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Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In 
an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and 
long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, 
its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network 
model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For 
the outbreak in China, in n = 30 provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, 
and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas 
the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the 
outbreak in the United States, in n = 50 states, we adopted the disease-specific values from China and found a contact period of 
3.38 ± 0.69 days. Our network model predicts that—without the massive political mitigation strategies that are in place today—
the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 
10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics 
and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to 
estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in 
place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.
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1 � Motivation

In December 2019, a local outbreak of pneumonia of ini-
tially unknown cause was detected in Wuhan, a city of 11 
million people in central China (Li et al. 2020). The cause 
of the disease was identified as the novel severe acute res-
piratory syndrome coronavirus 2, SARS-CoV-2 (Gorbalenya 
et al. 2020). Infection with the virus can be asymptomatic or 
can result in a mild to severe symptomatic disease, corona-
virus disease 2019 or COVID-19. The majority of COVID-
19 cases result in mild symptoms including fever, cough, 

shortness of breath, and respiratory distress (Hu et al. 2019). 
Severe complications arise when the disease progresses to 
viral pneumonia and multi-organ failure. The SARS-CoV-2 
virus can spread quickly, mainly during close contact, but 
also through small droplets from coughing or sneezing 
(World Health Organization 2020b). After the first four cases 
were reported on December 29, the outbreak quickly spread 
from Wuhan across all provinces of mainland China, and, in 
the following two months, across the entire world. On March 
11, 2020, the World Health Organization acknowledged the 
alarming levels of spread and severity, and characterized the 
COVID-19 situation as a pandemic (World Health Organi-
zation 2020a). As of today, April 4, 2020, COVID-19 has 
affected 203 countries with a total of 1,201,483 reported 
cases, 64,690 deaths, and 264,467 recovered cases (Coro-
navirus 2020).

Figure 1 illustrates a typical timeline of COVID-19 in 
a single person and shows how this timeline maps onto 
an entire population. For this example, at day 0, a num-
ber of susceptible individuals are exposed to the virus and 
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transition from the susceptible to the exposed state. Around 
at day 3, the exposed individuals become infectious. Dur-
ing this time, they can infect others, while not showing 
any symptoms themselves. The infectious period lasts for 
approximately 10 days. Around day 5, infectious individuals 
become symptomatic. This implies that they have poten-
tially spread the disease for two days without knowing it. 
In the majority of (1 − �h) of the population, the sympto-
matic period lasts for approximately 9 days. Around day 9, 
a severely affected population of �h are hospitalized and their 
hospitalization lasts for approximately 14 days. Around day 
10, �c of the hospitalized population experiences critical con-
ditions that last for approximately 10 days and end in (1 − �d) 
of recovery and �d of death. For a hospitalization fraction of 
�h = 0.045 , a critical conditions fraction of �c = 0.25 , and a 
death fraction of �d = 0.50 , 99.44% of the population recover 
and 0.56% die (Heiden and Buchholz 2020).

The first mathematical models for infectious dis-
eases date back to a smallpox model by Daniel Bernoulli 
(Bernoulli1760). Since the 1920s, compartment models 
have become the most common approach to model the 

epidemiology of infectious diseases (Kermack and McKen-
drick 1927). One of the simplest compartment models is the 
SEIR model that represents the timeline of a disease through 
four compartments, the susceptible, exposed, infectious, and 
recovered populations (Aron and Schwartz 1984). The tem-
poral evolution of these compartments is governed by a set 
of ordinary differential equations parameterized in terms of 
the transition rates between them (Hethcote 2000). The tran-
sition rates � from the exposed to the infectious state and � 
from the infectious to the recovered state are disease-specific 
parameters. In fact, they are the inverses of the latent period 
A = 1∕� , the time during which an individual is exposed 
but not yet infectious, and the infectious period C = 1∕� , 
the time during which an individual can infect others. This 
suggests that these two parameters are relatively independ-
ent of country, region, or city. In the example of Fig. 1, the 
latent and infectious periods are A = 3 days and C = 10 days 
(Heiden and Buchholz 2020). The most critical feature of the 
model is the transition from the susceptible to the exposed 
state. This transition is typically assumed to scale with the 
susceptible population S, the infectious population I, and the 
contact rate � , the inverse of the contact period B = 1∕� , 
between them (Li and Muldowney 1984).

The product of the contact rate and the infectious period 
defines the basic reproduction number, R0 = � C = C∕B , 
the number of individuals that are infected by a single one 
individual in an otherwise uninfected, susceptible population 
(Dietz 1993). The basic reproduction number is a measure of 
the contagiousness or transmissibility of an infectious agent 
and it can vary considerably between different infectious 
diseases (Delamater et al. 2019). Typical basic reproduction 
numbers are on the order of 18 for measles, 9 for chick-
enpox, 7 for mumps, 7 for rubella, and 5 for poliomyelitis 
(Anderson and May 1982). When the basic reproduction 
number is larger than one, R0 > 1.0 , the infectious period 
C is larger than the contact period B (Li and Muldowney 
1984). This implies that at onset of an epidemic outbreak, 
when the entire population is susceptible, an infected indi-
vidual will infect more than one other individual. In agree-
ment with Fig. 1, the infectious population first increases, 
then reaches a peak, and decreases toward zero (Kermack 
and McKendrick 1927). As more and more individuals tran-
sition from the susceptible through the exposed and infec-
tious states into the recovered state, the susceptible popula-
tion decreases. Once a large enough fraction of a population 
has become immune—either through recovery from the 
infection or through vaccination—this group provides a 
measure of protection for the susceptible population and 
the epidemic dies out (Dietz 1993). This indirect protection 
is called herd immunity (Fine 1993). The concept of herd 
immunity implies that the converged susceptible population 
at endemic equilibrium is always larger than zero, S∞ > 0 , 
and its value depends on the basic reproduction number R0 . 
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Fig. 1   Typical timeline of COVID-19. At day 0, a fraction of the sus-
ceptible population is exposed to the virus. At day 3, exposed indi-
viduals become infectious, and the infectious period lasts for 10 days. 
At day 5, infectious individuals become symptomatic; the majority of 
the symptomatic population recovers after 9 days. At day 9, a fraction 
of the symptomatic population is hospitalized; the majority of the 
hospitalized population recovers after 14 days. At day 10, a fraction 
of the hospitalized population experiences critical conditions that last 
for 10 days and end in either recovery or in death. On the population 
level, the outbreak of COVID-19 can be summarized in eight curves 
that illustrate the dynamics of the individual subgroups
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For a given basic reproduction number R0 , herd immunity 
occurs at an immune fraction of (1 − 1∕R0) . Knowing the 
basic reproduction number is therefore critical to estimate 
the immune fraction of the population that is required to 
eradicate an infectious disease, for example, 94.4% for mea-
sles and 80.0% for poliomyelitis (Hethcote 2000).

