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Novel Metabolic Markers for the
Risk of Diabetes Development in
American Indians

Diabetes Care 2015,;38:220-227 | DOI: 10.2337/dc14-2033

OBJECTIVE

To identify novel metabolic markers for diabetes development in American
Indians.

RESEARCH DESIGN AND METHODS

Using an untargeted high-resolution liquid chromatography—mass spectrometry,
we conducted metabolomics analysis of study participants who developed inci-
dent diabetes (n = 133) and those who did not (n = 298) from 2,117 normoglycemic
American Indians followed for an average of 5.5 years in the Strong Heart Family
Study. Relative abundances of metabolites were quantified in baseline fasting
plasma of all 431 participants. Prospective association of each metabolite with
risk of developing type 2 diabetes (T2D) was examined using logistic regression
adjusting for established diabetes risk factors.

RESULTS

Seven metabolites (five known and two unknown) significantly predict the risk of
T2D. Notably, one metabolite matching 2-hydroxybiphenyl was significantly as-
sociated with an increased risk of diabetes, whereas four metabolites matching PC
(22:6/20:4), (3S)-7-hydroxy-2’,3’,4’,5’,8-pentamethoxyisoflavan, or tetrapeptides
were significantly associated with decreased risk of diabetes. A multimarker score
comprising all seven metabolites significantly improved risk prediction beyond
established diabetes risk factors including BMI, fasting glucose, and insulin
resistance.

CONCLUSIONS

The findings suggest that these newly detected metabolites may represent novel
prognostic markers of T2D in American Indians, a group suffering from a dispro-
portionately high rate of T2D.

Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia re-
sulting from impaired insulin secretion and increased insulin resistance (1). The
pathogenesis of T2D is complex, involving both genetic and environmental factors,
but the precise mechanisms underlying T2D development remain incompletely un-
derstood. Traditional risk factors such as age, sex, obesity, fasting glucose, and
insulin resistance contribute considerably to disease risk and have therefore been
widely used for routine diagnosis or risk stratification, but most of these markers fail
to capture the complexity of disease etiology and thus have limitations in detecting
early metabolic abnormalities that may occur years or even decades before the
onset/diagnosis of overt T2D. Characterization of metabolic profiles and perturbed
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metabolic pathways implicated in T2D
development will not only provide novel
insights into disease pathophysiology
but also provide instrumental data for
risk prediction and for developing effec-
tive therapeutic and preventive strate-
gies against diabetes.

Metabolomics is an emerging analyt-
ical technology that simultaneously
guantifies many metabolites in bio-
fluids. These metabolites represent the
end products of cellular metabolism in
response to intrinsic and extrinsic stim-
uli and thus may reflect the metabolic
changes at earlier stages of disease.
Cross-sectional analyses have reported
associations of altered metabolites with
obesity (2), insulin resistance (3), predi-
abetes, and overt T2D (4-7). These
changes included acylcarnitines (6,8),
amino acids (2,8), sugars (5,7), and dif-
ferent lipid species (5,8,9). Higher
plasma levels of branched-chain amino
acids (BCAAs) and aromatic amino acids
were associated with an increased risk
of T2D in the Framingham Offspring study
(10). Another study found that increased
diacyl-phosphatidylcholines and reduced
acyl-alkyl- and lyso-phosphatidylcholines
as well as sphingomyelins were associated
with diabetes in a European population
(11). More recently, a-hydroxybutyrate
and linoleoylglycerophosphocholine
were also found to predict the develop-
ment of dysglycemia and T2D in Euro-
peans (12). These findings derived from
European populations, however, may
not represent metabolic alterations in
other ethnic groups. Moreover, most ex-
isting studies used a targeted metabolo-
mics approach by focusing on a subset of
preselected metabolites and thus may
have limited ability in discovering novel
disease-related metabolic changes. The
clinical utility of previously detected me-
tabolites in risk prediction was either not
reported or was minimal over conven-
tional clinical factors.

