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ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan 
parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected 
individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological 
disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to 
be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was 
associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory 
and pro-fibrotic responses, however, the role of this pathway during early infection remains 
to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-
interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation 
of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during 
early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, 
we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, 
respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. 
Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine 
array and western blot analysis was used to measure pathway activation. We created a 
network of piRNAs, target genes, and genes within one degree of biological interaction. Our 
analysis revealed an inverse relationship between piRNA expression and the target transcripts 
during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as 
potential therapeutics to mitigate T. cruzi cardiomyopathies.
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INTRODUCTION

Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan 
parasite, which affects several million individuals causing severe economic burden 
(1,2). Though originally endemic to Central and South America, it is now present in all 
industrialized regions of the globe due to modern globalization. Approximately 40% of 
those infected with T. cruzi will develop cardiovascular, gastrointestinal, or neurological 
disorders (3,4). Current therapeutics only treat the acute phase of infection with severe 
side effects. Thus, there is a need to understand the molecular mechanisms of T. cruzi 
pathogenesis to facilitate identification of biomarkers and new therapeutic targets. The 
IL-6 signaling pathway has been suggested to play important roles in experimental and 
clinical T. cruzi pathogenesis (5-7). IL-6 is a cytokine with diverse roles in endothelial cell 
function, inflammation, and fibrogenesis (8-11). IL-6 signaling is critical in driving local 
inflammation and activating immune responses in endothelial cells and fibroblasts (12,13). 
The cytokine is transiently expressed in response to biological stimuli or environmental 
stress such as tissue injury or infection to activate host defense against the stressor, 
prompting an acute inflammatory response (14). During inflammation, IL-6 signaling 
induces transition to a reparative environment at the injury site (15,16), which is followed 
by deposition of extracellular matrix (ECM) proteins including type I collagen (17). IL-6 
stimulates the migration of fibroblasts to sites of injury and drives myofibroblast activation 
(18). Myofibroblasts are the primary producers of ECM proteins, inflammatory and fibrogenic 
cytokines (19,20).

In humans, the IL-6 receptor (IL-6R) is only expressed in hepatocytes, myeloid, and 
lymphoid lineage cells (21). Other cell types that do not express IL-6R, respond to IL-6 
primarily through trans-signaling (22) where soluble IL-6 binds to soluble IL-6R (sIL-6R), 
produced from cleavage or secretion of IL-6R from neutrophils (23) and other cells. The 
IL-6/sIL-6R complex formed can then bind to the ubiquitously expressed membrane-bound 
gp-130 (mbgp-130) receptor on target cells (15) to activate STAT3 through JAK-STAT protein 
phosphorylation (15). Phosphorylated STAT3 (p-STAT3) dimerizes and translocate to the 
nucleus to function as a transcription factor for IL-6 response genes (24). IL-6 signaling 
acts synergistically with the TGF-β/Smad3 signaling pathway to promote the production 
of p-STAT3 (16,25). Furthermore, it has been suggested that IL-6 promotes the activation 
of TGF-β via STAT3 activation (25). Suppressor of cytokine signaling 3 (SOCS3) negatively 
regulates IL-6 signaling by binding to gp-130 and inhibiting JAK kinase activity, thereby 
preventing STAT3 phosphorylation (24). Soluble gp-130 (sgp-130) binds to the IL-6/
sIL-6R complex and competitively prevents it from binding to the mbgp-130 receptor 
to downregulate IL-6 signaling (26). IL-6 is a pleiotropic cytokine that can function as 
a proinflammatory or profibrotic factor depending on the cellular context (27). IL-6 
increases the activation of cardiac fibroblasts. Activated cardiac fibroblasts can produce 
significantly increased IL-6 in combination with other cells including macrophages and 
cardiomyocytes compared to cardiac fibroblasts alone (28,29). Dysfunctional IL-6 signaling 
has been associated with different forms of cardiomyopathy, including cardiac hypertrophy, 
arrhythmias, and myocardial fibrosis (9,30,31).

High levels of IL-6 has been associated with disease severity in Chagas disease patients and 
murine model of T. cruzi infection (32,33). A recent study suggested that inhibition of STAT3 
led to worsening of cardiac function in a murine model of T. cruzi infection through unknown 
mechanisms (6). We and others showed that T. cruzi upregulates the transcript and protein 
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levels of IL-6 during early infection of cardiomyocytes and inflammatory cells (34-36). 
However, IL-6 expression and signaling during T. cruzi infection in other cardiac cell types, 
including fibroblasts and endothelial cells, remain unknown. Characterizing the host early 
molecular responses to T. cruzi infection is vital in understanding the pathogenesis of T. cruzi 
infection and identifying potential biomarkers and therapeutic targets.

