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Abstract

Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a
problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in
systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To
address this problem, a novel approach was developed that can be used to predict query pathways among the following six
functional categories: (i) ‘‘Metabolism’’, (ii) ‘‘Genetic Information Processing’’, (iii) ‘‘Environmental Information Processing’’,
(iv) ‘‘Cellular Processes’’, (v) ‘‘Organismal Systems’’, and (vi) ‘‘Human Diseases’’. The prediction method was established
trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the
pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was
derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and
physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR)
method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting
of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query
pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our
knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its
biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and
challenging area.
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Introduction

During the past decade, much information on different

organisms has been accumulated at both the genetic and

metabolic levels; meanwhile, many specific databases, such as

KEGG/LIGAND [1,2,3,4], ENZYME [5], BRENDA [6],

EcoCyc and MetaCyc [7,8], have been developed. However,

biological meaningful pathways, such as the regulatory pathway

and metabolic pathway, are still poorly understood. As one of the

most important pathways in systems biology, the regulatory

pathway includes two kinds of interactions: direct protein–protein

interactions (such as physical binding and phosphorylation) and

indirect protein–protein interactions (such as the relations between

transcription factors and downstream gene products) [2].

KEGG (Kyoto Encyclopedia of Genes and Genomes) [1,2,3,4]

is a collection of online databases for dealing with genomes,

enzymatic pathways, and biological chemicals. KEGG contains

five main databases [4]: (i) KEGG Atlas, (ii) KEGG Pathway, (iii)

KEGG Genes, (iv) KEGG Ligand, and (v) KEGG BRITE. The

KEGG BRITE database (http://www.genome.jp/kegg/brite.

html) includes some known regulatory pathways. It is an ontology

database for representing functional hierarchies of various

biological objects. The database also includes molecules, cells,

organisms, diseases and drugs, as well as the relationships among

them [9,10]. In this database, experimental knowledge is collected

and diagramed as pathways, i.e. smaller networks of specific

function. Several visualization tools have been developed to view

and analyze the global networks through web interfaces

[11,12,13].

According to the data in KEGG BRITE, regulatory pathways

are classified into six pathway classes. Since different class pathway

represents different biological function, developing a successful

classifier to identify the pathway class is very useful in system

biology. Some efforts have been made in this regard. Dale et al.

[14] tried to predict whether a metabolic pathway is present or

absent in an organism. In our previous work [15], we developed a

model to predict whether a regulatory pathway can be formed for

a system consisting of certain number of different proteins. But
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predicting the biological function of regulatory pathway is still an

untouched problem. It is a big challenge in both systems biology

and proteomics because this kind of information is very hard to

recover and transform into the data that can be processed by

computers. The purpose of this study is not to achieve a high

accuracy, but to analyze some features, which may provide useful

information for characterizing a meaningful regulatory pathway.

To realize this, some feature selection methods, such as the

minimum redundancy maximum relevance [16] and incremental

feature selection approaches, were employed to analyze the

relevant features, while Nearest Neighbor Algorithm (NNA)

[17,18], Sequential Minimal Optimization (SMO) [19,20] and

Bayesian network (BayesNet) [21] were used to classify the

pathways. Finally, the jackknife cross-validation [22] was adopted

to evaluate the prediction performance. As a result, 49 features

were selected as the optimal features and the overall accuracy by

using these features was 78.8%.

It was suggested by analyzing the optimized features that

biochemical and physicochemical property and functional prop-

erty are important to determine the biological function of each

regulatory pathway. Although it represents the first work ever in

predicting the classification of regulatory pathways and it is still

quite preliminary, we believe that our exploration can stimulate a

series of follow-up studies in this area important to both system

biology and proteomics.

According to a recent review [23], to establish a really useful

statistical predictor for a protein system, we need to consider the

following procedures: (i) construct or select a valid benchmark

dataset to train and test the predictor; (ii) formulate the protein

samples with an effective mathematical expression that can truly

reflect their intrinsic correlation with the attribute to be predicted;

(iii) introduce or develop a powerful algorithm (or engine) to

operate the prediction; (iv) properly perform cross-validation tests

to objectively evaluate the anticipated accuracy of the predictor; (v)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us describe how to deal with

these steps one by one.’’

Materials and Methods

Benchmark dataset
We downloaded the human KGML (KEGG XML) files from

KEGG FTP site (ftp://ftp.genome.jp/pub/kegg/xml) in April

2009. We reduced the original data by the following two steps: (i)

remove proteins without GO information or biochemical and

physicochemical properties in each pathway; (ii) exclude pathways

with less than three proteins. As a result, 146 regulatory pathways

were obtained. According to the data in KEGG BRITE (http://

www.genome.jp/kegg/brite.html), these pathways belong to the

following six functional categories: (i) Metabolism, (ii) Genetic

Information Processing, (iii) Environmental Information Process-

ing, (iv) Cellular Processes, (v) Organismal Systems, and (vi)

Human Diseases. Shown in Table 1 is the distribution of the six

classes of regulatory pathways in this study.