Restrictive measures like medical isolation or quaran-
tine reduce the effective infectious period C and mitigation 
strategies like contact tracing, physical distancing, or travel 
restrictions increase the contact period B. Especially during 
the early stages of an outbreak, passenger air travel can play a 
critical role in spreading a disease (Balcan et al. 2009), since 
traveling individuals naturally have a disproportionally high 
contact rate (Pastor-Satorras et al. 2015). Border control can 
play a pivotal role in mitigating epidemics and prevent the 
spreading between cities, states, or countries (Zlojutro et al. 
2019). In an attempt to mitigate the COVID-19 outbreak, 
many countries have implemented travel restrictions and 
mandatory quarantines, closed borders, and prohibited non-
citizens from entry. This has stimulated an ongoing debate 
about how strong these restrictions should be and when it 
would be safe to lift them. The basic reproduction number is 
R0 provides guidelines about the required strength of politi-
cal countermeasures (Hethcote 2000). However, empirically 
finding the basic reproduction number requires careful con-
tact tracing and is a lot of work, especially once the number 
of infectious individuals has grown beyond an overseeable 
size (Li et al. 2020). Network modeling of travel-induced 
spreading can play an important role in estimating the value 
of R0 (Colizza et al. 2006) and interpreting the impact of 
travel restrictions and border control (Hsu 2020).

2 � Methods

2.1 � Epidemiology modeling

We model the epidemiology of the COVID-19 outbreak 
using an SEIR model with four compartments, the suscep-
tible, exposed, infectious, and recovered populations, gov-
erned by a set of ordinary differential equations (Hethcote 
2000),

The transition rates between the four compartments, � , � , 
and � are inverses of the contact period B = 1∕� , the latent 
period A = 1∕� , and the infectious period C = 1∕� . We 
interpret the latent and infectious periods A and C as disease-
specific, and the contact period B as behavior specific. We 

Ṡ = − 𝛽 S I

Ė = + 𝛽 S I − 𝛼 E

İ = +𝛼 E − 𝛾 I

Ṙ = +𝛾 I.

discretize the SEIR model in time using an implicit Euler 
backward scheme and adopt a Newton–Raphson method to 
solve for the daily increments in each compartment.

2.2 � Network modeling

We model the spreading of COVID-19 across a country 
through a network of passenger air travel, which we represent 
as a weighted undirected graph G with N nodes and E edges. 
The nodes represent the individual states, the edges the con-
nections between them. We weight the edges by the estimated 
annual incoming and outgoing passenger air travel as reported 
by the Bureau of Transportation Statistics (Bureau of Trans-
portation Statistics 2020). We summarize the connectivity of 
the graph G in terms of the adjacency matrix A

IJ
 , the frequency 

of travel between two states I and J, and the degree matrix 
D

II
= diag

∑

N

J=1,J≠I
A
IJ

 , the number of incoming and outgo-
ing connections of state I.

The difference between the degree matrix D
IJ

 and the adja-
cency matrix A

IJ
 defines the weighted graph Laplacian L

IJ
,

Figure 2 illustrates the discrete graph G of the United States 
with N = 50 nodes and the E = 200 most travelled edges. 
The size and color of the nodes represent the degree D

II
 , 

the thickness of the edges represents the adjacency A
IJ

 . For 
our passenger travel-weighted graph, the degree ranges from 
100 million in California to less than 1 million in Delaware, 
Vermont, West Virginia, and Wyoming, with a mean degree 

L
IJ
= D

IJ
− A

IJ
.

Fig. 2   Network model of COVID-19 spreading across the United 
States. Discrete graph G of the United States with N = 50 nodes and 
the 200 most travelled edges. Size and color of the nodes represent 
the degree D

II
 , thickness of the edges represents the adjacency A

IJ
 

estimated from annual incoming and outgoing passenger air travel
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of D̄
II
= 16 million per node. We assume that the Laplacian 

L
IJ

 , normalized to one and scaled by the travel coefficient � , 
characterizes the global spreading of COVID-19 and discre-
tize our SEIR model on our weighted graph G . Specifically, 
we introduce the susceptible, exposed, infectious, and recov-
ered populations S

I
 , E

I
 , I

I
 , and R

I
 as global unknowns at the 

I = 1,… ,N nodes of the graph G . This results in the spatial 
discretization of the set of equations with 4N unknowns,

We discretize our SEIR network model in time using an 
implicit Euler backward scheme and adopt a Newton Raph-
son method to solve for the daily increments in each com-
partment in each state (Fornari et al. 2019).

2.3 � Parameter identification

2.3.1 � COVID‑19 outbreak dynamics in China

Unlike many other countries, China has already seen a peak 
of the COVID-19 outbreak and is currently not seeing a sig-
nificant number of new cases. The COVID-19 outbreak data 
of the Chinese provinces capture all three phases, increase, 
peak, and decrease in the infectious population and are 
currently the richest dataset available to date. This dataset 
describes the temporal evolution of confirmed, recovered, 
active, and death cases starting January 22, 2020 (Corona-
virus 2020). As of April 4, there were 81,639 confirmed 
cases, 76,755 recovered, 1558 active, and 3326 deaths. From 
these data, we map out the temporal evolution of the infec-
tious group I as the difference between the confirmed cases 
minus the recovered and deaths, and the recovered group 
R as the sum of the recovered and deaths in each Chinese 
province. To simulate the province-specific epidemiology 
of COVID19 with the SEIR model, we use these data to 
identify the latent period A = 1∕� , the infectious period 
C = 1∕� , and the contact period B = 1∕� as a direct measure 
of the basic reproduction number R0 = B∕C . As our sensi-
tivity analysis in Fig. 3 shows, the dynamics of the SEIR 
model depend critically on the initial conditions, the number 
of susceptible S0 , exposed E0 , infectious I0 , and recovered 
R0 individuals on the day the very first infectious case is 
reported, I0 ≥ 1 . Naturally, on this day, the recovered popu-
lation is R0 = 0 . Since the exposed population is asympto-
matic, its initial value E0 is unknown. To quantify the initial 
exposed population E0 , we introduce a parameter � = E0∕I0 , 
the initial latent population (Maier and Brockmann 2020). It 