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNA (sncRNA) that have 
recently been shown to regulate genome rearrangement, epigenetic regulation, transcription, 
and translation (37). These piRNAs are the most abundant class of sncRNA and are emerging as 
regulators of critical biological processes, making it essential to elucidate their roles in disease 
pathogenesis (37,38). Numerous piRNAs were first identified through sequencing of small RNA 
from human testes (39). While their genomic coordinates and presence within piRNA clusters 
were confirmed, no further characterization of these piRNAs were conducted (39). Despite the 
abundance of piRNAs, their exact regulatory mechanisms remain undeciphered (37). Others 
suggested that piRNAs regulate the expression of interleukins in CD4+ T-Cells (40). Our group 
showed that piRNAs are dysregulated by T. cruzi during early infection in primary human cardiac 
myocytes, albeit their specific roles remain undefined (41).

Using RNA-Seq, we identified piRNAs piR_004506 (DQ576200), piR_001356 (DQ571873), 
and piR_017716 (DQ594453) from Girard et al. (39) to be expressed in T. cruzi challenged 
primary human cardiac myocytes (PHCM) (41). Though these piRNAs were not differentially 
expressed in PHCM, we proceeded to evaluate their expression in parasite challenged 
primary human cardiac fibroblasts (PHCF), as piRNA expression can be cell type dependent 
(42,43). We observed that the parasite dysregulated the expression of host-derived piRNAs 
piR_004506, piR_001356, and piR_017716 computationally predicted to target IL6 and 
SOCS3, respectively. We found an inverse relationship between piRNA expression and 
the expression of their target gene transcripts. We also observed a gradual decrease in 
IL-6 in condition media, a significant increase of p-STAT3 at 6 h post-challenge, and a 
continual significant decrease of SOCS3. We used these biomolecules to create a network 
of interconnected genes illustrating IL-6 pathway protein-protein interactions and the 
dysregulated piRNA expressions during early T. cruzi infection in PHCF. Taken together, this 
report illustrates the interplay between piRNAs targeting IL-6 signaling pathway molecules 
during the early phase of T. cruzi infection.

MATERIALS AND METHODS

Primary human cardiac fibroblasts culture
PHCF low passage, was grown according to the manufacturer's recommendations 
(PromoCell, Heidelberg, Germany). Briefly, PHCFs were cultured in fibroblast basal growth 
medium supplemented with the supplemental mix (PromoCell) containing fetal calf serum 
(0.1 ml/ml), recombinant human epidermal growth factor (0.5 ng/ml), recombinant human 
basic fibroblast growth factor (2 ng/ml) and recombinant human insulin (5 ug/ml). The cells 
were grown in T75 flasks at 37°C in the presence of 5% CO2 to a confluence of about 80% 
(about 4×106 cells) before being used in the T. cruzi infection and control assays.

Parasite culture and infection assays
Rat heart myoblast (RHM) monolayers at 80% confluence, cultured in complete DMEM 
containing glutamax, 20% FBS, 1% each of penicillin/streptomycin, multivitamins, and MEM 

T. cruzi Dysregulates piRNAs Targeting IL-6 Pathway

https://doi.org/10.4110/in.2022.22.e51 3/20https://immunenetwork.org



non-essential amino acids (Life Technologies, Carlsbad, CA, USA) were infected with T. cruzi 
trypomastigotes. Pure cultures of highly invasive T. cruzi trypomastigotes clone MMC 20A 
(Tulahuen strain) were harvested from the supernatant of RHM monolayers as previously 
described (44). The parasites were washed in HBSS and resuspended in PHCF growth 
medium without supplement at 1×107 parasites/ml. For the infection assays, PHCF confluent 
monolayers were starved in HBSS containing 30 mM HEPES followed by the addition of 
invasive T. cruzi trypomastigotes in fibroblast basal growth medium without supplements 
at a ratio of 10 parasites per cell. The cells challenged with the parasites were incubated for 
different time points: 1, 3, and 6 h. Each time point was prepared using three independent 
T75 flasks to extract total and small RNA and three independent T75 flasks for use in the 
western blotting experiment.

RNA extraction
At each designated time point of the experiment, the parasites were washed off the PHCF 
cells, and the cells were lysed in Qiazol (Qiagen, Valencia, CA, USA) as described by the 
manufacturer. Total and small RNA molecules were purified with the miRNeasy Mini 
purification kit (Qiagen). The RNA purification step included an on-column DNase treatment 
step to eliminate traces of genomic DNA as described by the manufacturer (Qiagen). 
The quality of the purified RNA was analyzed using the Bioanalyzer 2100 system (Agilent 
Technologies, Santa Clara, CA, USA). High-quality purified RNA with RNA integrity number 
of at least eight were used for further analysis.