Features construction
To develop a powerful predictor for classifying a protein system or

pathway consisting of a set of proteins, one of the keys is to formulate

the protein system with an effective mathematical expression that can

truly reflect its intrinsic correlation with the attribute to be predicted

[23]. In this regard, we can utilize the concept of pseudo amino acid

composition (PseAAC) [24]. For a brief introduction about Chou’s

PseAAC, visit the Wikipedia web-page at http://en.wikipedia.org/

wiki/Pseudo_amino_acid_composition. Ever since the concept of

PseAAC was introduced, it has been widely used to study various

problems in proteins and protein-related systems (see, e.g.,

[25,26,27,28,29,30,31,32,33,34]). For various different modes of

PseAAC, see [35]. Actually, the general form of PseAAC can be

formulated as (see Eq.6 of [23]):

P~ y1 y2 � � � yu � � � yV½ �T ð1Þ

where T is a transpose operator, while the subscript V is an integer

and its value as well as the components y1, y2, … will depend on

how to extract the desired information from the amino acid sequence

of P. Likewise, a pathway P consisting a set of proteins can also be

generally formulated as vector with V components; i.e.,

P~ Y1 Y2 � � � Yu � � � YV½ �T ð2Þ

where Y1 represents the 1st feature of the pathway, Y2 the 2nd

feature, and so forth. Below, let us elaborate how to define V as well

as the components in Eq.2.

1. Graph property. Graphic approaches are deemed as

useful tools to study complex biological systems as they can

provide intuitive insights and the overall structure property, as

indicated by various studies on a series of important biological

topics [36,37,38,39,40,41,42,43,44,45,46,47,48]. To use the

graphic approach for the current study, each regulatory pathway

was represented as a graph, where the vertices represent proteins

and the arcs represent the relations between the corresponding

proteins. In fact, it is a directed graph or digraph [38,39]. This is

because the relation between two proteins is directional; i.e., one

protein, say P1, can regulate another protein, say P2, while P2

cannot always regulate P1. In this paper, we extracted 88 graph

features from each directed graph that represents a regulatory

pathway. Most of the graph features were derived in

[49,50,51,52,53] where, however, the graphs are undirected. In

this study, we extended them into directed graphs. The features of

our directed graphs can be briefed as follows.

1. Graph size and graph density. Let G = (V, E) be a pathway

graph, where V denotes vertex set and E arcs set. The graph

size is the number of vertices in the graph. |E|max = |V|2 is the

theoretical maximum number of arcs in G with |V| vertices.

The graph density is calculated by |E|/|E|max [49].

2. Degree statistics. The in-degree (out-degree) of a vertex is the

number of its in-neighbors (out-neighbors). The mean,

variance, median, and maximum of in-degree and out-degree,

respectively, were taken as features in this feature group [50].

Table 1. The distribution of the 146 regulatory pathways.

Pathway class Number of pathway

Metabolism 73

Genetic Information Processing 2

Environmental Information Processing 15

Cellular Processes 9

Organismal Systems 19

Human Diseases 28

Total 146

doi:10.1371/journal.pone.0025297.t001
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3. Edge weight statistics. Let G = (V, w(E)) be a weighted pathway

graph where each arc is weighted by a weight w in the range of

[0,1]. The symbol e is called a missing edge if w(e) = 0. In this

study, the mean and variance of the arc weights were

considered as features, including two different cases (with and

without missing edges) [49].

4. Topological change. Let G = (V, w(E)) be a weighted pathway

graph. This group of features is to measure the topological

changes when different cutoffs of the weights are applied to the

graph. The weight cutoffs included 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7 and 0.8. Topology changes were defined as the change rate

of the number of arcs in subgraphs under two consecutive

cutoffs.

5. Degree correlation. Let G = (V, E) be a pathway graph with

V = {u1,u2,…,un}. For each vertex ui, calculate the average

number of arcs of its in-neighbors and out-neighbors,

respectively. Considered as features in this study were the

mean, variance and maximum of the two kinds of property,

respectively [51].

6. Clustering. Let G = (V, E) be a pathway graph with

V = {u1,u2,…,un}. For each vertex ui, calculate the graph

density of the subgraph induced by its in-neighbors and out-

neighbors, respectively. Take the mean, variance and maxi-

mum of the two kinds of property [50], respectively, as the

features for the current study.