The goal of this study is to identify
predictive metabolic markers for future
risk of T2D in American Indians, a minor-
ity group suffering from a disproportion-
ately high rate of T2D. Metabolic
profiles of diabetes development were
examined in normoglycemic partici-
pants using fasting plasma samples col-
lected prior to disease occurrence. The
utility of novel metabolic markers in risk
prediction beyond established diabetes
risk factors was also investigated.

RESEARCH DESIGN AND METHODS
Study Population

Participants included in the current
study were selected from the Strong
Heart Family Study (SHFS), a family-
based prospective study designed to
identify genetic factors for cardiovascu-
lar disease (CVD), diabetes, and their
risk factors in American Indians residing
in Arizona, North and South Dakota, and
Oklahoma. A detailed description for
the study design and methods of the
SHFS had been reported previously
(13,14). In brief, a total of 3,665 tribal
members (aged 14 years and older)
from 94 multiplex families (65 three-
generation and 29 two-generation fami-
lies, average family size 38) were recruited
and examined in 2001-2003. All living
participants were followed and reex-
amined between 2006 and 2009. The
SHFS protocol was approved by the in-
stitutional review boards from the Indian
Health Service and the participating
study centers. All participants gave in-
formed consent.

According to the American Diabetes
Association 2003 criteria (15), diabetes
was defined as fasting plasma glucose
=7.0 mmol/L or hypoglycemic medica-
tions. Impaired fasting glucose was de-
fined as a fasting glucose of 6.1-6.9
mmol/L and no hypoglycemic medications,
and normal fasting glucose (NFG) was
defined as fasting glucose <6.1 mmol/L.
Incident cases of T2D were defined
as normal fasting glucose at baseline
(2001-2003) and development of new
T2D by the end of follow-up (2006—
2009).

Participants included in the current
analysis have to meet the following cri-
teria: 1) attended clinical examinations
at both baseline (2001-2003) and
follow-up (2006—-2009), 2) had NFG at
baseline, 3) were free of overt CVD and
hypoglycemic medications at baseline,
and 4) had available fasting plasma sam-
ple at baseline for the proposed met-
abolomic analysis. Participants with
missing information for fasting glucose
or antidiabetes medication at either
baseline or follow-up were also excluded
from the current analysis.

A total of 2,324 participants free of
overt CVD at baseline attended both
clinical visits and had available fasting
plasma samples for the proposed analy-
sis. Of these, 2,117 normoglycemic par-
ticipants met all of the criteria listed
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above. After an average 5.5 years of
follow-up, 197 participants (9.3%) de-
veloped incident T2D. Among those
who did not develop T2D (n = 1,920),
159 participants (7.5%) progressed to
impaired fasting glucose, whereas the
other individuals (n = 1,761) remained
with stable NFG by the end of follow-
up. The current metabolomics analysis
measured metabolite levels in fasting
plasma of 431 participants, including
133 incident cases randomly selected
from participants who developed new
T2D (n = 197) and 298 control subjects
randomly selected from those who did
not develop T2D (n = 1,920). Supple-
mentary Table 1 shows the comparison
of baseline clinical characteristics be-
tween participants who were selected
and those not selected.

Assessments of Diabetes Risk Factors
Fasting plasma glucose, insulin, lipids,
lipoproteins, and inflammatory bio-
markers were measured by standard
laboratory methods (14,16). BMI was
calculated as body weight in kilograms
divided by the square of height in me-
ters. Hypertension was defined as blood
pressure levels =140/90 mmHg or use
of antihypertensive medications. Insulin
resistance was assessed using HOMA ac-
cording to the following formula: HOMA
of insulin resistance (HOMA-IR) = fasting
glucose (mg/dL) X insulin (wU/mL)/405
(17). Renal function was assessed using
the estimated glomerular filtration rate
(eGFR) calculated by the MDRD equation
(18). For cigarette smoking, subjects were
classified as current smokers, former
smokers, and nonsmokers. Alcohol con-
sumption was determined by self-
reported history of alcohol intake, the
type of alcoholic beverages consumed,
frequency of alcohol consumption, and
average quantity consumed per day and
per week. Participants are classified as
current drinkers, former drinkers, and
never drinkers. Dietary intake was as-
sessed using the block food frequency
questionnaire (19).