Quantitative real-time PCR
Quantitative real-time PCR (qPCR) was done to validate the microarray data using a 
customized PrimePCR assay (Bio-Rad, Hercules, CA, USA) containing the genes of interest. 
In the PrimePCR array experiment, total RNA (1 µg) was converted to cDNA using the iScript 
cDNA synthesis kit, essentially as described by the manufacturer (Bio-Rad). The generated 
cDNA was mixed with SsoAdvanced SYBR green 2X master mix and loaded (20 µl/per well) 
on a customized PrimePCR plate containing primers for selected genes to be validated, 
including housekeeping genes and controls as described (www.bio-rad.com/PrimePCR). 
The PCR amplification was carried out on a C1000 Touch Thermal Cycler as described by 
the manufacturer (Bio-Rad). The cycle threshold (Ct) values of housekeeping genes (beta-2 
microglobulin, ribosomal protein lateral stalk subunit P0 [RPLP0] and, beta-actin) were 
checked for consistency on all plates across all samples. The data were normalized against 
the housekeeping genes and control samples using CFX manager analysis software with 
support from Bio-Rad technical service using the ΔΔCt method. The primer sequences used 
for quantification of the transcript levels in the PrimePCR were not disclosed by Bio-Rad.

For piRNA quantification, we used the TaqMan Small RNA Assay essentially as described by 
the manufacturer (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, piRNA-specific 
stem-loop RT primers were used to create each cDNA template. For each piRNA, a TaqMan 
primer-probe set was utilized to amplify each target cDNA by TaqMan qPCR, using U6 
as a housekeeping sncRNA. TaqMan real-time PCR assays were carried out on a CFX96 
Thermal Cycler (Bio-Rad) as per Thermo Fisher Scientific recommendations. The Ct values 
of housekeeping gene U6 were checked for consistency on all plates across all samples. The 
data were normalized against the housekeeping U6 and control samples using CFX manager 
analysis software using the ΔΔCt method. The primer sequences used to quantify the piRNA 
levels in the TaqMan Small RNA were not disclosed by Thermo Fisher Scientific.
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Immunoblotting
Western blot assays were performed as previously described (44). Briefly, serum-starved 
PHCF cells (about 80% confluence on a T75 flask) challenged with T. cruzi trypomastigotes 
or media alone were lysed in NP40 Cell Lysis Buffer (Life Technologies) in the presence of 
phosphatase inhibitor cocktails 2 and 3 at 1:100 each, (Sigma Aldrich, St. Louis, MO, USA) 
and protease inhibitor cocktail set III at 1:100, (Calbiochem, Gibbstown, NJ, USA). Whole 
cell lysates (20 µg/lane) were separated by SDS-PAGE on a 4%–15% gradient polyacrylamide 
gel and transferred onto nitrocellulose membranes (Life Technologies). The membranes 
were incubated for 1 h in TBS Intercept blocking buffer (LI-COR Biosciences, Lincoln, NE, 
USA) followed by incubation with the following Abs: mouse anti–STAT3 Ab (1:1,000), rabbit 
anti-p-STAT3 Y705 Ab (1:1,000), rabbit anti-SOCS3 (1:1,000), and mouse anti-GAPDH Ab 
(1:10,000), in blocking buffer at 4°C overnight. The blots were washed and incubated with the 
corresponding secondary Abs IRDye 680 donkey anti-mouse 1:20,000 and IRDye 800 donkey 
anti-rabbit (LI-COR Biosciences) in blocking buffer for 1 h at room temperature. The blots 
were washed and scanned using the infrared fluorescence detection Odyssey Imaging Systems 
(LI-COR Biosciences) to visualize the bound Ab. Housekeeping GAPDH signal was used for 
the normalization of loading differences. Each experimental biological replicate was done in 
triplicate. Protein bands were analyzed and quantified with ImageJ (45) (https://imagej.nih.
gov/ij). The detected band intensities for each T. cruzi-treated sample group were compared 
to the non-treated control group using a Student’s t-test or one-way ANOVA (non-parametric; 
p≤0.05) with a post hoc Newman–Keuls test. The normalized ratio of protein expression level 
was defined as the ratio of the target protein band intensity to the internal control protein 
density (GAPDH) of 1.0. These data were collected from three independent experiments.

Human cytokine Ab array
To analyze the cytokine expression in condition media of T. cruzi-infected primary cardiac 
fibroblasts, we used a commercially available Human Cytokine Array C100 following the 
manufacturer's protocol (RayBiotech, Peachtree Corners, GA, USA). This is a membrane-
based sandwich immunoassay kit where the capture Abs against cytokines, chemokines, and 
other secreted molecules, and control proteins are spotted in duplicates on nitrocellulose 
membranes to bind specific target proteins present in the condition media. Briefly, blocked 
array membranes were incubated with condition media from T. cruzi infected cells at various 
time points (0, 1, 3, and 6 h) at 4°C overnight on a platform shaker. Washed membranes 
were further incubated with biotinylated Ab cocktails for two hours at room temperature 
on a rocking platform. The membranes were washed, probed with streptavidin-HRP, and 
visualized by chemiluminescence using ChemiDoc Imager (Bio-Rad). The blots were 
scanned, and the density of each spot was quantified against the average of the internal 
controls as recommended by the manufacturers (RayBiotech). Densitometric analysis were 
completed using ImageJ.

