00473 have been
Frontiers in Oncology | www.frontiersin.org 5
associated with higher stages and unfavorable histological WT.
LINC00473 effectively leads to the occurrence and development
of WT through miR-195/IKKa-mediated growth promotion
(94). Furthermore, LINC00667 can competitively bind with
miR-200b/c/429 to regulate the expression of IKK-b, and
subsequently activate the NF-kB pathway in WT, thereby
promoting the malignant progression of WT (99). Zhu et al.
revealed that the novel BLACAT2/miR-504-3p/Wnt11 axis is
related to the occurrence and progression of WT, among which
BLACAT2 can absorb miR-504-3p and downregulate Wnt11
(101). The authors also found that the elevated XIST levels in
blood and tissue samples of WT patients are significantly related
to TNM staging and a shorter survival time. XIST can regulate
the miR-194-5p/YAP pathway to promote WT cell proliferation,
migration, and invasion, and induce cell apoptosis (103).

LncRNAs Regulate WT Progression by
Regulating Signaling Pathways
Studies have found that lncRNAs can affect the progression of
the disease by regulating different signaling pathways (107, 108)
(Figure 4). LncRNA can also participate in cancer progression by
regulating different signals in WT. LncRNAs, a class of newly
identified genes with gene regulation abilities but no protein-
coding capacity, have been proposed to play an important role in
regulating physiological processes (109). Su et al. identified that
SNHG6 expression is significantly increased in WT tissues.
Knockdown of SNHG6 could increase the expression of miR-
15a and regulate the TAK1/JNK and Wnt/b-catenin signaling
TABLE 1 | Potential role and mechanism of lncRNAs in WT.

LncRNA Dysregulation Mechanism Biological function Ref.

LINC00473 Up LINC00473/miR-195/IKKa promote cell vitality and inhibit cell apoptosis (94)
　 　 　 　 　

SNHG6 Up SNHG6/miR-15a/TAK1-JNK/Wnt-b-catenin promote cell proliferation, migration and incursion, (95)
and inhibit cell apoptosis

MIAT Up MIAT/DGCR8 promote cell growth, migration and invasion (96)
　 　 　 　 　

HOXA11-AS Up HOXA11-AS/FOXP2/CCND2 inhibit cell apoptosis and promote cell cycle (97)

CRNDE Up CRNDE/miR-424 promote cell proliferation and metastasis (98)
　 　 　 　 　

LINC00667 Up LINC00667/miR-200b/c/429/IKK-b promote cell viability, migration and incursion, (99)

XIST Up XIST/miR193a-5p promote cell metastasis (100)
　 　 　 　 　

BLACAT2 Up BLACAT2/miR-504-3p/Wnt11 promote cell proliferation, colony formation, (101)
tumor growth and inhibit cell apoptosis

MYLK-AS1 Up MYLKAS1/TCF7L2/CCNE1 promote cell proliferation and cell cycle (102)
　 　 　 　 　

XIST Up XIST/miR-194-5p/YAP promote cell proliferation, migration,invasion (103)
and inhibit cell apoptosis

MEG3 Down MEG3/Wnt/b-catenin promote cell growth and metastasis (104)
　 　 　 　 　
January 2022 | Volume 11 | Article 7
lncRNAs, long nocoding RNAs; WT, wilms tumor; IKKa, component of inhibitor of nuclear factor kappa B kinase complex; SNHG6, small nucleolar RNA host gene 6; TAK1, nuclear
receptor subfamily 2 group C member 2; JNK, mitogen-activated protein kinase 8; MIAT, myocardial infarction associated transcript; DGCR8, DGCR8 microprocessor complex subunit;
HOXA11-AS, HOXA11 antisense RNA; FOXP2, forkhead box P2; CCND2, cyclin D2; CRNDE, colorectal neoplasia differentially expressed; miRNA, micro RNA; XIST, X inactive specific
transcript; Wnt11, Wnt family member 11; MYLK-AS1, MYLK antisense RNA 1; TCF7L2, transcription factor 7 like 2; CCNE1, cyclin E1; MEG3, maternally expressed 3.
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pathways to inhibit cell proliferation, migration, and invasion,
and promote cell apoptosis (95). Cui et al. discovered that
CRNDE is highly expressed in WT tumor tissues and cell lines,
and CRNDE may accelerate the progression of Wilms tumor by
regulating microRNA-424 (98). Moreover, Su et al. found that
MIAT could promote WT cell proliferation and metastasis by
upregulating DGCR8, indicating that MIAT may be a potential
target for the diagnosis and treatment of WT (96). Zhu and
colleagues found that HOXA11-AS could upregulate the
expression of CCND2 via recruitment of the FOXP2
transcription factor, thereby inhibiting WT cell apoptosis and
promoting cell cycle entry (97). The same group of researchers
also found that MYLK-AS1 could promote CCNE1 expression
through the TCF7L2 transcription factor, thus regulating cell
proliferation and cell cycle distribution, and promoting the
tumorigenic ability of WT (102). Liu et al. found that
LINC00667 is highly expressed in WT tissues, which can
regulate the expression of IKK-b by combining with miR-
200b/c/429, thereby inactivating the NF-kB pathway, leading
to the malignant progression of WT (99). Furthermore, Teng
et al. found that MEG3 is low expressed in WT tissues and blood
samples, and can inhibit the proliferation and metastasis of WT
Frontiers in Oncology | www.frontiersin.org 6
cells through the wt/b-catenin pathway (104). Besides, Lyu and
colleagues have showed that the low expression of TET2 in WT
tissues can further lead to the down-regulation of MEG3
expression, and MEG3 is significantly down-regulated in AML.
The down-regulated MEG3 can promote leukemia in a p53-
dependent or p53-independent manner (110). Finally, Chen et
al. found that lncRNAMEG8 silencing could inhibit the viability,
migration, and invasion of WT cells by mediating the miR-23a-
3p/CRK axis (111).