Ṡ
I
= −

∑

N

J=1
𝜗 L

IJ
S
J
− 𝛽 S I

Ė
I
= −

∑

N

J=1
𝜗 L

IJ
E
J
+ 𝛽 S I − 𝛼 E

İ
I
= −

∑

N

J=1
𝜗 L

IJ
I
J
+ 𝛼 E − 𝛾 I

Ṙ
I
= −

∑

N

J=1
𝜗 L

IJ
R
J
+ 𝛾 I.

defines the fraction of exposed versus infectious individu-
als at day 0 and is a measure of initial hidden community 
spreading. The fraction of the initial susceptible popula-
tion, S0 = 1 − E0 − I0 − R0 , ensures that the total population 
sums up to one. To map the total population of one onto the 
absolute number of cases for each province, we introduce 
the normalization parameter � = N

∗∕N , the affected popu-
lation. It defines the fraction of the province-specific epi-
demic subpopulation N∗ relative to the province population 
N (National Bureau of Statistics of China 2020). Altogether 
we identify five parameters for each province, the exposed 
period A = 1∕� , the infectious period C = 1∕� , the contact 
period B = 1∕� or the basic reproduction number R = C∕B , 
the initial latent population � = E0∕I0 , and the affected popu-
lation � = N

∗∕N . We performed the parameter identification 
using the Levenberg–Marquardt method of least squares. In 
this identification process, we ignored data from secondary 
outbreaks (Coronavirus 2020).

2.3.2 � COVID‑19 outbreak dynamics in the United States

Unlike China, the United States are at the early stage of 
the COVID-19 outbreak and all states are still seeing an 
increase in the number of new cases every day. The avail-
able dataset describes the temporal evolution of confirmed, 
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Fig. 3   Outbreak dynamics. Sensitivity with respect to the initial 
exposed population E0 . Decreasing the initial exposed population 
delays the onset of the outbreak while the shapes of all four curves 
remain the same. The susceptible and recovered populations converge 
to the same endemic equilibrium at S∞ = 0.202 and R∞ = 0.798 . For 
an initial exposed population of E0 = 0.01 , the infectious population 
reaches its maximum at Imax = 0.121 after 125 days. Decreasing the 
initial exposed population by a factor 10 delays the maximum by 65 
days. Latent period A = 5 days, infectious period C = 20 days, basic 
reproduction number R0 = C∕B = 2.0 , and initial exposed population 
E0 = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8
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recovered, active, and death cases starting January 21, 2020, 
the first day of the outbreak in the United States (Corona-
virus 2020). As of April 4, there were 311,357 confirmed 
cases, 14,825 recovered, 288,081 active, and 8451 deaths. 
Similar to the Chinese data, we map out the temporal evolu-
tion of the infectious group I as the difference between the 
confirmed cases minus the recovered and deaths in each state 
of the United States. To simulate the state-specific epide-
miology of COVID19 with the SEIR model, we use these 
data to identify the contact time B = 1∕� , while fixing the 
disease-specific latent and infections periods A = 1∕� and 
C = 1∕� at their mean values of the SEIR dynamics fit for 
the Chinese provinces, and indirectly fitting the basic repro-
duction number R0 = C∕B . For each state, we set the first 
day of reported infections I0 ≥ 1 to day zero, at which the 
recovered population is R0 = 0 , the unknown exposed popu-
lation is E0 = � I0 (Maier and Brockmann 2020), and the sus-
ceptible population is S0 = N − E0 − I0 − R0 , where N is the 
state-specific population (World Population Review 2020). 
We identify two parameters for each state, the contact period 
B = 1∕� and the initial latent population � = E0∕I0 , while we 
use the exposed period A = 1∕� and the infectious period 
C = 1∕� from the parameter identification for the Chinese 
provinces and back-calculate the basic reproduction number 
R = C∕B . We perform the parameter identification using the 
Levenberg–Marquardt method of least squares. 

3 � Results

3.1 � Outbreak dynamics

The dynamics of the SEIR model are determined by three 
parameters, the latent period A = 1∕� , and the infectious 
period C = 1∕� , and the contact period B = 1∕� , or, alter-
natively, the basic reproduction number R0 = C∕B . Before 
identifying these parameters for the outbreaks in China and 
in the United States, we will illustrate their effects by sys-
tematically varying each parameter while keeping the other 
values fixed. Specifically, unless stated otherwise, we choose 
a latent period of A = 5 days, an infectious period of C = 20 
days, a basic reproduction number of R0 = C∕B = 2.0 , and 
an initial exposed population E0 = 0.010.

Figure 3 illustrates the sensitivity of the SEIR model 
with respect to the size of the initial exposed popula-
tion E0 . Decreasing the initial exposed population from 
E0 = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8 delays the 
onset of the outbreak while the dynamics of the suscepti-
ble, exposed, infectious, and recovered populations remain 
the same. For all seven cases, the susceptible and recov-
ered populations converge to the same endemic equilibrium 
with S∞ = 0.202 and R∞ = 0.798 . The infectious population 
increases gradually, reaches its maximum at Imax = 0.121 , 

and then decreases. For the largest initial exposed population 
of E0 = 0.01 this maximum occurs after 125 days. Decreas-
ing the initial exposed population by a factor 10 delays the 
maximum by 65 days. This highlights the exponential nature 
of the model, which causes a constant delay for a logarithmic 
decrease in the exponential population, while the overall out-
break dynamics remain the same. In view of the COVID-19 
outbreak, this supports the general notion that even a single 
individual can cause an outbreak. If multiple individuals 
trigger the outbreak in a province, state, or country, the over-
all outbreak dynamics will remain the same, but the peak of 
the outbreak will happen earlier.