Cell surface staining for IL-6R and gp130
PHCF monolayers challenged with T. cruzi were washed 2X with Dulbecco’s phosphate-buffered 
saline, trypsinized using TripleE (Thermo Fisher Scientific), neutralized with TNS (PromoCell) 
and spun down at 1,300 rpm for 3 min. Cells were resuspended in 5 ml of 1% FACS buffer (5 mL 
FBS in 500 mL PBS) and counted. About 1×106 cells were used for staining for each time point. 
Cells were stained with anti-CD130-Biotin (Cat. No. 46-4714-82) for 30 min at 4°C, followed by 
Streptavidin-PE (12-4317-87), anti-CD126-PerCP-eFluor 710 (Cat. No. 46-1269-42), and LIVE/
DEAD Fixable Aqua Dead Cell Stain (Cat. No. 17-4321-81) for another 30 min at 4°C. Cells were 
stained following the manufacturer’s recommendations. The stained cells were washed 2X 
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with FACS buffer, fixed with 4% paraformaldehyde (PFA) for 5 min and resuspended in PBS. 
Data was acquired and analyzed on Amnis CellStream Flow Cytometer. Data was analyzed and 
visualized using GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA, USA). All Abs 
and isotypes controls were from Thermo Fisher Scientific.

Biological interaction network
Biological interaction network construction was conducted with GeneMANIA (Gene Function 
Prediction using a Multiple Association Network Integration Algorithm; https://genemania.
org) (46). This tool constructs networks using publicly available datasets containing data on 
gene expression, genetic interactions, protein domains, subcellular localization, biochemical 
reactions, pathways, and protein interactions. Of the available data sources, we filtered our 
network to contain interactions from Pathway data (searches Reactome and BioCyc) and 
physical/protein-protein interaction data (searches BioGrid, PathwayCommons, among 
others). We queried IL6, 1L6R, gp130 (IL6ST), STAT3, and SOCS3 using Homo sapiens as the 
reference organism and combined the results with our piRNA target prediction data. The 
combined network was visualized with Gephi ver. 0.9.2 (https://gephi.org)

Statistical analysis
A 2-tailed Student’s t-test was performed for single comparisons of 2 groups. A one-way ANOVA 
with a post hoc Newman-Keuls test was performed to determine significant differences among 
multiple groups. In all analyses, p≤0.05 was considered statistically significant. All statistical 
analyses were performed using GraphPad Prism (GraphPad Software, Inc.).

RESULTS

In silico analysis predicts piRNAs targeting IL6 and SOCS3 early during T. cruzi 
infection of PHCF
We used miRanda to predict interactions between target messenger RNA (mRNA) and 
piRNAs. Our analysis showed that piR_004506 targeted an exonic region of IL6 mRNA 
transcript (Fig. 1A). The 3′ untranslated region (UTR) of SOCS3 was targeted by piR_001356 
and piR_017716 (Fig. 1B). Other studies suggested that disruption of IL-6 expression and 
downstream targets during parasite infection play important roles in T. cruzi pathogenesis 
(5-7,47). These results suggest that these piRNAs may be important modulators of IL6 and 
SOCS3 gene expression during the early/acute phase of T. cruzi infection and pathogenesis.

Trypanosoma cruzi dysregulates IL6, SOCS3, and target piRNAs expressions 
during early infection in PHCF
Since the IL-6 pathway has been shown to be important in T. cruzi pathogenesis (6,47), we 
decided to evaluate the expression of those piRNAs in T. cruzi challenged PHCF because 
their differential expression could be context dependent (41-43). To evaluate the expression 
of IL6, SOCS3, and the piRNAs of interest that can target them, we challenged PHCF with 
T. cruzi trypomastigotes for various time points (0, 1, 3, and 6 h), and extracted total and 
small RNAs for our RT-qPCR assays. We found that the relative expression of IL6 transcript 
displayed a significant decrease during our experimental window of early infection (Fig. 2A). 
Similarly, SOSC3 transcript exhibited decreased relative expression at 1 and 3 h followed 
by an insignificant increase at 6 hrs relative to the 0 h control (Fig. 2B). We evaluated the 
relative expression of piRNAs piR_004506, piR_001356, and piR_017716, predicted to target 
IL6 and SOCS3. We found that piR_004506, predicted to target IL6, exhibited a significant 
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relative increase at 1 h followed by an insignificant relative decrease at 3 and 6 h after parasite 
challenge, which remained higher than the control (Fig. 2C). SOCS3 targeting piRNAs, 
piR_001356 and piR_017716 showed significant increased expression relative to control. 
The expression of piR_001356 was significantly higher at 1 and 3 h followed by a significant 
decrease at 6 h compared to control (Fig. 2D). Relative expression of piR_017716 showed 
a non-significant increase at 1 and 3 h and a significant decrease at 6 h following parasite 
challenge compared to control (Fig. 2E). These results show an inverse relationship between 
target mRNA and their corresponding piRNA expressions suggesting that these specific 
piRNAs potentially negatively regulate IL6 and SOCS3. The results also suggest that piRNA 
expression can vary in different cell types following parasite challenge.