Metabolic Profiling by High-
Resolution Liquid Chromatography—
Mass Spectrometry

Relative abundance of fasting plasma
metabolites was determined using
high-resolution liquid chromatography—
mass spectrometry (LC-MS). Detailed lab-
oratory protocols have previously been
described (20,21). Briefly, 65 pL plasma
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sample aliquots were treated with ace-
tonitrile, spiked with internal standard
mix, and centrifuged at 13,000g for
10 min at 4°C to remove proteins. Super-
natant (130 pl) was removed and
loaded into autosampler vials. Anion ex-
change (AE) columns (both C18 and AE
columns) were equilibrated to the initial
condition for 1.5 min prior to the next
sample injection. Mass spectral data
were collected with a 10-min gradient
on a Thermo LTQ-Velos Orbitrap mass
spectrometer (Thermo Fisher, San Diego,
CA) to collect data from mass/charge ra-
tio (m/z) 85-2,000 in a positive ionization
mode. Three technical replicates were
run for each sample using a dual-column
chromatography procedure with C18
and an AE column. Pooled plasma sam-
ples were included in each batch (n = 23)
for quality control. Peak extraction, data
alignment, and feature quantification
were performed using the adaptive pro-
cessing software (apLCMS) (22,23), a
computer package designed for high-
resolution metabolomics data analysis.
Feature and sample quality assessment
was performed based on coefficient of
variation (CV) and Pearson correlation,
respectively, based on the technical rep-
licates using xMSanalyzer (24). Metabo-
lites with CV >50% in our samples were
excluded from further analyses. Potential
metabolite identities were determined by
performing an online search (10 ppm
mass accuracy) against the Metlin data-
base (25), the Human Metabolomics Da-
tabase (26), and the LIPID MAPS structure
database (27). Data filtering, normaliza-
tion, diagnostics, and summarization
were performed using the computer
package MSPrep (28). Missing data were
imputed using the half of the minimum
observed value within each metabolite
across all samples. Batch effect was cor-
rected using the algorithm ComBat (29)
implemented in MSPrep.

Statistical Analysis

Prior to analysis, metabolites data were
log transformed and standardized to
unit variance and zero mean (z scores).
Continuous variables were also con-
verted to standard normal distribu-
tions with corresponding mean and
SD. Pearson partial correlation coeffi-
cients were calculated between identi-
fied metabolites and established
clinical factors, adjusting for age, sex,
and study site.

To identify metabolic predictors and
to estimate their effects on the risk of
developing T2D, we constructed a Cox
proportional hazards frailty model, in
which time to event was the dependent
variable and the level of each metabo-
lite was the independent variable. The
frailty model was used here to account
for the relatedness among family mem-
bers. The proportional hazards assump-
tion was tested using the Schoenfeld
residuals, and it shows that the propor-
tionality assumption holds in our data.
For estimation of metabolic effects that
are independent of traditional risk fac-
tors, the Cox frailty model was adjusted
for age, sex, site, BMI, eGFR, HDL, triglyc-
erides, fasting glucose, and insulin re-
sistance (assessed by HOMA-IR) at
baseline. Given the potential high corre-
lations among detected metabolites, we
used the g value method to adjust
for multiple testing (30), and a g value
<0.05 was considered statistically
significant.