7. Topological. Let G = (V, E) be a pathway graph with

V = {u1,u2,…,un}. Define four function as follows: (i) in-in(ui,

uj) for the number of both in-neighbors of ui and in-neighbors of

uj; (ii) in-out(ui, uj) for the number of both in-neighbors of ui and

out-neighbors of uj; (iii) out-in(ui, uj) for the number of both out-

neighbors of ui and in-neighbors of uj; (iv) out-out(ui, uj) for the

number of both out-neighbors of ui and out-neighbors of uj. For

each vertex ui, calculate the four values Ti1, Ti2, Ti3, and Ti4 as

follows: (i) Ti1 is the mean of in-in(ui, uj)/ni1; (ii) Ti2 the mean of

in-out(ui, uj)/ni1; (iii) Ti3 the mean of out-in(ui, uj)/ni2; (iv) Ti4 the

mean of out-out(ui, uj)/ni1. In the above, ni1 and ni2 are the

number of in-neighbors and out-neighbors of ui, respectively.

Take the mean, variance and maximum of Ti1, Ti2, Ti3, and

Ti4, respectively, as the features [51] for the current study.

8. Singular values. Let A be the adjacent matrix of the pathway

graph. Take the first three largest singular values [49] as the

features for this study.

9. Local density change. Let G = (V, E) be a pathway graph with

V = {u1,u2,…,un}. For each vertex ui, let Vi1~ ui1 ,ui2 , . . . uikf g
and Vi2~ uj1 ,uj2 , . . . ,ujl

� �
be its in-neighbors and out-

neighbors, respectively. Here we only introduce how to extract

features from out-neighbors of each vertex under the cutoff w,

which may be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.

Construct a weighted undirected complete graph Ki with

vertices uj1 ,uj2 , . . . ,ujl and the weights of each edge can be

calculated by Eq. 2 in Section 2 ‘‘Gene ontology’’. Extract a

spanning subgraph Gi(w) of Ki with edges whose weights are

greater than w. Calculate Li(w) = 2|E(Gi(w))|/(l(l21)) (Li(w) = 0

if l#1). Take the mean and maximum of L1(w), L2(w),…, Ln(w)

under cutoff w as the features for the current study.

2. Gene ontology. As mentioned before, some features need

the arc weight to evaluate the relation between two proteins. Thus,

we used the information from gene ontology consortium (GO) [54]

to represent each of the proteins concerned and evaluate its

relation with the other proteins. ‘‘Ontology’’ is a specification of a

conceptualization and refers to the subject of existence. GO is

established according to the following three criteria: molecular

function, biological process, and cellular component. Using GO

information to represent protein samples can catch their core

features [23] as proved by significantly enhancing the success rate

in predicting their subcellular localization [55,56,57]. The GO

approach has also been used to study protein-protein interactions

[58,59]. Here, using the similar method as in [52], each protein

sample can be formulated as a 5218-D vector:

P~ p1,p2, . . . ,p5218½ �T ð3Þ

where pi = 1 if the sample hit the i-th GO number; otherwise,

pi = 0. The interaction between Pi and Pj, i.e. the weight of arc

between the two proteins, is defined by

w(Pi,Pj)~
Pi
:Pj

Pik k: Pj

�� �� ð4Þ

where Pi
:Pj is the dot product of Pi and Pj, and I Pi I and I Pj I

are their modulus.

3. Biochemical and physicochemical property. Beside the

graph property, the biological property of each pathway is also

indispensable to characterize meaningful regulatory pathways. In

this study, the biochemical and physicochemical properties, which

have been used to study various biological problems [60,61,62],

were employed to represent the biological property of each

pathway. These properties included hydrophobicity, normalized

van der Waals volume, polarity, polarizability, secondary

structure, solvent accessibility, and amino acid compositions. For

a regulatory pathway involving n proteins, both the mean and

maximum values of their biological properties were taken for the

features of the pathway, as detailed below.

1. Hydrophobicity, normalized van der Waals volume, polarity

and polarizability: 42 features can be extracted from each of

these properties [63,64], respectively. Here we only describe

how to obtain the features from the hydrophobicity property,

while features from the other properties can be obtained in a

similar way. Each amino acid is substituted by one of the three

letters, polar (P), neutral (N) and hydrophobic (H). Given a

protein sequence, use P, N or H to substitute each amino acid

in the sequence, and the sequence thus obtained is called a

protein pseudo-sequence. Composition (C) is the percentage of

P, N and H in the whole pseudo-sequence. Transition (T) is the

changing frequency between any two characters. Distribution

(D) is the sequence segment (in percentage) of the pseudo-

sequence which is needed to contain the first, 25%, 50%, 75%

and the last of the Ps, Ns and Hs, respectively. In conclusion,

there are three, three, and fifteen properties for (C), (T) and (D),

respectively. Accordingly, we have (3z3z15)~21 features

for the ‘‘mean’’ category, (3z3z15)~21 feature for the

‘‘maximum’’ category, and hence a total of (21|2)~42
features by considering the ‘‘hydrophobicity’’ property alone.