Parasite challenged PHCF exhibited alterations in IL-6 signaling molecules in 
condition media during early infection
We and others showed that IL-6 is differentially expressed during T. cruzi infection in different 
contexts; however, the expression during early infection of PHCF remains undefined. To 
gain insight into parasite-induced alterations in cytokine secretion during acute infection of 
PHCF, we utilized a human cytokine array. We challenged PHCF with T. cruzi for different time 
points and analyzed cytokine secretion in condition media following parasite challenge. With 
a particular interest in IL-6 signaling proteins, we evaluated the expression of IL-6, sIL-6R, 
and sgp-130 expression. The C6 and C7 arrays were incubated with condition media overnight 
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Figure 1. Mapping differentially expressed piRNAs to specific genetic regions of IL6 and SOCS3. 
The targets of differentially expressed piRNAs in PHCF challenged with T. cruzi were computationally predicted 
using the miRanda algorithm. In the genetic cartoons, exons represented by blocks (blue) are connected by 
horizontal lines representing introns, while the 5′ and 3′ UTRs are represented as thinner blocks (orange) at the 
extremities of each gene, respectively. (A) IL6 gene cartoon (5′ to 3′ orientation) showing the position where the 
differentially expressed piR_004506 is predicted to map. (B) Cartoon of SOCS3 gene (3′ to 5′ orientation) showing 
positions where known piRNAs piR_001356 and piR_017716 map to the 3′ UTR region of SOCS3.



and developed by chemiluminescence (Fig. 3A). Accordingly, we found that the level of IL-6 
in the condition media of parasite challenged PHCF showed an insignificant gradual decrease 
at 1 and 3 h, with a significant decrease occurring at 6 h after parasite challenge (Fig. 3B). In 
contrast, sIL-6R showed a significant increase at 1 h followed by an insignificant increase 
at 3 and 6 h after parasite challenge compared to control (Fig. 3C). Interestingly, the levels 
of sgp-130 showed a pattern similar to that of sIL-6R; increased expression in condition 
media reached maximum levels at 1 hour after parasite challenge followed by an insignificant 
increase at 3 and 6 h following parasite challenge compared to control (Fig. 3D). We also 
evaluated the expression of membrane bound IL-6R and gp-130 and found no significant 
changes in expression during parasite challenge (Supplementary Fig. 1). These data suggest 
that other cells are required to work in collaboration with PHCF to produce high IL-6 during 
T. cruzi infection.
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Figure 2. Validation of piRNAs and target transcript expression during early T. cruzi infection in PHCF. Small and total RNAs purified from serum-starved PHCF 
monolayers challenged with invasive T. cruzi trypomastigotes for different time points were used to validate (A) IL6, (B) SOCS3 transcripts, (C) piR_004506, 
(D) piR_001356, and (E) piR_017716. Relative expression of each transcript was normalized against ribosomal protein lateral stalk subunit P0 and beta-2-
microglobulin as housekeeping genes. Relative expression of each piRNA was normalized against U6. Each value is the mean of biological triplicates performed 
in technical duplicates ± SEM. Visualization was created, and statistical significance was calculated using Student’s t-test in GraphPad Prism. 
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 3. Cytokine array analysis evaluating IL-6 signaling proteins in condition media of T. cruzi challenged PHCF. 
Condition media of PHCF challenged with T. cruzi at multiple time points were incubated with cytokine array membranes C6 and C7. (A) Membranes showing the 
location of controls (green borders) cytokines and inflammatory molecules spotted onto a human cytokine array membranes. Signals of IL-6, IL-6R, and gp-130 
at 0, 1, 3, and 6 h are indicated by numbers 1-3, respectively. Spots were quantified using ImageJ and normalized to positive control spots (green borders). Bar 
graphs depict fold change of (B) IL-6, (C) IL-6R, and (D) gp-130 mean spot densities relative to positive controls in condition media of PHCF T. cruzi challenged 
cells. Mean values of biological replicates ± SEM are shown. Visualization was created, and statistical significance was calculated using Student’s t-test in 
GraphPad Prism. 
*p<0.05, **p<0.01.