To examine the combined effects of
metabolites on diabetes risk, we
constructed a multimarker metabolites
score based on metabolites that are sig-
nificantly predictive of diabetes risk by
fitting a model according to the follow-
ing formula: B1X; + B2Xo+ B3X3, where X;
denotes the z score of the i-th metabo-
lite and [3; denotes the regression coef-
ficient from the logistic regression
model containing the indicated metab-
olites. The joint predictive ability of me-
tabolites was assessed using logistic
regression by including all clinical risk
factors (age, sex, study site, BMI, eGFR,
HDL, triglycerides, fasting glucose, and
HOMA-IR) plus the multimarker metab-
olite score compared with the model in-
cluding clinical risk factors only. We
calculated the area under the receiver
operating characteristic curve (AUC),
the net reclassification improvement
(NRI), and the integrated discrimination
improvement (IDI) to assess the incre-
mental value of the metabolic markers
for risk prediction beyond classical risk
factors. Because our analysis was based
on a regression model with no cross-
validation or external validation, it is
likely that our model could be overfit-
ted. To avoid or minimize bias due to
overfitting, we conducted a bootstrap
estimation (1,000 reps) for coefficients
by SAS to obtain bias-corrected esti-
mates of metabolites on risk of diabetes.
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To identify metabolic profiles associ-
ated with risk of diabetes, we conducted
sparse partial least-squares discriminant
analysis (sPLS-DA) using the computer
package mixOmics implemented in R.
The sPLS-DA is a supervised, multivari-
ate technique to determine metabolic
groups associated with disease risk.
The sPLS-DA analysis included only me-
tabolites showing significant associa-
tions with risk of diabetes. For ease of
visualization, we presented a Manhat-
tan plot (—log1g P vs. metabolic feature)
to show the significance of individual
metabolites according to status of inci-
dent cases at follow-up using raw P val-
ues obtained from multivariate logistic
regression analysis (false discovery rate
at g = 0.05 with a horizontal line).

RESULTS

Table 1 presents the characteristics of
the study participants at baseline
(2001-2003) according to diabetes sta-
tus at the end of follow-up (2006—-2009).
The average follow-up period was 5.5
years. Compared with participants who
did not develop T2D, those who devel-
oped incident T2D had higher levels of
BMI, triglycerides, fasting glucose, fast-
ing insulin, and insulin resistance
(HOMA-IR) but lower level of HDL at
baseline. We also compared partici-
pants who were selected (n = 431) ver-
sus those not selected (n = 1,686) for
this study. It shows that, except for
BMI and eGFR, selected participants
were not appreciably different from
those not selected (Supplementary
Table 1).

Our untargeted high-resolution LC-MS
detected 11,628 distinct ions (m/z) with
CV =10%, of which 2,093 m/z features
matched known compounds in available
metabolomics databases. Among all
11,628 features, altered levels of seven
metabolites (five matching known metab-
olites and two unknown) were signifi-
cantly associated with risk of diabetes
after adjustment for clinical factors and
multiple testing. Specially, a metabolite
matching 2-hydroxybiphenyl (2HBP)
and an unknown chemical (m/z ratio
1,178.804 [named X-1178]) were signif-
icantly associated with an increased risk
of diabetes, whereas five metabo-
lites matching phosphatidylcholine (PC
22:6/20:4), (35)-7-hydroxy-2’,3',4',5' 8-
pentamethoxyisoflavan (HPMF), two tet-
rapeptides (Met-Glu-lle-Arg [MEIR] and
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Leu-Asp-Tyr-Arg [LDYR]), and an un-
known metabolite (m/z ratio 490.816
[named X-490]) were significantly asso-
ciated with a decreased risk of diabetes.
These associations are independent of
clinical factors including fasting glucose
and insulin resistance. Per-SD increase in
the log-transformed levels of matching
2HBP and X-1178 was associated with
80% and 89%, respectively, increased
risk of T2D. By contrast, per-SD increase
in the log-transformed levels of match-
ing PC (22:6/20:4), HPMF, tetrapeptides,
and X-490 was associated with 32-42%
decreased risk of T2D. In the multivariate
model categorizing metabolites as ter-
tiles, participants in the top tertile of
2HBP and X-1178 had a hazard ratio
(HR) of 2.80 (95% CI 1.19-6.60) and
2.87 (95% Cl 1.08-7.60) for developing
incident T2D, respectively, compared
with those in the lowest tertile. In con-
trast, participants in the top tertile of PC
(22:6/20:4), HPMF, MEIR, LDYR, and
X-490 had an HR of 0.45 (95% Cl 0.21-
0.97),0.38 (95% C1 0.18—-0.80), 0.44 (95%
Cl 0.20-0.96), 0.37 (95% CI 0.16—-0.87),
and 0.46 (95% ClI 0.21-0.97) for develop-
ing T2D, respectively, compared with those
in the lowest tertile of these metabolites.