Similarly, we also have (21|2)~42 features by considering

each of the other three properties, i.e., the ‘‘normalized van der

Waals volume’’, ‘‘polarity’’, and ‘‘polarizability’’. Thus, we

have a total of 4264 = 168 features by considering the above

four properties.

2. Secondary structure: according to the secondary structural

propensity of amino acids, each protein sequence can also be

coded with three letters [65,66]. Thus, like the case in

considering hydrophobicity, we also have 2162 = 42 features

by considering the ‘‘secondary structure’’ property (or

propensity).

Classification and Analysis of Regulatory Pathways
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3. Solvent accessibility: ACCpro [67] can be used to predict each

amino acid as hidden (H) or exposed (E) to solvent. Then the

protein sequence is coded with letters H and E. Use

composition (C) for H, transition (T) between H and E, and

five distributions (D) for H in this property. Thus we have

(1+1+5)62 = 14 features by considering the ‘‘solvent accessi-

bility’’ property.

4. Amino acid compositions: it contains 20 components with each

representing the percentage of each amino acid in a protein

sequence [68]. Thus, we have 20 features for the ‘‘mean’’

category, and 20 features for the ‘‘maximum’’ category.

Totally, we have 2062 = 40 features for a pathway system by

considering the amino acid composition.

Shown in Table 2 is a breakdown of the 264 features for a

pathway system by considering its biochemical and physicochem-

ical properties. Before taking the mean and maximum values of

each property into account, the following equations were used to

adjust them according to a standard scale [61]:

Uij~(uij{uj)=Tj

Tj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(uij{uj)=(N{1)

s

uj~
PN
i~1

uij=N

8>>>>>><
>>>>>>:

ð5Þ

where Tj is the standard deviation of the j-th feature and uj the

mean value of the j-th feature.
4. Functional property. The last category of features is

about the functional property of each regulatory pathway. The

gene ontology enrichment score of pathway i on gene ontology

item j was defined as the 2log10 of the hypergeometric test p value

[15,69,70,71] of proteins in pathway i and can be computed by the

following equation:

Table 2. A breakdown of the 264 features for a pathway system by considering its biochemical and physicochemical properties.

Properties C T D Mean category Maximum category Pathway system

Hydrophobicity 3 3 15 21 21 42

Normalized van der Waals volume 3 3 15 21 21 42

Polarity 3 3 15 21 21 42

Polarizability 3 3 15 21 21 42

Secondary structure 3 3 15 21 21 42

Solvent accessibility 1 1 5 7 7 14

Amino acid composition 20 N/A N/A 20 20 40

Total 36 36 80 132 132 264

doi:10.1371/journal.pone.0025297.t002

Table 3. A breakdown of the of 5570 features.

Categories Group name Number of features

Graph property Graph size and graph density 2

Degree statistics 8

Edge weight statistics 4

Topological change 7

Degree correlation 6

Clustering 6

Topological 12

Singular values 3

Local density change 40

Biochemical and physicochemical property Amino acid compositions 40

Hydrophobicity, normalized van der Waals volume,
polarity and polarizability

168

Solvent accessibility 14

Secondary structure 42

Functional property Gene ontology enrichment score 5218

Total N/A 5570

doi:10.1371/journal.pone.0025297.t003

Classification and Analysis of Regulatory Pathways
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Score
j
i~{log10(p-value)~{log10

Xn

k~m

M

k

� �
N{M

n{k

� �
N

n

� �
2
6664

3
7775 ð6Þ

where N is the number of overall proteins in KEGG of human, M

is the number of proteins annotated to gene ontology item j, n is

the number of proteins in pathway i, m is the number of proteins

in pathway i that are annotated to gene ontology item j. The larger

the enrichment score of one gene ontology item, the more

overrepresented this item is. There were a total of 5,218 gene

ontology (GO) enrichment score features.