Trypanosoma cruzi infection alters activation and expression of downstream 
IL-6 signaling proteins p-STAT3 and SOCS3, respectively
Accumulating evidence implicates activation of STAT3 via IL-6 signaling as a potential 
profibrotic transcription factor. Hoffman et al. (6) showed that STAT3 inhibition attenuated 
the expression of profibrotic molecules and the induction of cardiac fibrosis in a Chagasic 
Cardiomyopathy murine model. To assess the activation of canonical IL-6 signaling, we 
evaluated the phosphorylation of STAT3 and protein expression of SOCS3 in PHCF challenged 
cells compared to controls. We found that the levels of p-STAT3 Y705 in cell lysates remained 
steady and showed a significant increase at 6 hrs (1.1581±0.02647) following parasite challenge 
in PHCF compared to control (Fig. 4A). In contrast, SOSC3 showed a continuous significant 
decrease at 1 h (0.87138±0.01), 3 h (0.762356±0.08) and 6 h (0.747389±0.07) following parasite 
challenge compared to control (Fig. 4B). We evaluated the expression levels of other cytokines 
known to activate p-STAT3, which did not show consistent significant increase during the 
course of parasite challenge (Supplementary Fig. 2). These results show that the activation 
and protein expression of downstream IL-6 signaling molecules p-STAT3 and SOCS3, 
respectively, are dysregulated during early infection of PHCF by T. cruzi.

Biological interaction network of differentially expressed piRNA and IL-6 
signaling pathway
We generated a biological interaction network to evaluate connectivity of genes involved 
in the IL-6 signaling axis in PHCF during early phase of T. cruzi infection. The GeneMANIA 
(http://genemania.org) program was used to identify genes related to IL6, 1L6R, gp-130/
IL6ST, STAT3, and SOCS3, expanding this set of genes out to one degree of molecular protein-
protein and pathway level interactions. The resulting interaction network of 24 genes was 
combined with the predicted piRNA-target interactions (Fig. 5). The genes in the network 
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Figure 4. Expression of downstream IL-6 signaling proteins during early T. cruzi infection of PHCF. 
Whole cell lysates from PHCF challenged with T. cruzi at various time points were resolved by SDS-PAGE, transferred 
to nitrocellulose membranes, and probed with Abs against (A, upper panel) p-STAT3, and STAT3, (B, upper panel) 
SOSC3, and GADPDH and developed with the corresponding IRDye conjugated secondary Ab. The developed blots 
were scanned using the infrared fluorescence detection Odyssey Imaging System. The normalized fold changes were 
determined and plotted in the bar graph (A, lower panel) p-STAT3 Y705 and (B, lower panel) SOCS3. Graph bars 
represent mean values ± SEM from three independent biological replicates. Visualization was created, and statistical 
significance was calculated using Student’s t-test in GraphPad Prism. 
*p<0.05, ***p<0.001.
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are essential contributors to immune homeostasis and participate in a diverse range of 
immunomodulation during the inflammatory response. These results suggest that the 
piRNA-mediated disruption of normal IL-6 and SOCS3 can affect the activity of different 
genes, which uniquely contribute to T. cruzi induced pathogenesis.

DISCUSSION

T. cruzi infection leads to the onset of cardiomyopathies, including cardiomegaly, cardiac 
fibrosis, and myocardial hypertrophy. Primary human cardiac myocytes and fibroblasts 
constitute good models to study how the parasite can dysregulate the expression of genes 
and host immune signaling pathways, potentially contributing to T. cruzi pathogenesis. 
We and others showed that the parasite dysregulates host transcription, including the 
miRNA expression profile through unknown mechanisms (35,41,48-51). We and others 
also showed that the parasite increased the expression of host transcription factors and 
immune molecules that facilitate infection and play roles in fibrotic responses through 
unknown mechanisms (6,35,52-55). Despite recent advances in our understanding of T. 
cruzi pathogenesis, the exact mechanisms through which the parasite induces fibrogenic 
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responses from the acute to chronic phases of infection remain poorly understood. Initially, 
piRNAs were thought to only maintain genomic integrity via transposon silencing in 
germline cells; however, more recently, piRNAs are now being implicated in the regulation 
of key biological processes that regulate homeostasis (56). Micro RNAs (miRNAs) and small 
interfering RNAs (siRNAs) have been shown to regulate transcript and protein expression via 
binding to target mRNAs (57,58). Analogous to miRNAs, piRNAs bind to their target genes 
through imperfect pairing to regulate transcription, and translation (57,58). When complexed 
with PIWI proteins, piRNAs play roles in transposon silencing, de novo methylation, 
chromatin remodeling, transcript stabilization, transcript degradation, and translational 
activation (59).

Although accumulating evidence show that piRNAs can regulate gene transcription and 
expression, little is known about the role of piRNAs in infectious disease research in general 
and specifically, during the host cell infection by T. cruzi. Recently, we challenged PHCM 
with T. cruzi and showed that the parasite modulates the expression profile of host piRNA 
during the early phase of infection (41). The roles of these dysregulated piRNAs, which were 
computationally predicted to target fibrotic molecules including TGFB1, NFATC, and FOS, 
among others, during T. cruzi infection, are under investigation in our laboratory (35,41).