To estimate the joint effects of metab-
olites on risk of diabetes development,
we calculated HRs across tertiles of the
combined metabolites comprising all
seven significant metabolites. For the
two risk metabolites (2HBP and X-1178),
the HR for risk of developing incident
T2D by comparing the top with the bot-
tom tertiles of the summed metabolites
was 6.89 (95% Cl 2.63-18.08). For the
five protective metabolites (PC [22:6/
20:4], HPMF, MEIR, LDYR, and X-490),
the HR of the top compared with the
bottom tertiles of summed metabolites
was 0.23 (95% Cl 0.10-0.51). Multivari-
ate associations of each individual me-
tabolite along with their combined
effects on diabetes risk are shown in
Table 2. Of note, regression coefficients
listed in Table 2 were corrected for po-
tential overfitting by bootstrapping and
thus should represent unbiased esti-
mates of metabolic effects on risk of
T2D. For ease of visual inspection,
Fig. 1 shows a Manhattan plot (—logyg
P vs. metabolic feature) of all metabolites
using raw P values obtained from multi-
variate regression analysis. Metabolites
significantly predictive of diabetes risk
are shown at the level of g = 0.05.
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Table 1—Characteristics of the study participants at baseline (2001-2003)

Participants who

Participants who did

developed T2D not develop T2D P*

n 133 298

Age, years 3545 *12.2 33.36 = 13.88 0.1208
Female sex, % 67.67 63.42 0.3885
BMI, kg/m2 36.74 £ 7.96 31.11 = 8.00 <0.0001
Current smoker, % 33.83 36.58 0.7266
Current drinker, % 63.16 68.79 0.5034
Systolic blood pressure, mmHg 120.88 = 15.34 118.87 = 12.96 0.1868
Diastolic blood pressure, mmHg 77.39 £ 11.80 75.63 £ 10.46 0.1222
HDL, mg/dL 47.52 = 14.41 52.44 * 14.63 0.0016
LDL, mg/dL 100.92 *= 29.32 96.06 *= 28.57 0.1062
Total triglyceride, mg/dL 167.20 *= 99.12 132.16 * 65.47 <0.0001
Total cholesterol, mg/dL 180.70 = 34.16 174.75 = 33.48 0.0923
eGFR, mL/min/1.73 m? 104.56 = 21.41 105.18 *= 24.84 0.7917
Fasting glucose, mg/dL 94.30 = 7.81 89.55 * 6.41 <0.0001
Fasting insulin, pU/mL 20.52 £ 13.08 14.14 = 11.47 0.0001
Insulin resistance (HOMA-IR) 4.80 + 3.07 3.15 = 2.60 <0.0001
Total caloric intake, kcal/day 2,887.59 *+ 2,079.25 2,812.91 *+ 2,117.20 0.7409
Total dietary protein, g/day 97.51 * 82.98 94.99 * 81.77 0.7768
Total dietary fat, g/day 126.39 = 99.66 123.71 = 98.08 0.8017

Data are mean = SD unless otherwise indicated. *Adjusting for family relatedness by generalized

estimating equation.