5. Representation of each pathway. It follows from the

description in Section 1 ‘‘Graph property’’, 3 ‘‘Biochemical and

physicochemical property’’ and 4 ‘‘Functional property’’ that the

total number of features was (88z264z5218)~5570, as

summarized Table 3. Thus, according to Eq.2, each of the 146

pathway samples in the benchmark dataset (Table S1) will be

represented by a 5570-D vector.

mRMR method
Minimum Redundancy Maximum Relevance (mRMR), first

proposed by Peng et al. [16], was employed in this study, as it is

established according to two excellent criteria: Max-Relevance

and Min-Redundancy. Max-Relevance guarantees that features

giving most contribution to the classification will be selected, while

Min-Redundancy guarantees that features whose classification

ability has already been covered by selected features will be

excluded. By mRMR program, we can obtain two feature lists:

MaxRel features list and mRMR features list. MaxRel features list

sort features only according to the Max-Relevance criteria, while

mRMR features list is obtained in terms of both Max-Relevance

and Min-Redundancy. Thus, for a feature set V with N features,

mRMR program will execute N rounds and a feature with

maximum relevance and minimum redundancy is selected in each

round. Finally, we can obtain an ordered feature list, i.e., mRMR

features list:

F~½f0,f1, . . . ,fN{1� ð7Þ

For detail description of the mRMR method, please refer to Peng

et al.’s paper [16]. Now, mRMR method has been widely utilized

to tackle various biological problems [45,52,72,73,74,75,76] and

deemed as a powerful and useful tool to extract important

information in complex systems. The mRMR program developed

by Peng et al [16] is available at http://penglab.janelia.org/proj/

mRMR/.

Prediction model
In this study, we tried three prediction methods: Nearest

Neighbor Algorithm (NNA), Sequential Minimal Optimization

(SMO) and Bayesian network (BayesNet). NNA using cosine

similarity as ‘‘nearness’’ [15,61,62,71,77] was implemented with

in-house script. The NNA program can be downloaded from

http://pcal.biosino.org/NNA.html. SMO and BayesNet were

implemented in Weka (Waikato Environment for Knowledge

Analysis) [78]. Weka, which was developed by the University of

Table 4. The distribution of the most relevant 55 features.

Category Number of features

Graph property 0

Biochemical and physicochemical property 32

Functional property 23

Total 55

doi:10.1371/journal.pone.0025297.t004

Figure 1. The IFS curve. The highest ACC value of IFS is 78.8% using 49 features and SMO model.
doi:10.1371/journal.pone.0025297.g001
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Waikato in New Zealand, is software collecting a variety of state-

of-art machine learning algorithms and data preprocessing tools. It

provides extensive support for the whole process of experimental

data mining, including preparing the input data, evaluating

learning schemes statistically, and visualizing the input data and

the result of learning [78]. Weka can be downloaded from http://

www.cs.waikato.ac.nz/ml/weka/.
1. Nearest Neighbor Algorithm (NNA). Nearest Neighbor

Algorithm (NNA) [17,18], which has been widely used in

bioinformatics and computational biology [15,59,60,72,79,80],

was adopted to predict the pathway class of each query pathway.

The ‘‘nearness’’ is calculated as below

D(P1,P2)~1{
P1,P2

P1k k: P2k k ð8Þ

where P1 and P2 are two vectors representing two pathways, P1
:P2

is their dot product, P1k k and P2k k are the modulus of vector P1

and P2. The smaller the D(P1,P2), the more similar the two

pathways are [55]. In NNA, suppose there are m training pathways,

each of them belongs to exact one pathway class, and a query

pathway needs to be classified into one pathway class. The distances

between each of the m training pathways and the query pathway can

be calculated, and the nearest neighbor of the query pathway is

found. If the nearest neighbor belongs to the i-th pathway class, the

query pathway is classified into the i-th pathway class. For an

intuitive illustration of how NNA works, see Fig.5 of [23].
2. SMO. SMO implements John Platt’s sequential minimal

optimization algorithm for training a support vector classifier using

polynomial or Gaussian kernels [19,20]. All attributes are

processed before using SMO to make prediction, for example

nominal attributes are transformed into binary ones, and attributes

are normalized [78].
3. BayesNet. BayesNet learns Bayesian networks under the

assumptions that all attributes should be nominal (In particular,

numeric ones should be prediscretized) and there are no missing

values. Two different algorithms are used to estimate the

conditional probability tables of the network [78] and several

search algorithms are implemented for local score metrics, such as

K2 [81], Hill Climbing [82], TAN [83,84] and so on. For more

detailed description of this classifiers in Weka can be found in [21].

Jackknife test to examine the quality of the current
prediction method

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [85]. However, of the three test methods, the

jackknife test is deemed the most objective [56]. The reasons are as

follows. (i) For the independent dataset test, although all the

proteins used to test the predictor are outside the training dataset

used to train it so as to exclude the ‘‘memory’’ effect or bias, the

way of how to select the independent proteins to test the predictor

could be quite arbitrary unless the number of independent

proteins is sufficiently large. This kind of arbitrariness might result

in completely different conclusions. For instance, a predictor

achieving a higher success rate than the other predictor for a given

independent testing dataset might fail to keep so when tested by

another independent testing dataset [85]. (ii) For the subsampling

test, the concrete procedure usually used in literatures is the 5-fold,

7-fold or 10-fold cross-validation. The problem with this kind of

subsampling test is that the number of possible selections in

dividing a benchmark dataset is an astronomical figure even for a

very simple dataset, as demonstrated by Eqs.28–30 in [23].