Clinical Significance of LncRNAs in WT
The mechanism of disease occurrence is complex and diverse,
mainly due to the abnormal levels of biological macromolecules,
such as nucleic acids and proteins in the body, which affect
normal life activities to varying degrees (65–67). The
advancement of sequencing technology, and the subsequent
emergence of high-throughput sequencing technology, has
provided effective help for systematically searching for
lncRNAs. At present, through a large number of transcriptome
sequencing (RNA-seq) datasets, many lncRNAs that are
abnormally expressed in diseases have been identified. A
variety of lncRNAs have been reported to play an important
FIGURE 2 | LncRNAs regulate wilims tumor (WT) initiation and progression by acting as ceRNAs. (A) lncRNA LINC00473 promotes cell vitality and inhibit cell
apoptosis of WT cells by sponging miR-195 and weakening its inhibiting effect on IKKa expression; (B) lncRNA LINC00667 regulates the IKKb expression by
sponging miR-200b/c/429, leading to the WT progression; (C) lncRNA BLACAT2 functions as the ceRNA to regulate the expression of target gene Wnt11 by
sponging miR-504-3p to promote tumor growth and inhibit cell apoptosis; (D) lncRNA-XIST influences WT cell growth and metastasis by modulating the XIST/miR-
194-5p/YAP axis.
January 2022 | Volume 11 | Article 780925
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role in the underlying mechanism of WT. For example, Ren et al.
discovered that the characteristics of 3-lncRNA (DLGAP1-AS2,
RP11-93B14.6 and RP11554F20.1) signature were significantly
correlated with the survival rate of WT patients, and could be
used as a prognostic marker for WT patients (112). Liu et al.
combined expression data and survival analysis to identify two
lncRNAs (HNF1A-AS1 and DELU2) that were significantly
related to the overall survival time of WT patients, and may be
Frontiers in Oncology | www.frontiersin.org 7
used as novel prognostic markers for WT (46). Furthermore,
Wang et al. found that LINC00087 was significantly related to
the overall survival rate of WT patients, and may become a
prognostic biomarker of WT (113).

Zhao et al. used qRT-qPCR to detect the expression of MIAT
in the tissues of 50 WT patients by dividing patients into two
groups based on the median expression of MIAT. The
subsequent analysis revealed that patients with high MIAT
FIGURE 3 | LncRNAs regulate wilims tumor (WT) initiation and progression through modulating distinct signaling pathways. (A) lncRNA SNHG6 promote cell
proliferation, migration and incursion, and inhibit cell apoptosis of WT by SNHG6/miR-15a/TAK1-JNK and SNHG6/miR-15a/Wnt-b-catenin signaling pathway;
(B) lncRNA MIAT promote cell growth, migration and invasion of WT by regulating DGCR8 expression; (C) lncRNA HOX11-AS inhibits cell apoptosis and promotes
cell cycle of WT via binding to FOXP2 and regulating CCND2 expression; (D) lncRNA MYLK-AS1 promotes cell proliferation and cell cycle via binding to TCF7L2 and
regulating CCNE1 expression; (E) lncRNA MEG3 promotes WT cell growth and metastasis via modulating Wnt-b-catenin signaling pathway.
TABLE 2 | Potential of lncRNAs as dianostic and prognostic tool in WT.