Numerous reports suggest that IL-6 expression increases during early parasite infection 
in patients with progressive Chagas disease (60). Furthermore, IL-6 has been suggested to 
participate in crosstalk with TGF-β signaling to initiate fibrotic responses in various disease 
contexts (61-63). We and others showed that T. cruzi upregulates TGF-β transcript and protein 
to facilitate TGF-β signaling, an absolute requirement for parasite infection, multiplication, 
and persistence (64,65). IL-6 signaling molecules have been suggested to play essential 
roles in T. cruzi pathogenesis (6,47). Based on our previous observations in PHCM, we now 
report that piRNAs piR_004506, piR_001356, and piR_017716 which were not significantly 
dysregulated in T. cruzi challenged PHCM are dysregulated by the parasite in challenged 
PHCF (Fig. 2C, D and E). These dysregulated piRNAs were computationally predicted to 
target IL-6 signaling molecules using miRanda (Fig. 1A and B). These piRNAs which were 
first discovered in human germline cells, were yet to be implicated in T. cruzi pathogenesis 
(39). Though their differential expression in PHCM were not significant, the level of their 
expression in PHCF during acute T. cruzi infection remained unknown. Others suggested 
that piRNA expression is context-dependent (42,43), therefore, we challenged PHCF with T. 
cruzi for different time points and evaluated expression of these piRNAs, IL-6, and SOCS3, 
a downstream target of the canonical IL-6 signaling pathway that negatively regulates JAK 
activity and STAT3 activation (24,66).

We observed a decrease in IL-6 transcript expression during parasite challenge relative to 
control (Fig. 2A). The expression of piR_004506, computationally predicted to target IL6, 
showed a significant increase at 1 hour following parasite challenge relative to the control 
(Fig. 2C). This significant inverse relationship between target transcript expression and 
piRNA expression suggests that this piRNA negatively regulates IL6 in PHCF challenged with 
T. cruzi. Accordingly, we observed a significant continuous decrease in IL-6 secretion in the 
condition media to a minimum at 6 h (Fig. 3B). Furthermore, sIL-6R and sgp-130 showed a 
significant increase at 1 h relative to control and relatively steady expression at 3 and 6 hrs 
in the condition media (Fig. 3). Additionally, we found no significant change in membrane 
bound IL-6R or gp-130 expression during the course of parasite infection (Supplementary 
Fig. 1). These findings differ from other reports suggesting that IL-6 expression is increased 
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during early parasite infection in human (41) and murine cardiac tissue (6,47) comprised of a 
combination of infiltrating cells, cardiac fibroblasts, and cardiomyocytes (67). However, the 
amount of IL-6 produced by each individual cell type contributing to the reported increase 
was not known, although macrophages and cardiomyocytes have been suggested to stimulate 
cardiac fibroblasts to produce IL-6 (28,68). Our observations of decreased IL-6 production 
by PHCF agrees with others suggesting that fibroblast produce higher amounts of IL-6 in the 
presence of other cells. This suggests that single-cell protein and nucleotide sequencing has 
the potential to indicate the actual contribution of each cell type.

Next, we investigated downstream IL-6 signaling where phosphorylation of STAT3 by JAKs 
at the cytoplasmic tails of gp-130 activates canonical IL-6 signaling. Activated p-STAT3 is 
translocated to the nucleus to initiate transcription of various downstream genes, including 
SOCS3 (69). We found that during parasite challenge, p-STAT3 Y705 showed steady expression 
and a significant increase at 6 h (Fig. 4A). In contrast, SOCS3 exhibited significantly decreased 
expression during parasite challenge (Fig. 4B); these data suggest that increased p-STAT3 
could be associated with decreased SOCS3 expression. The strong inverse correlation between 
piR_001356, piR_017716, and SOCS3 expression (Fig. 2B, D and E) suggests that these piRNAs 
function as negative regulators of SOCS3 to sustain p-STAT3 activation. This concept is 
being investigated in ongoing studies in our laboratory. Overall, our data agree with others 
suggesting that the piRNA expression profile can be cell type and tissue dependent (43,69).

The activation of STAT3 in cardiomyocytes during T. cruzi infection was associated with 
increased expression of anti-apoptotic factors including Bcl2 to facilitate cell survival (70) 
facilitating T. cruzi infection and immune evasion (71). Other interleukin mediators such 
as IL-7, IL-8, IL-10, and IL-11 have also been suggested to induce STAT3-mediated effects to 
influence inflammatory responses were evaluated (Supplementary Fig. 2). These interleukins 
could mediate STAT3 activation in the absence of IL-6 through unknown mechanisms.