To investigate whether these detected
metabolites improve risk prediction, we
added the weighted multimarker score
comprising all seven metabolites to the
fully adjusted statistical model. Results
show that addition of the metabolite
score resulted in significant improve-
ment for diabetes risk prediction as as-
sessed by all three measures: the AUC
value increased from 0.763 to 0.822
(P = 0.006), the NRI was 0.623 (95% ClI
0.427-0.819; P < 10" ), and the IDI was
0.117 (95% Cl 0.083-0.151; P < 10~ °).
This indicates that the newly detected
metabolic markers significantly improve

risk prediction of T2D beyond estab-
lished diabetes risk factors. The five
matching known metabolites belong to
the classes of glycerophosphocholine,
flavonoids, and polypeptides (Supple-
mentary Table 2). Partial correlations of
these matching metabolites with clinical
risk factors are shown in Supplementary
Table 3. Apart from some weak correla-
tions of 2HBP with fasting insulin or in-
sulin resistance, PC (22:6/20:4) with BMI,
or LDYR with lipid levels, most metabo-
lites were not correlated with estab-
lished diabetes factors. The matching
metabolites HPMF, MEIR, and the

Table 2—Multivariate association of baseline fasting plasma metabolites with risk
of developing T2D in American Indians by Cox proportional hazards frailty

model#

Metabolite as continuous
variable*

Matching metabolites

Metabolite as categorical
variablet*

Protective metabolites

PC (22:6/20:4)

HPMF

MEIR

LDYR

X-490

Combined protective effects
Risk metabolites

2HBP

X-1178

Combined risk effects

0.68 (0.52-0.88)
0.58 (0.43-0.79)
0.61 (0.47-0.78)
0.63 (0.47-0.85)
0.65 (0.50-0.84)
0.43 (0.31-0.59)

1.80 (1.26-2.57)
1.89 (1.29-2.77)
2.56 (1.71-3.84)

0.45 (0.21-0.97)
0.38 (0.18-0.80)
0.44 (0.20-0.96)
0.37 (0.16-0.87)
0.46 (0.21-0.97)
0.23 (0.10-0.51)

2.80 (1.19-6.60)
2.87 (1.08-7.60)
6.89 (2.63-18.08)

Data are HR (95% Cl). ¥Adjusted for age, sex, site, BMI, eGFR, HDL, triglycerides, fasting glucose,
and HOMA-IR. *HR per SD change in log-transformed metabolite level. tTertile 3 vs. tertile 1.
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Figure 1—Manhattan plot of 11,628 m/z features comparing participants who developed incident T2D versus those who did not. The negative log P
value was plotted against the m/z features. The x-axis represents m/z of the detected features, ordered in increasing value from 85 (left) to 1,800
(right). A total of seven metabolites significantly differed between the two groups at the threshold of g = 0.05 (above the horizontal gray line).

unknown compound (X-490) were not
correlated with any of the known risk
factors for diabetes.

To identify metabolic profiles associ-
ated with risk of diabetes development,
we conducted sPLS-DA using the seven
metabolites that were significantly pre-
dictive of disease risk. Fig. 2 demonstrates
that participants who developed T2D and
those who did not were separated into
two distinct groups, suggesting that these
metabolites could be used as discrimina-
tory markers for T2D risk stratification.
This observation is consistent with our
results obtained by risk prediction analy-
ses (i.e., AUC, NRI, and IDI). Additional
adjustments for dietary intake of fat, pro-
tein, and caloric intake did not attenuate
the observed associations (data not
shown).

CONCLUSIONS

In this prospective investigation using
an untargeted high-resolution metabolo-
mic approach, we found that seven me-
tabolites independently predict future
onset of T2D in American Indians, a group
with a high rate of diabetes. Of the five
chemicals matching known metabolites,
two were lipids in the classes of glycero-
phosphocholine (PC) and flavonoid. It
should be noted that there are many
isobaric lipids, so the precise structural
identifications will require additional re-
search. The observed association withstood
adjustments for multiple clinical indica-
tors including age, sex, study site, BMI,
eGFR, HDL, triglycerides, fasting glucose,

and insulin resistance (HOMA-IR). The
combination of these metabolites signif-
icantly improves risk prediction beyond
established diabetes risk factors. These
metabolites have not been reported in
previous studies of European individu-
als or other ethnic groups and thus
should represent putative prognostic

markers of diabetes specific to Ameri-
can Indians.