Table 5. The 49 optimized features.

Order Featurename

1 secondary_structure_composition_P_max

2 solvent_accessibility_composition_H_mean

3 solvent_accessibility_distribution_H.0.75_max

4 GO:0043627 response to estrogen stimulus

5 GO:0045121 membrane raft

6 secondary_structure_distribution_H.0.25_max

7 AA_composition_S_mean

8 secondary_structure_distribution_N.0.25_max

9 VanDerWaal_composition_P_max

10 GO:0043330 response to exogenous dsRNA

11 VanDerWaal_distribution_H.0.75_max

12 AA_composition_T_max

13 AA_composition_D_max

14 secondary_structure_distribution_H.0.5_max

15 GO:0048519 negative regulation of biological process

16 GO:0002687 positive regulation of leukocyte migration

17 secondary_structure_composition_P_mean

18 polarity_composition_N_max

19 GO:0042088 T-helper 1 type immune response

20 polarity_transition_NH_max

21 AA_composition_S_max

22 GO:0042063 gliogenesis

23 polarizability_distribution_P.0.75_max

24 GO:0090068 positive regulation of cell cycle process

25 GO:0014829 vascular smooth muscle contraction

26 secondary_structure_distribution_H.0.75_max

27 AA_composition_Q_mean

28 GO:0030225 macrophage differentiation

29 GO:0046661 male sex differentiation

30 hydrophobicity_composition_N_max

31 solvent_accessibility_distribution_H.0.0_max

32 polarity_distribution_P.0.5_max

33 polarizability_distribution_H.0.75_max

34 GO:0031594 neuromuscular junction

35 GO:0031330 negative regulation of cellular catabolic process

36 AA_composition_P_max

37 GO:0042953 lipoprotein transport

38 GO:0048523 negative regulation of cellular process

39 GO:0030217 T cell differentiation

40 GO:0007517 muscle organ development

41 GO:0009913 epidermal cell differentiation

42 GO:0042177 negative regulation of protein catabolic process

43 GO:0048641 regulation of skeletal muscle tissue development

44 hydrophobicity_distribution_N.0.75_max

45 hydrophobicity_distribution_H.0.75_max

46 GO:0022408 negative regulation of cell-cell adhesion

47 GO:0048608 reproductive structure development

48 GO:0045638 negative regulation of myeloid cell differentiation

49 GO:0006897 endocytosis

doi:10.1371/journal.pone.0025297.t005
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Therefore, in any actual subsampling cross-validation tests, only

an extremely small fraction of the possible selections are taken into

account. Since different selections will always lead to different

results even for a same benchmark dataset and a same predictor,

the subsampling test cannot avoid the arbitrariness either. A test

method unable to yield a unique outcome cannot be deemed as a

good one. (iii) In the jackknife test, all the proteins in the

benchmark dataset will be singled out one-by-one and tested by

the predictor trained by the remaining protein samples. During

the process of jackknifing, both the training dataset and testing

dataset are actually open, and each protein sample will be in turn

moved between the two. The jackknife test can exclude the

‘‘memory’’ effect. Also, the arbitrariness problem as mentioned

above for the independent dataset test and subsampling test can be

avoided because the outcome obtained by the jackknife cross-

validation is always unique for a given benchmark dataset.

Accordingly, the jackknife test has been increasingly and widely

used by those investigators with strong math background to

examine the quality of various predictors (see, e.g.,

[25,26,27,28,29,30,31,32,33,34,86,87,88,89,90]). In view of this,

here the jackknife test was also used to examine the quality of the

current predictor in identifying the pathway class.

Incremental feature selection (IFS)
As described in Section ‘‘mRMR method’’, mRMR features list

F = [f0, f1,…,fN21] can be obtained by mRMR program. Denote

the i-th feature set by Fi = { f0, f1,…,fi} (0#i#N21). For each i

(0#i#N21), execute NNA, SMO and BayesNet with the features

in Fi, then the overall accuracy of the classification (ACC), defined

by ‘‘the number of correctly predicted pathways’’/‘‘the total

number of pathways’’, evaluated by jackknife test, was obtained.

As a result, we can plot a curve named IFS curve with ACC as its y-

axis and the index i of Fi as its x-axis.