Figure 4 illustrates the sensitivity of the SEIR model with 
respect to the latent period A. Increasing the latent period 
from A = 0, 5, 10, 15, 20, 25 days increases the exposed 
population and decreases the infectious population. The 
susceptible and recovered populations converge to the same 
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798 . Con-
vergence is slower for increased latent periods A. The steep-
est susceptible, infectious, and recovery curves correspond 
to the special case of the SIR model without a separate 
exposed population E, for which A = 0 days. This model 
does not have a separate exposed population. It reaches its 
peak infectious population of Imax = 0.157 after 86 days. In 
view of the COVID-19 outbreak, this implies that knowledge 
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Fig. 4   Outbreak dynamics. Sensitivity with respect to the latent 
period A . Increasing the latent period increases the exposed popula-
tion and decreases the infectious population. The susceptible and 
recovered populations converge to the same endemic equilibrium at 
S∞ = 0.202 and R∞ = 0.798 , however, slower. The steepest suscep-
tible, infectious, and recovery curves correspond to the SIR model 
without separate exposed population E with A = 0 days with a maxi-
mum infectious population of Imax = 0.157 after 86 days. Latent 
period A = 0, 5, 10, 15, 20, 25 days, infectious period C = 20 days, 
basic reproduction number R0 = C∕B = 2.0 , and initial exposed frac-
tion E0 = 0.010
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of the latent period is important to correctly estimate the 
timing and peak of the infectious population, which ulti-
mately determines the absolute number of hospital beds and 
ventilator units required to insure appropriate medical care.

Figure 5 illustrates the sensitivity of the SEIR model with 
respect to the infectious period C. Increasing the infectious 
period at a constant basic reproduction number flattens the 
exposed population and increases the infectious population. 
The susceptible and recovered populations converge to the 
same endemic equilibrium at S∞ = 0.202 and R∞ = 0.798 , 
however, slower. The flattest susceptible, infectious, and 
recovery curves correspond to the longest infectious period 
of C = 30 days and a contact period of B = 15 days with the 
maximum infectious population of Imax = 0.135 after 169 
days. In view of the COVID-19 outbreak, knowing the infec-
tious time is important to correctly estimate the timing and 
peak of the infectious population, and with it the number of 
required hospital beds and ventilator units.

Figure 6 illustrates the sensitivity of the SEIR model with 
respect to the basic reproduction number R0 . Decreasing the 
basic reproduction number decreases the exposed and infec-
tious populations. The susceptible and recovered populations 
converge to larger and smaller endemic equilibrium values, 
and converges is slower. The steepest susceptible, exposed, 
infectious, and recovery curves correspond to the largest 

basic reproduction number of R0 = 10.0 with the maximum 
infectious population of Imax = 0.488 after 35 days and 
converge to an endemic equilibrium at S∞ = 0.0001 and 
R∞ = 0.9999 . In view of the COVID-19 outbreak, the basic 
reproduction number is the parameter that we can influence 
by political countermeasures. Reducing the basic reproduc-
tion number beyond its natural value by decreasing the con-
tact time B through physical distancing or total lockdown 
allows us to reduce the maximum infectious population and 
delay the outbreak, a measure that is commonly referred to 
in the public media as “flatting the curve”.

3.2 � Outbreak control

The sensitivity study suggests that an epidemic outbreak is 
most sensitive to the basic reproduction number R0 . While 
the latent period A and the infectious period C are disease-
specific, community mitigation and political action can mod-
ulate the basic reproduction number R0 through a variety 
of measures including active contact tracing, isolation of 
infectious individuals, quarantine of close contacts, travel 
restrictions, physical distancing, or total lockdown.

Figure 7 illustrates the effect of the basic reproduction 
number R0 on the maximum exposed and infectious popu-
lations Emax and Imax and on the converged susceptible and 
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Fig. 5   Outbreak dynamics. Sensitivity with respect to the infec-
tious period C . Increasing the infectious period at a constant basic 
reproduction number flattens the exposed population and increases 
the infectious population. The susceptible and recovered popula-
tions converge to the same endemic equilibrium at S∞ = 0.202 
and R∞ = 0.798 , however, slower. The flattest susceptible, infec-
tious, and recovery curves correspond to the longest infectious 
period of C = 30 days with the maximum infectious population of 
Imax = 0.135 after 169 days. Latent period A = 5 days, infectious 
period C = 5, 10, 15, 20, 25, 30 days, basic reproduction number 
R0 = C∕B = 2.0 , and initial exposed fraction E0 = 0.010

0 50 100 150 200 250 300 350

time [days]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

po
pu

la
tio

n 
[-

]

Fig. 6   Outbreak dynamics. Sensitivity with respect to the basic 
reproduction number R0 . Decreasing the basic reproduction number 
decreases the exposed and infectious populations. The susceptible 
and recovered populations converge to larger and smaller endemic 
equilibrium values, and converges is slower. The steepest susceptible, 
exposed, infectious, and recovery curves correspond to the largest 
basic reproduction number of R0 = 10.0 with the maximum infec-
tious population of Imax = 0.488 after 35 days and converge to an 
endemic equilibrium at S∞ = 0.0001 and R∞ = 0.9999 . Latent period 
A = 5 days, infectious period C = 20 days, basic reproduction number 
R0 = C∕B = 1.5, 1.7, 2.0, 2.4, 3.0, 5.0, 10.0 , and initial exposed frac-
tion E0 = 0.010
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recovered populations S∞ and R∞ at endemic equilibrium. 
Increasing the basic reproduction number beyond one 
increases the maximum exposed and infectious popula-
tions. The converged susceptible and recovered populations 
decrease towards zero and increase towards one. For the cho-
sen latent and infectious periods of A = 5 days and C = 20 
days, the time to reach the maximum infectious population 
reaches its maximum of 213 days at a basic reproduction 
number R0 = 1.22 and decreases for increasing basic repro-
duction numbers. In view of the COVID-19 outbreak, Fig. 7 
suggests strategies to modulate the timeline of the epidemic 
by reducing the basic reproduction number R0 . For example, 
if we have access to a certain number of intensive care unit 
beds and ventilators, and we know rates of the infectious 
population that have to be hospitalized and require intensive 
care, we need to limit the maximum size of the population 
that becomes infectious. To limit the infectious fraction to 
20% of the total population, i.e., Imax = 0.200 , we would 
have to reduce the basic reproduction number to R0 = 2.69 . 
The gray line indicates that this maximum would occur after 
0.25 years or 93 days.

Figure  8 illustrates the effect of constrain-
ing the outbreak by increasing the basic reproduc-
tion number R(t) such that the infectious popula-
tion always remains below a tolerated infectious 
population, I < Itol . Decreasing the tolerated infectious popu-

lation, Itol = 0.15, 0.10, 0.08, 0.06, 0.05, 0.04, 0.03, 0.020.02 , 
increases the required level of containment and 
decreases the relative basic reproduction number, 
R
0
(t)∕R

0
= 1.000, 0.742, 0.661, 0.603, 0.580, 0.541, 0.535, 0.524  . 