We found that a metabolite matching
2HBP was associated with 80% in-
creased risk of developing T2D inde-
pendent of classical risk factors. The
mechanism by which this metabolite af-
fects diabetes risk is unclear. However,
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Figure 2—Separation of study participants who developed incident T2D and those who did not
during follow-up by sPLS-DA using a multimarker metabolite score comprising all seven metab-
olites showing significant associations with incident T2D listed in Table 2.
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2HBP is known to be an environmental
toxin that is widely used as industrial
antimicrobials, agricultural fungicide,
and disinfectants. 2HBP was reported
to be mutagenic in human cells (31)
and carcinogenic in animal models
(32,33). In addition, hydroxybiphenyl
chemicals can be degraded by bacteria
through the biphenyl catabolic pathway
(34). It is thus plausible to hypothesize
that, apart from the possible direct toxic
effects of 2HBP on pancreas or periph-
eral tissues, 2HBP may also negatively
affect diabetes through a yet unknown
host-gut microbiota mechanism.
Glycerophosphocholines are impor-
tant structural components of plasma
lipoproteins and cell membranes with
diverse biological functions. In this
study, we found that elevated plasma
level of matching PC (22:6/20:4) was
associated with 37% reduced risk of
T2D in our study population. This is in
agreement with a previous study dem-
onstrating lower plasma or serum levels of
PC species in diabetic patients than in con-
trol subjects (5). Moreover, reduced levels
of multiple acyl-glycerophosphocholine
species were highly correlated with in-
sulin resistance as measured by the eu-
glycemic clamp (35), lending further
support for a potential role of PCs in di-
abetes etiology. In the current investi-
gation, another metabolite matching
known (3S)-7-hydroxy-2',3',4',5',8-
pentamethoxyisoflavan (named HPMF)
was also significantly predictive of a de-
creased risk of diabetes. This metabolite
belongs to the class of flavonoids that
are known to have a wide range of
biological and pharmacological activi-
ties. Dietary flavonoid intakes have
been associated with reduced risk of
T2D in both human (36-38) and animal
studies (39). In support of these findings,
participants with a higher plasma level
(top tertile) of HPMF exhibited over
60% reduced risk of T2D compared with
those with a lower level (bottom tertile) in
our analysis. While the precise mecha-
nism underlying this association awaits
further investigation, it is possible that
HPMF may decrease diabetes risk through
its potential antioxidant properties (40). It
is also likely that HPMF may exert benefi-
cial effects on energy balance and lipid
metabolism (41) or anti-inflammatory ef-
fects through the nuclear factor-«B or the
AMPK signaling pathways, which play a
central role in the regulation of glucose

and lipid metabolism (42,43). In addition,
flavonoids have been shown to have anti-
diabetes effects through enhanced
pancreatic 3-cell function in animal ex-
periments (44). The favorable effect of
this flavonoid chemical has not been
previously reported. Its biological prop-
erties should be investigated in future
research.

In addition to the altered profiles of
PC and flavonoid, elevated levels of two
metabolites matching tetrapeptides
(MEIR and LDYR) were associated with
~40% reduced risk of diabetes. Al-
though the mechanisms linking these
peptides to diabetes remain to be de-
termined, peptides are known to be es-
sential in regulating lipid metabolism in
key insulin-target tissues and in main-
taining energy homeostasis and insulin
sensitivity. They may also function as
potent peptide hormones regulating
glucose metabolism in diabetes (45). In
addition to the five known matching me-
tabolites, two unknown compounds
were also significantly predictive of di-
abetes development. These unknown
chemicals might be not new but merely
not yet identified. The structure and
function of these unannotated chemicals
should be examined in future research.