IL-6 signaling molecules and piRNAs were used to generate a network connecting related 
genes within one degree of biological interaction (Fig. 5). We observed that STAT3 
participated in the most protein-protein interactions within the network. Through regulation 
of IL-6 and SOCS3, the piRNAs dysregulated by the parasite may influence the activity 
of several transcription factors (Zinc finger and BTB domain containing 16 [ZBTB16], 
melanocyte inducing transcription factor [MITF], STAT1, STAT3, and STAT5B) and tyrosine 
kinases (JAK1, JAK2, protein kinase C delta [PRKCD], protein tyrosine kinase 2 beta 
[PTK2B], and epidermal growth factor [EGF]). ZBTB16 and STAT5 have roles in regulating 
NK cell development and differentiation (72,73). MITF, a regulator of cell proliferation 
(74) has been associated with growth regulation and hypertrophy in cardiac cells through 
interactions with sncRNA (75). In a T. cruzi-infected STAT1 knockout mouse model, an 
imbalance of proinflammatory and anti-inflammatory cytokines was correlated with 
increased parasite load (52). PRKCD is established to have a role in many cardiovascular 
diseases including cardiac hypertrophy, arrhythmia, and cardiac fibrosis (76,77). PTK2B 
is required for macrophage polarization and chemotaxis (78). T. cruzi uses EGF-mediated 
signaling to regulate parasite proliferation during infection (79).

Lastly, we generated a model suggesting the operation of IL-6 signaling during early T. cruzi 
infection of PHCF (Fig. 6). IL-6 binds to sIL-6R with high affinity, this complex then binds 
to the membrane-bound gp-130 to activate IL-6 signaling downstream. However, soluble 
gp-130 can bind to the sIL-6R/IL-6 complex sequestering the complex and negatively 
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affecting IL-6 signaling. Once sIL-6R/IL-6 binds to mbgp-130, cytoplasmic associated JAKs 
become transactivated and induce phosphorylation of several tyrosine residues on the 
cytosolic domain of gp-130. STAT3 docks at the cytoplasmic domain of gp-130 to become 
phosphorylated by JAK at Y705. Activated STAT3 molecules form an active homodimer 
that translocate to the nucleus to induce transcription of target genes in a time-dependent 
manner. SOCS3, suggested to target IL-6 and negatively regulate the IL-6 signaling pathway 
can be potentially targeted by the piRNAs to sustain IL-6 signaling during acute T. cruzi 
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infection. Ongoing studies in our laboratory are examining the expression of piRNAs and 
IL-6 signaling molecules at later time points in vitro and in vivo. To our knowledge, this 
constitutes the first report illustrating that T. cruzi induced alterations in the expression of 
piRNAs computationally predicted to target the IL-6 signaling in PHCF.

Our results suggest that the fibroblast response to T. cruzi challenge may be different from 
other cardiac cell types, which was one of our expectations. Additionally, the dysregulated 
piRNAs potentially function as negative regulators of IL-6 and SOCS3 to adjust the 
inflammatory response during early infection. The observed decrease in IL-6 secretion and 
mRNA expression accompanied by decreased SOCS3 protein and mRNA expression suggests 
that a robust SOCS3 mediated regulation may not be essential, allowing for a sustained 
p-STAT3 activation. More studies are needed to determine if this dysregulation is parasite 
induced or host response to decrease inflammation and reduce infection. Additionally, 
further studies are needed to elucidate their full function during T. cruzi pathogenesis. 
A detailed understanding of the role of piRNAs as potential key regulators of biological 
processes including signaling and gene expression in T. cruzi infected primary cells during 
acute and chronic infections can lead to the identification of new biomarkers and molecular 
intervention strategies.
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SUPPLEMENTARY MATERIALS

Supplemental Figure 1
Flow cytometry evaluation of cell surface IL-6R and gp130 expression. Parasite challenged 
PHCF were trypsinized and stained with anti-CD126 (IL-6R) and anti-CD130 (gp-130) Abs for 
30 min at 4 °C. Cells were analyzed for surface protein expression using Amnis CellStream 
Flow Cytometer. Single cells were gated for live cells and evaluated for surface protein 
staining at (A) 0 h, (B) 1 h, (C) 3 h, and (D) 6 h. Visualization and statistical analysis of (E) 
CD130 (gp-130) and (F) CD126 (IL-6R) expression was completed using Student’s t-test in 
GraphPad. Mean values of biological replicates ± SEM.

Click here to view

Supplementary Figure 2
Cytokine array analysis of IL-7, IL-8, IL-10, and IL-11 in condition media of T. cruzi-challenged 
primary human cardiac fibroblasts. Condition media of PHCF challenged with T. cruzi at 
multiple time points were incubated with cytokine array membranes. Spots were quantified 
using ImageJ and normalized to positive control spots. Bar graph depicting fold change of 
(A) IL-7 (B) IL-8, (C) IL-10, and (D) IL-11 mean spot densities relative to positive controls 
in condition media of PHCF T. cruzi challenged cells. Mean values of biological replicates ± 
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SEM are shown. Visualization was created and statistical significance was calculated using 
Student’s t-test in GraphPad Prism.

Click here to view
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