This has the desired effect of decreasing the exposed and 
infectious populations. The susceptible population con-
verges to progressively larger endemic equilibrium values 
S∞ = 0.202, 0.225, 0.248, 0.274, 0.290, 0.309, 0.331, 0.358 . 
The recovered populat ion converges to  pro-
gressively smaller endemic equilibr ium values 
R∞ = 0.798, 0.775, 0.752, 0.726, 0.710, 0.691, 0.669, 0.642 . 
Convergence is slower under constrained outbreak. The low-
est exposed and infectious curves and the flattest suscepti-
ble and recovery curves correspond to the most constrained 
infectious population of Itol = 0.02 with a required level of 
containment of R0(t)∕R0 = 0.524 . The highest exposed and 
infectious curves and the steepest susceptible and recovery 
curves correspond to an unconstrained infectious popula-
tion Itol = 0.150 > Imax = 0.121 with peak infection after 
125 days. In view of the COVID-19 outbreak, the gray line 
tells us how drastic political countermeasures need to be. A 
required level of containment of R0(t)∕R0 = 0.524 implies 
that we need to reduce the number of infections of a single 
individual by about one half. However, reducing the maxi-
mum infectious population comes at a socioeconomic price: 
The graphs teach us that it is possible to reach an endemic 
equilibrium at a smaller total number of individuals that 

0 1 2 3 4 5 6 7 8

basic reproduction number R 0 [-]

0

0.2

0.4

0.6

0.8

1

po
pu

la
tio

n 
[-

] /
 ti

m
e 

[1
/y

ea
r]

susceptible S

exposed E
max

infectious I
max

recovered R

time T
peak

Fig. 7   Outbreak control. Effect of basic reproduction number R0 . 
Increasing the basic reproduction number beyond one increases the 
maximum exposed and infectious populations Emax and Imax . The con-
verged susceptible and recovered populations S∞ and R∞ at endemic 
equilibrium converge towards zero and one. The time to reach the 
maximum infectious population reaches its maximum of 213 days 
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Fig. 8   Outbreak control. Sensitivity with respect to tolerated infec-
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increases the required level of containment R0(t)∕R0 . This decreases 
the exposed and infectious populations. The susceptible and recov-
ered populations converge to larger and smaller endemic equilibrium 
values, but their converges is slower. tolerated infected population 
Itol = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.15 , basic reproduction 
number R0(t) , and initial exposed fraction E0 = 0.010



2186	 M. Peirlinck et al.

1 3

have had the disease; yet, this endemic equilibrium would 
occur much later in time, for this example, after two or three 
years.

3.3 � COVID‑19 outbreak dynamics in China

Figure  9 summarizes the dynamics of the COVID-19 
outbreak in 30 Chinese provinces. The dots indicate the 
reported infectious and recovered populations, the lines 
highlight the simulated susceptible, exposed, infectious, 
and recovered populations. The simulations are based on 
a province-specific parameter identification of the latent 
period A, the contact period B, the infectious period C, and 
from both, the basic reproduction number R0 = C∕B , the 
fraction of the initial latent population � = E0∕I0 , and the 
fraction of the affected population � = N

∗∕N for each prov-
ince. These five province-specific values are reported in each 
graph. Notably, the province of Hubei, where the outbreak 
started, has seen the most significant impact with more than 

60,000 cases. Naturally, in Hubei, where the first cases were 
reported, the fraction of the initial latent population � is zero. 
Small values of � indicate a close monitoring of the COVID-
19 outbreak, with very few undetected cases at the reporting 
of the first infectious case. The largest value of � = 26.4 
suggests that, at the onset of the outbreak, a relatively large 
number of cases in the province of Shandong was unde-
tected. The fraction of the affected population � = N

∗∕N 
is a province-specific measure for the containment of the 
outbreak. Naturally, this number is largest in the province 
of Hubei, with � = 1.3 ⋅ 10−3 , and, because of strict contain-
ment, much smaller in all other provinces.

Table 1 summarizes the parameters for the COVID-19 
outbreak in China. Averaged over all Chinese provinces, 
we found a latent period of A = 2.56 ± 0.72 days, a con-
tact period of B = 1.47 ± 0.32 days, an infectious period 
of C = 17.82 ± 2.95 days, a basic reproduction number of 
R0 = C∕B = 12.58 ± 3.17 , a fraction of the initial latent 

Fig. 9   COVID-19 outbreak dynamics in China. Reported infec-
tious and recovered populations and simulated susceptible, exposed, 
infectious, and recovered populations. Simulations are based on a 
province-specific parameter identification of the latent period A, con-

tact period B, and infectious period C, defining the basic reproduc-
tion number R0 = C∕B , the fraction of the initial latent population 
� = E0∕I0 , and the fraction of the affected population � = N

∗∕N for 
each province
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population of � = E0∕I0 = 3.19 ± 5.44 , and fraction of the 
affected population of � = N

∗∕N = 5.19⋅10−5± 2.23⋅10−4.

3.4 � COVID‑19 outbreak dynamics in the United 
States

Figure 10 shows the dynamics of the early stages of the 
COVID-19 outbreak in the 50 states of the United States, 
the District of Columbia, and the territories of Guam, Puerto 
Rico, and the Virgin Islands. The dots indicate the reported 
cases and death, the lines highlight the simulated suscep-
tible, exposed, infectious, and recovered populations. The 
simulations are based on a state-specific parameter identi-
fication of the contact period B that defines the basic repro-
duction number R0 = C∕B and of the fraction of the initial 
latent population � = E0∕I0 at a given outbreak delay d0 for 
each state. These three state-specific values are reported in 
each graph. Since the outbreak is currently still in its early 
stages, we do not attempt to identify the latent and infectious 
periods, but rather adopt the mean latent and infectious peri-
ods A = 2.56 and C = 17.82 from the Chinese outbreak in 
Table 1. Notably, the state of New York is currently seeing 
the most significant impact with more than 100,000 cases. 
Naturally, in Washington, Illinois, California, and Arizona 
where the first cases were reported, the fraction of the ini-
tial latent population � is small. Largest � values occur in 
New York, New Jersey, Michigan, and Louisiana. The larg-
est basic reproduction numbers R0 are identified in Idaho, 
Puerto Rico, Pennsylvania, and Indiana. 

Table  2 summarizes the parameters for the early 
stages of the COVID-19 outbreak in the United States. 
Averaged over all states, we found a contact period of 
B = 3.38 ± 0.69 days resulting in a basic reproduction num-
ber of R0 = C∕B = 5.30 ± 0.95 , a fraction of the initial latent 
population of � = E0∕I0 = 43.75 ± 126.34 and an outbreak 
delay of d0 = 41.28 ± 13.78 days.