Previous evidence has linked raised
circulating levels of BCAAs with insulin
resistance (2,46,47) or diabetes (10,47).
Our study, however, did not find a sig-
nificant association of BCAAs with risk of
T2D development. This lack of replica-
tion may not necessarily represent
true negative findings because our anal-
ysis accounted for multiple testing of
>11,000 m/z features with a stringent
criterion, which could result in inappro-
priate exclusion for a large number of
metabolites (false negatives). The dis-
crepancy could also represent genuine
difference between American Indians
and other ethnic groups included in pre-
vious studies because the unique char-
acteristics of American Indians, e.g.,
genetic background and lifestyle, could
potentially lead to population-specific
metabolic signatures. Future large-scale
metabolomics studies should address
this discrepancy.

In search of the origin of the interin-
dividual variation, we calculated partial
correlations of metabolite relative
abundance with standard risk indicators
of diabetes, expecting that, for example,
higher BMI or fasting glucose should
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correspond with higher levels of risk me-
tabolites or lower levels of protective
metabolites. However, in our study co-
hort, most of the detected matching
metabolites were not correlated with
classical risk factors, such as BMI, fasting
glucose, and insulin resistance, but the
combination of these metabolites signif-
icantly improved risk prediction beyond
standard risk factors. This is important
because the fundamental task of risk pre-
diction is to identify predictive markers
that are sufficiently uncorrelated with es-
tablished risk factors so that they can be
used to improve risk prediction over and
above conventional clinical factors. These
newly detected metabolic markers will
provide valuable information regarding
the pathophysiology of diabetes develop-
ment and also potential therapeutic tar-
gets for novel treatment options.

Our study has several limitations. First,
although our high-resolution LC-MS de-
tected >11,000 distinct features, it
should be noted that only 18% of the
compounds detected had a match in the
current metabolomics database. These
compounds were unable to be pursued
owing to the large number of possible
isomers and a lack of available standards.
However, these currently unannotated
metabolites may represent dietary,
microbiome-related, or environmental
chemicals associated with diabetes.
With the advancement of metabolomic
research, we expect that the majority of
these unidentified chemicals will ulti-
mately be annotated and their associa-
tions with disease will be determined.
Additionally, many m/z features matched
to therapeutic drugs and nutritional sup-
plements, but owing to their wide use by
diabetic patients, we were unable to eval-
uate their contributions to the altered
metabolic profiles. Second, although
highly correlated, relative abundances
but not absolute concentrations were
used as a surrogate for plasma metabolite
levels. Third, although we were able to
control many of the known risk factors,
the possibility of potential confounding
by other factors such as diet and gut mi-
crobiota cannot be entirely excluded.
Fourth, participants in the current study
are young to middle-aged American Indi-
ans who may have a high propensity for
the development of T2D; therefore, gen-
eralization of our findings to other popu-
lations should be approached cautiously.
However, given the rising tide of T2D in
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almost all ethnic groups worldwide, we
believe that our results could be applica-
ble to other populations. Finally, our re-
sults need to be replicated in large-scale,
prospective metabolomic analysis of
American Indians and other ethnic
groups.

Nonetheless, this is the first prospec-
tive study to report novel predictive met-
abolic markers and altered metabolic
profiles associated with development of
T2D in American Indians, a minority group
suffering from a disproportionately high
rate of T2D. The SHFS has phenotypic lon-
gitudinal data available that allowed us
to accurately classify participants as inci-
dent cases of diabetes. The untargeted
high-resolution metabolomics approach
allowed us to identify previously unde-
scribed metabolic markers that may be
specific to the population of American In-
dians, whose genetic makeup and/or life-
style could be distinct from that of
individuals of European ancestry.

In summary, this study identified sig-
nificant metabolic predictors of T2D in
American Indians above and over estab-
lished diabetes indicators. Targeting bi-
ological pathways that involve these
newly detected metabolites would
help to develop early preventive and
therapeutic strategies tailored to Amer-
ican Indians, an ethnically important but
traditionally understudied minority
population.
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