Results and Discussion

Results of mRMR
The mRMR program was achieved from http://penglab.

janelia.org/proj/mRMR. It was run with default parameters

and two feature lists were obtained by executing mRMR program:

(i) MaxRel features list; (ii) mRMR features list (see Table S2).

MaxRel features list was obtained by sorting features according

to their contribution to the classification. We investigated the most

relevant 1% of the features (totally 55) and Table 4 shows the

distribution of these features. It is clear that 32 (32/55, 58.18%)

features come from biochemical and physicochemical property

and 23 (23/55, 41.82%) features come from functional property.

All of these indicate that among the adopted features the

biochemical and physicochemical property of each pathway

provide the most contribution to classification and functional

property also gives important contribution. It is startling that none

of the features about graph property was the most relevant 1%

feature, while they were considered as important factors to form

some biological meaningful systems, such as protein complex

[45,53]. In this study, we only take care of classifying a regulatory

pathway into correct pathway class but not to analyze which

feature is more important to form a regulatory pathway. In this

stage, graph property may be not very important while biological

and functional properties are more important to determine the

biological function of each pathway.

Results of IFS
Shown in Figure 1 are the IFS curves of NNA, SMO and

BayesNet. The highest ACC value of IFS is 78.8% using 49

features and SMO models (See Table 5 for the detail 49 features).

The detailed IFS data can be found in Table S3.

Figure 2 shows the distribution of the optimized 49 features. It

is straightforward to see that 25 (25/49, 51.0%) features were from

the biochemical and physicochemical property and 24 (24/49,

49.0%) features were from the functional property, while none of

features in graph property was selected into the optimized feature

set. All of these indicate the same conclusion as described in

Section ‘‘Results of mRMR’’.

Analysis of optimal features for pathway classification
It was seen from Table 5 and Figure 2 that the biochemical

and physicochemical properties and Gene Ontology functional

properties were important for pathway classification.

Figure 2. Distribution of the optimized 49 features. It is straightforward to see that 25 (25/49, 51.0%) features were from the biochemical and
physicochemical property and 24 (24/49, 49.0%) features were from the functional property, while none of features in graph property was selected
into the optimized feature set.
doi:10.1371/journal.pone.0025297.g002
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Within the selected 25 biochemical and physicochemical

properties, there were 6 secondary structure features, 6 amino

acid composition features, 3 solvent accessibility features, 3

polarity features, 3 hydrophobicity features, 2 vanderWaal features

and 2 polarizability features. Obviously, secondary structure

features and amino acid composition features were more

important than other biochemical and physicochemical properties.

The correct secondary structure of protein is essential to its

function. Structural incorrect proteins are associated with many

different kinds of disease such as Alzheimer’s disease, Huntington’s

and Parkinson’s disease [91]. In KEGG pathway classification,

there are 28 disease pathways. Some of the disease pathways, such

as neurodegenerative disease pathways and cancer pathways, are

caused by or associated with protein misfolding [91]. Amino acid

composition has been used to explain a lot of biological

phenomenon, such as translation rate [62] and metabolic stability

of proteins [61]. Amino acid composition has a close relationship

with protein synthesis and degradation [62,70]. In KEGG

pathway classification, there are 73 metabolism pathways. The

amino acid composition features may affect these metabolism

pathways.

To investigate the association between KEGG pathway classes

and GO terms in optimized features, we calculated their

hypergeometric test p values which were shown in Table 6. As

shown from the table, ‘‘Metabolism’’ pathways were associated

with GO term ‘‘GO:0043627 response to estrogen stimulus’’,

Table 6. Hypergeometric test of overlap between KEGG pathway classes and GO terms in optimized features.

Metabolism

Genetic
Information
Processing

Environmental
Information
Processing

Cellular
Processes

Organismal
Systems

Human
Diseases

GO:0043627 response to estrogen
stimulus

0.032588 1 5.15E-16 1.86E-08 0.004826 2.30E-19

GO:0045121 membrane raft 0.681728 0.018851 2.68E-13 7.52E-15 1.09E-22 8.64E-15

GO:0043330 response to exogenous
dsRNA

1 1 0.106165 0.003522 0.000117 0.001727

GO:0048519 negative regulation of
biological process

1 1 1.86E-59 8.01E-39 4.20E-12 1.90E-51

GO:0002687 positive regulation of
leukocyte migration

1 1 2.11E-09 0.001789 0.013702 0.000707

GO:0042088 T-helper 1 type immune
response

1 1 3.50E-06 0.471266 0.094723 0.001178

GO:0042063 gliogenesis 0.993714 1 5.20E-11 1.30E-05 0.019525 1.32E-13

GO:0090068 positive regulation of cell
cycle process

0.911776 1 9.12E-08 3.49E-06 0.024096 3.29E-08

GO:0014829 vascular smooth muscle
contraction

1 1 0.000189 0.049965 0.023416 0.002415

GO:0030225 macrophage
differentiation

1 1 0.003204 0.022913 0.00372 0.001178

GO:0046661 male sex differentiation 0.664515 1 4.00E-10 0.036323 0.938207 3.85E-07