Figure 11 illustrates the exposed, infectious, and recov-
ered fractions of the affected population for each state. 
Using the parameter values from Table 2, these curves 

predict the later stages of the outbreak based on the early 
stages of the outbreak in Fig. 10 under the assumption 
that no additional countermeasures are implemented. The 
simulation uses latent, contact, and infectious periods of 
A = 2.56 days, B = 3.38 ± 0.69 days, and C = 17.82 days 
from Table 1 and a fraction of the initial latent popula-
tion of � = E0∕I0 = 43.75 from Table 2. The orange curve 
suggests, that the individual states will see a peak of the 
infectious population at a mean of 39 days after the first 
infectious case has been reported. The 95% confidence 
interval suggests that this peak will occur between 4 and 
6 weeks after the first reported case provided no additional 
countermeasures are implemented.

Figure 12 illustrates the outbreak delay d0 across the 
United States. The first reported case was in the state of 
Washington on January 21, 2020, followed by cases in Illi-
nois with a delay of d0 = 3 , California with d0 = 4 , and Ari-
zona with d0 = 5 , shown in blue. The final states to see an 
outbreak were Alabama, Idaho, Montana with d0 = 52 and 
West Virginia with d0 = 56 , shown in red. This illustrates 
that there was a significant time delay in the outbreak with 
many of the earlier affected states located on the west coast.

Figure 13 illustrates the undetected population at the 
onset of the outbreak across the United States. The � = E0∕I0 
value is small in the first states where the outbreak was 
reported, Washington, Illinois, California, and Arizona, sug-
gesting that the reported cases were truly the first cases in 
those states. In states where the first cases occurred later, the 
� value increases. Notably, Louisiana, Michigan, New Jersey, 
and New York have the highest � values of 122.8, 136.1, 
197.1, and 1000 suggesting that both had an exceptionally 
high number of exposed individuals or individuals that were 
infected but unreported.

Figure 14 illustrates the basic reproduction number for 
the early stages of the outbreak across the United States. The 
basic reproduction number R0 = C∕B , the number of indi-
viduals infected by a single infectious individual, varies from 
minimum values of 2.5 and 3.6 in Nebraska and Arizona to 
maximum values of 7.2 and 7.9 in Puerto Rico and Idaho.

Figure 15 shows the nation-wide exposed, infectious, and 
recovered cases for the United States. The circles highlight 
the reported cases, the lines the predictions of the SEIR net-
work model using data from the early stages of the outbreak 
with parameters from Tables 1 and 2 and a travel coefficient 
of � = 0.43 . The graphs start on d0 , the day at which the last 
state reported its first case d0 = March 17, 2020 . Compared 
to the outbreak characteristics for the individual states in 
Fig. 11 with a peak of the infectious population at 39 days 
after the first infectious case has been reported, the nation-
wide outbreak peaks 54 days after the last state has seen an 
outbreak, on May 10, 2020. This difference is a manifes-
tation of both the state-specific outbreak delay d0 and the 

Table 1   COVID-19 outbreak dynamics in China

Latent period A, contact period B, infectious period C, basic repro-
duction number R0 = C∕B , fraction of initial latent population 
� = E0∕I0 and fraction of affected population � = N

∗∕N

Parameter Mean ± std Interpretation

A [days] 2.56 ± 0.72 Latent period
B [days] 1.47 ± 0.32 Contact period
C [days] 17.82 ± 2.95 Infectious period
R0 [–] 12.58 ± 3.17 Basic reproduction no
� [–] 3.19 ± 5.44 Initial latent population
� [–] 5.19 × 10−5 ± 2.23 × 10−4 Affected population
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travel of individuals between the different states represented 
through the network model.

Figure 16 illustrates the spatiotemporal evolution of the 
infectious population across the United States as predicted by 
the SEIR network model. The simulation uses data from the 
early stages of the outbreak in Fig. 10 summarized in Table 2. 
As such, the simulation is based on data from the early stages 
of the outbreak and assumes that no additional countermeas-
ures have been implemented. Days 10 and 20 illustrate the 

slow growth of the infectious population during the early 
stages of the outbreak. The state of New York sees the out-
break first, followed by New Jersey and Louisiana. Days 30 
and 40 illustrate how the outbreak spreads across the coun-
try. With no additional countermeasures, the SEIR network 
model predicts a nation-wide peak of the outbreak on day 54, 
on May 10, 2020. Day 50 illustrates that the earlier affected 
states, New York, New Jersey, and Louisiana already see a 
decrease in the infected population. Nebraska, West Virginia, 

Fig. 10   COVID-19 outbreak dynamics in the United States. Reported 
infectious populations and simulated exposed, infectious, and recov-
ered populations. Simulations are based on a state-specific parameter 
identification of the contact period B defining the basic reproduction 

number R0 = C∕B , and the fraction of the initial latent population 
� = E0∕I0 for each state, for a given outbreak delay d0 and disease-
specific latent and infectious periods A = 2.56 and C = 17.82 identi-
fied for the Chinese outbreak
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and Wisconsin are still far from reaching the peak. Compared 
to Figs. 12, 13 and 14, these maps account for both, the out-
break delay and the travel of individuals between the differ-
ent states represented through the network model. This model 
would allow us to probe the effect of travel restrictions to and 
from a specific state by locally reducing its travel coefficients 
or by globally reducing the nation-wide transport coefficient 
across the United States.

4 � Discussion

We have established a simulation tool that can estimate 
the dynamics of the COVID-19 outbreak, both locally for 
individual provinces or states and globally for an entire 
country. Our simulations suggest that—despite the social, 
regional, demographical, geographical, and socio-econom-
ical heterogeneities in different regions—the outbreak of 
COVID-19 follows a universal model with a few relatively 
robust parameters. Specifically, our simulation integrates a 

Table 2   COVID-19 outbreak dynamics in the United States

Contact period B, basic reproduction number R0 = C∕B , fraction of 
initial latent population � = E0∕I0 , and the outbreak delay d0 using 
latent period A and infectious period C from the outbreak in China

Parameter Mean ± std interpretation

A [days] 2.56 ± 0.72 Latent period (China)
B [days] 3.38 ± 0.69 Contact period
C [days] 17.82 ± 2.95 Infectious period (China)
R0 [–] 5.30 ± 0.95 Basic reproduction no
� [–] 43.75 ± 126.34 Initial latent population
d0 [days] 41.28 ± 13.78 Outbreak delay