LncRNAs Source Detection methods Biomarker potential Ref.

MIAT tissues qRT-PCR poor overall survival (96)
　 　 　 　 　

XIST tissues qRT-PCR worse prognosis (100)

MEG3 tissues and blood qRT-PCR worse prognosis (104)
　 　 　 　 　

BLACAT2 tissues qRT-PCR worse prognosis (101)

MYLK-AS1 tissues qRT-PCR worse prognosis (102)
　 　 　 　 　

XIST tissues qRT-PCR worse prognosis (103)
January 2022 | Volume 11 | Article 7
lncRNAs, long nocoding RNAs; WT, wilms tumor; MIAT, myocardial infarction associated transcript; XIST, X inactive specific transcript; MYLK-AS1, MYLK antisense RNA 1; MEG3,
maternally expressed 3.
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expression levels had lower overall survival rates than those with
low MIAT expression levels (96). Yao et al. analyzed the
interaction of XIST expression with WT patients’ age,
pathological stage, morbidity, and other indicators, and
results showed that the high expression of XIST was
positively correlated with the incidence of distant metastasis
in WT patients, and was also associated with poor WT
prognosis (100). Zhu and colleagues evaluated the potential
correlation between the BLACAT2 expression levels and the
clinicopathological characteristics of WT patients, and found
that there is a strong correlation between high BLACAT2 levels
and advanced TNM staging and depth of invasion (101). In
addition, high expression of MYLK-AS1 and XIST are both
related to the OS rate of WT patients, and high expression of
MYLK-AS1 and XIST predicts a poor patient prognosis (102,
103). Finally, Teng et al. found that WT patients with lower
MEG3 expression showed more malignant histological types
and lymph node metastasis, as well as worse NWTS-5
staging (104).
Frontiers in Oncology | www.frontiersin.org 8
PERSPECTIONS AND CONCLUSION

The discovery of lncRNAs has filled many gaps regarding the
molecular mechanism of biological processes. IncRNA performs
the functions of signal, scaffold, decoy, and guide molecules. It has
also been found that it regulates gene expression from the three
levels of transcription, post-transcription, and epigenetics, and it
participates in almost all processes of living organisms. However,
considering the huge number of lncRNAs and their significant
levels of complexity,well-researched lncRNAs are essentially the tip
of the iceberg, and there are still many undiscovered functions of
lncRNAs. Of course, with the improvement of the current
sequencing level and the advancement of research technology,
continuously more and more lncRNAs have been found to play
important functions in regulating cell cycle, disease occurrence,
stem cell differentiation, and cell reprogramming. However, there
are many existing challenges. Although more and more lncRNAs
have been identified, there are still no unified naming standards. In
general, researchers name lncRNAs according to their function and
FIGURE 4 | LncRNA can participate in the progression of disease by regulating several signal pathways. (A) Schematic of the Hippo signaling pathway and the
interaction between lncRNAs and the pathway. (B) Schematic of the Notch signaling pathway and the interactions between lncRNAs and the pathway. (C) Schematic
of the NF-kB signaling pathway and the interactions between lncRNAs and the pathway. (D) Schematic of the Hedgehog signaling pathway and the interactions
between lncRNAs and the pathway.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu Non-Coding RNAs in Wilms Tumor
mode of action. However, the definition of lncRNAs is inaccurate.
Firstly, not all lncRNAs have a length that is greater than 200 nt,
because some sequences annotated as lncRNA can also be less than
200 nt. There are also issues pertaining to the definition of their
codingabilitybecause recent studies have found that some lncRNAs
have a short open reading frame, which can encode some
small peptides.

There are stillmanyproblems thatneed tobeovercome, including
the means with which we can facilitate early screening for abnormal
expression of tumor-related lncRNAs, and intervening, e.g., using
related lncRNAs, to improve tumor treatment. Moreover, there are
still few studies on lncRNAs in WT. We believe that through
continuous in-depth research, lncRNA is expected to become a
new opportunity for tumor diagnosis and treatment, and point out
a new direction for tumor precision treatment.

In summary, this article reviews the research progress of
lncRNAs in WT. Current progress provides new directions and
Frontiers in Oncology | www.frontiersin.org 9
approaches for revealing the molecular mechanism of lncRNAs
in WT, and also indicates novel biomarkers for the diagnosis,
treatment, and prognosis evaluation of WT.
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