GO:0031594 neuromuscular junction 1 1 0.001106 4.49E-06 1.97E-05 0.00224

GO:0031330 negative regulation of
cellular catabolic process

1 1 0.006858 0.527536 0.137844 0.00224

GO:0042953 lipoprotein transport 1 1 0.127363 0.312566 0.023416 0.031663

GO:0048523 negative regulation of
cellular process

0.999997 1 1.89E-56 1.93E-38 1.57E-08 4.91E-50

GO:0030217 T cell differentiation 0.957773 1 1.26E-16 0.023685 0.000397 1.82E-10

GO:0007517 muscle organ
development

0.998366 1 6.32E-12 6.49E-09 0.32379 2.38E-09

GO:0009913 epidermal cell
differentiation

1 1 0.123185 0.55964 0.968491 0.395449

GO:0042177 negative regulation of
protein catabolic process

1 1 0.019214 0.002942 0.021538 0.001178

GO:0048641 regulation of skeletal
muscle tissue development

1 1 5.03E-05 0.001284 0.447341 2.50E-06

GO:0022408 negative regulation of
cell-cell adhesion

1 1 0.015685 0.040951 0.017213 0.001727

GO:0048608 reproductive structure
development

0.431739 1 2.90E-16 0.036125 0.271969 4.81E-12

GO:0045638 negative regulation of
myeloid cell differentiation

1 1 0.032936 0.289118 0.009817 1.09E-06

GO:0006897 endocytosis 0.995474 1 0.000121 0.012134 0.09916 0.006247

doi:10.1371/journal.pone.0025297.t006
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‘‘Genetic Information Processing’’ pathways were associated with

GO term ‘‘GO:0045121 membrane raft’’, ‘‘Environmental

Information Processing’’ pathways, ‘‘Cellular Processes’’ path-

ways, ‘‘Organismal Systems’’ pathways and ‘‘Human Diseases’’

pathways were associated with many GO terms in optimized

features. Some associations are obvious and well-known, such as

the association between ‘‘Environmental Information Processing’’

pathways and GO term ‘‘GO:0043627 response to estrogen

stimulus’’, the association between ‘‘Cellular Processes’’ pathways

and GO terms ‘‘GO:0048519 negative regulation of biological

process’’ and ‘‘GO:0048523 negative regulation of cellular

process’’, the association between ‘‘Organismal Systems’’ path-

ways and GO terms ‘‘GO:0030217 T cell differentiation’’,

‘‘GO:0030225 macrophage differentiation’’ etc., the association

between ‘‘Human Diseases’’ pathways and GO terms

‘‘GO:0048519 negative regulation of biological process’’,

‘‘GO:0048523 negative regulation of cellular process’’ and

‘‘GO:0042063 gliogenesis’’. The relationship between ‘‘Metabo-

lism’’ pathways and GO term ‘‘GO:0043627 response to estrogen

stimulus’’ may be indirect. Estrogen can introduce dramatic

changes of cell, such as apoptosis and carcinogenesis [92,93].

During these cellular changes, the metabolism pathways will

change as well. ‘‘Genetic Information Processing’’ pathways

include many biological processes, such as transcription, transla-

tion, folding, sorting, degradation, replication and repair. All these

steps require translocation of big molecular which needs the

assistant of membrane systems. Membrane raft involves in

biosynthetic traffic, endocytosis and signal transduction [94].

Combining the 25 biochemical and physicochemical properties

and 24 Gene Ontology functional properties together, most

KEGG pathways can correctly classified with reasonable biolog-

ical meanings. The prediction model can be used to classify new

pathway into existing pathway function groups. This means

predicting the function of new pathways which is one of the

ultimate goals of biology research.

We have analyzed 5570 features extracted from each of known

regulatory pathway in humans. Of the 5570 features, 88 were

derived from the graph property, 264 from the biochemical and

physicochemical property of proteins, and 5218 from the

functional property. Subsequently, the mRMR method and IFS

techniques were employed to analyze and identify the the

important features. Nearest neighbor algorithm and jackknife test

were utilized to evaluate the accuracy of the classifier. As a result,

49 features were found to be as the important features for

classifying the pathway groups according to their biological

functions. These findings might provide useful insights, stimulating

in-depth investigation into such an important and challenging

problem.
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