Fig. 11   COVID-19 outbreak dynamics in the United States predicted 
with the SEIR model. Exposed, infectious, and recovered fractions of 
the affected populations for each state predicted using data from the 
early stages of the outbreak and assuming no additional countermeas-
ures. Solid lines represent the mean and shaded regions highlight the 
95% confidence interval. Latent period A = 2.56 days, contact period 
B = 3.38 days, infectious period C = 17.82 days, and fraction of ini-
tial latent population � = E0∕I0 = 43.75

Fig. 12   Regional variation of the outbreak delay d0 . The outbreak 
varies from 0 days in Washington, the first state affected by the out-
break, to 56 days in West Virginia, the last state affected by the out-
break

Fig. 13   Regional variation of the initial undetected population � . The 
fraction of the initial undetected population is smallest in Washing-
ton, Illinois, California, and Arizona and largest in Louisiana with 
122.8, Michigan with 136.1, New Jersey with 197.1, and New York 
with 1000
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global network model with a local epidemic SEIR model 
at each network node. It uses six epidemiologically mean-
ingful parameters, the latent and infectious periods A and 
C to characterize COVID-19 itself, the contact period B 
to characterize the behavior of the population, the initial 
latent population � = E0∕I0 to characterize undetected 
community spreading at the onset of the outbreak, the 

affected population � = N
∗∕N  to characterize contain-

ment, and the travel coefficient � to characterize spreading 
through passenger air travel.

4.1 � The latent and infectious periods A and C 
characterize the timeline of the disease

Our sensitivity analysis in Figs. 4 and 5 shows the impact 
of the latent and infectious periods A and C. Both affect 
the peak of the infectious population both in time and in 
magnitude. The robust data for the infectious and recovered 
populations of all 30 Chinese provinces in Fig. 9 suggest that 
the latent period lasts for 2.5 days, followed by the infectious 
period of 17.8 days. A study of 391 confirmed COVID-19 
cases with 1268 close contacts in Shenzhen found a median 
incubation period of 4.8 days until the onset of symptoms, 
a mean time to isolation after the onset of symptoms of 
2.7 days or 4.6 days with or without active contact tracing, 
and a median time to recovery of 20.8 days after the onset 
of symptoms (Bi et al. 2020). These values agree with the 
reported incubation period of 5.1 days found in 181 con-
firmed COVID-19 cases outside Wuhan (Lauer et al. 2020) 
and 5.2 days for the first 425 cases in Wuhan (Li et al. 2020). 
The total duration from exposure to recovery, (A + C) of our 
SEIR model, is 20.3 days, 5.3 days shorted than the reported 
value of 25.6 for the 391 Shenzhen cases (Bi et al. 2020). 
In our model, the reported 4.8 to 5.2 day incubation periods 
maps onto the latent period A of 2.5 days plus 2.3 to 2.7 days 
within the infectious period C during which the individuals 
are infectious but still asymptomatic. This period is critical 
since individuals can spread the disease without knowing 
it. The contact tracing study postulates that the infectious 
period C begins on day 4.8 with the onset of symptoms, 
2.3 days later than in our model, and ends on day 7.3 or 9.4 
with or without active contract tracing with the beginning 
of isolation, 13.0 or 10.9 days earlier than in our model. 
This implies that the infectious period C of our SEIR model 
is 6.6 and 3.9 times larger than the infectious period of the 
traced and untraced early isolated population in Shenzhen 
(Bi et al. 2020). This comparison suggests that it is critical 
to understand how the infectious period is reported, either 
as a disease-specific parameter or as a medically modulated 
exposure time.

4.2 � The contact period B and basic reproduction 
number R

0
 characterize social and political 

behavior

Our sensitivity analysis in Figs. 6, 7 and 8 shows the impact 
of the contact period B or, more intuitively, the basic 
reproduction number R0 . The basic reproduction number 
significantly affects the peak of the infectious population 
both in time and magnitude. The early outbreak data for 

Fig. 14   Regional variation of the basic reproduction number R0 . Dur-
ing the early stages of the outbreak, the basic reproduction number 
varies from minimum values of 2.5 and 3.6 in Nebraska and Arizona 
to maximum values of 7.2 and 7.9 in Puerto Rico and Idaho
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Fig. 15   COVID-19 outbreak dynamics across the  United States 
predicted with the SEIR network model. Exposed, infectious, and 
recovered cases for the  United States reported and predicted by the 
SEIR network model using data from the early stages of the out-
break. With no additional countermeasures, the SEIR network model 
predicts a nation-wide peak of the outbreak on day 54, on May 10, 
2020. Latent period A = 2.56 days, contact period B = 3.38 days, 
infectious period C = 17.82 days, fraction of initial latent population 
� = E0∕I0 = 43.75 , day at which the last state reported its first case 
d0 = March 17, 2020 , and travel coefficient � = 0.43
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the infectious populations of all 50 states in Fig. 10 sug-
gest that the contact period is for 3.4 days, resulting in a 
basic reproduction number of 5.3. For the first 425 cases in 
Wuhan, the basic reproduction number was estimated to 2.2 
(Li et al. 2020) and for the 391 cases in Shenzhen, it was 2.6 
(Bi et al. 2020). A review of the reported basic reproduction 
numbers for COVID-19 found ranges from 1.40 to 6.49 with 
a mean of 3.28, values that are larger than those reported for 
the SARS coronavirus (Liu et al. 2020). Huge variations of 
R0 values are not uncommon (Dietz 1993); even for simple 
diseases like the measles, reported R0 values vary between 
3.7 and 203.3 (Delamater et al. 2019). Community mitiga-
tion and political action can modulate the basic reproduction 
number R0 by a variety of measures including active con-
tact tracing, isolation of infectious individuals, quarantine 
of close contacts, travel restrictions, physical distancing, or 
total lockdown (Fang et al. 2020). Importantly, many of the 
reported values already include the effect of isolation (Li 
et al. 2020) and active contact tracing and quarantine (Bi 
et al. 2020). If we correct our identified basic reproduction 
number for China in Fig. 9 and Table 1 by reducing our 
identified infectious period of 17.8 days to the time prior 
to isolation using the correction factors of 6.6 and 3.9 with 
and without contact tracing, our R0 values for China would 

be 1.91 and 3.23 and fall well within the reported range 
(Liu et al. 2020). Our R0 value for the United States of 5.30 
agrees well with the range of values reported for mathe-
matical model ranging from 1.50 to 6.49 with a mean of 
4.20 (Liu et al. 2020). Understanding the natural value of 
R0—without any mitigation strategy—is critical to predict 
the endemic equilibrium, interpret herd immunity, and the 
estimate the fraction of the population that requires vaccina-
tion (Hethcote 2000).

4.3 � What’s next?

Current mitigation strategies have the goal to “flatten 
the curve”, which translates into reducing the number of 
new infections. As we can see in Figs. 6, 7 and 8, we can 
achieve this goal by reducing the basic reproduction number 
R0 = C∕B , which is a direct signature of effective contain-
ment measures and drastic behavioral changes that affect 
a substantial fraction of the susceptible population (Fang 
et al. 2020). By isolating infectious individuals, active con-
tact tracing, and quarantining close contacts, we can reduce 
the effective infectious period C; and by implementing 
travel restrictions, mandating physical distancing, or enforc-
ing total lockdown, we can increase the contact period B 
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Fig. 16   COVID-19 outbreak dynamics across the United States pre-
dicted with the SEIR network model. Regional evolution of the infec-
tious population I predicted by the SEIR network model using data 
from the early stages of the outbreak. Days 10 and 20 illustrate the 
slow growth of the infectious population during the early stages of 
the outbreak. The state of New York sees the outbreak first, followed 
by New Jersey, Louisiana, and California. Days 30 and 40 illustrate 
how the outbreak spreads across the country. With no additional 
countermeasures, the SEIR network model predicts a nation-wide 

peak of the outbreak on day 54, on May 10,2020. Day 50 illustrates 
that the earlier affected states, New York, New Jersey, and Louisiana 
already see a decrease in the infected population, while other states 
like Nebraska, West Virginia, and Wisconsin are still far from reach-
ing the peak. Latent period A = 2.56 days, contact period B = 3.38 
days, infectious period C = 17.83 days, fraction of initial latent popu-
lation � = E0∕I0 = 43.75 , day at which the last state recorded an out-
break d0 = March 17, 2020 , and travel coefficient � = 0.43
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(Maier and Brockmann 2020). Figure 9 demonstrates that 
combinations of these measures have successfully flattened 
the curves in the 30 provinces of China (Li et al. 2020). But 
the million-dollar questions remains: What’s next? In the 
very near future, our model has the potential to predict the 
timeline of the outbreak, specifically, the timing and peak of 
the infectious population in individual states and countries. 
This will help us optimize planning and distribute medical 
resources where needed (Heiden and Buchholz 2020). In the 
short term, we could enhance our model to study the effect 
of different subgroups of the population (Bi et al. 2020). 
This could provide scientific guidelines to gradually relax 
political measures, for example by releasing different sub-
groups of the population before others. In the long term, we 
will need accurate values of the basic reproduction number 
to estimate the effect of vaccination. This will be critical to 
design rigorous vaccination programs and prioritize which 
subgroups of the population to vaccinate first (Hethcote 
2000). Naturally, as more data become available, we can 
train our models more reliably and make more accurate 
predictions.

4.4 � Limitations

This study proposes a new strategy to characterize the 
timeline of COVID-19. While this allows us to estimate 
the peaks of the outbreak in space and time, we need to be 
aware that this study uses a simple model to characterize a 
complex infectious disease about which we still know very 
little to this day. Importantly, we have to be cautious not 
to overstate the results. Specifically, our study has several 
limitations: First, our mathematical model does not account 
for asymptomatic cases. Little is known about the fraction of 
asymptomatic or mildly symptomatic individuals but early 
studies suggest that up to 25% of individuals have gone from 
susceptible to recovered without having ever been reported 
as infectious. Second, the classical SEIR model does not 
distinguish between asymptomatic infectious in the first days 
of the disease and symptomatic infectious in the later days. 
Knowing more about this group and modeling appropriately 
is critical to accurately estimate the impact of community 
spreading and mitigation strategies to reduce it. Third, while 
the initial infectious group I0 can be reasonably well approxi-
mated from the reported active cases and the initial recov-
ered group R0 is likely zero, the initial exposed group E0 is 
really unknown and can hugely effect the outbreak dynamics 
as the sensitivity study in Fig. 3 and the data for China and 
the United States in Figs. 9 and 10 show. We decided to 
include this effect through the initial latent population � to 
highlight this effect, but more data are needed to better esti-
mate the size of this group. Fourth and probably most impor-
tantly, the major variable we can influence through social 
and political measures is the basic reproduction number R0 , 

or rather the interplay of the contact period B and infectious 
period C. Obviously, we do not know the true R0 , nor can we 
measure it at this stage of the outbreak, where every state, 
province, or country has implemented different measures 
to modulate the local outbreak dynamics. Nonetheless, our 
study shows that estimating R0 is important to quantify if and 
how different political countermeasures work and to predict 
the timeline of the infectious population under no, moder-
ate, and massive political action. Finally, our network model 
only provides rough mobility estimates from air travel statis-
tics. To more accurately simulate the spreading of COVID-
19, we could gradually refine our network and include more 
granular mobility patterns, for example from cell phone data.

5 � Conclusion

The precise timeline of COVID-19, its basic reproduction 
number, and the effect of different mitigation strategies 
remain incompletely understood. Here we combined data 
from the outbreak in China with data from the early stages 
of the outbreak in the United States to identify the latent, 
contact, and infectious periods and the basic reproduction 
number of COVID-19. To quantify the outbreak dynamics, 
we integrated a global network model with a local epidemic 
SEIR model and solved the resulting set of coupled non-
linear equations using a Newton-Raphson scheme. For the 
outbreak in China, in n = 30 provinces, we found a latent 
period of 2.6 days, a contact period of 1.5 days, and an infec-
tious period of 17.8 days. For the early stages of the outbreak 
in the United States, in n = 50 states, we found a contact 
period of 3.4 days and a travel coefficient of 0.42. Our net-
work model predicts that—without the massive political 
mitigation strategies that are in place today—the United 
States would have faced a basic reproduction number of 
5.30 ± 0.95 and a nationwide peak of the outbreak on May 
10, 2020 with 3 million infections. Our results suggest that 
mathematical modeling can help estimate outbreak dynam-
ics and provide decision guidelines for successful outbreak 
control. Our model has the potential to quantify the impact 
of community measures and predict the effect of relaxing 
total lockdown, shelter in place, and travel restrictions for 
low-risk subgroups of the population or for the population 
as a whole.
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