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Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g.,

dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their

integration, at the bone level, results in: (i) changes in mineral and protein composition and

microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium

and phosphorous release into the bloodstream, (iii) expression and release of hormones

and mediators able to communicate the current bone status to the rest of the body.

Different stimuli are able to act on either one or, as usual, more levels. Physical activity is

the key stimulus for bone metabolism acting in two ways: through the biomechanical load

which resolves into a direct stimulation of the segment(s) involved and through an indirect

load mediated by muscle traction onto the bone, which is the main physiological stimulus

for bone formation, and the endocrine stimulation which causes homeostatic adaptation.

The third way, in which physical activity is able to modify bone functions, passes through

the immune system. It is known that immune function is modulated by physical activity;

however, two recent insights have shed new light on this modulation. The first relies on

the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate

caspase-1 activation and are, hence, the tissue triggers of inflammation in response

to infections and/or stressors. The second relies on the ability of certain tissues, and

particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators

(namely, myokines and adipokines) able to affect, profoundly, the immune function.

Physical activity is known to act on both these mechanisms and, hence, its effects on

bone are also mediated by the immune system activation. Indeed, that immune system

and bone are tightly connected and inflammation is pivotal in determining the bone

metabolic status is well-known. The aim of this narrative review is to give a complete

view of the exercise-dependent immune system-mediated effects on bone metabolism

and function.
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INTRODUCTION

Exercise, particularly when energetically demanding and
sustained, affects all human tissues and organs. Different kinds of
exercise (e.g., endurance, high intensity, resistance) have different
effects on tissues and organs homeostasis and, consequently,
different kinds of training require different adaptive changes that
might take place (1). Bone is importantly affected by exercise
and bone cells metabolism forcefully adapts to training. This
metabolic adaptation reflects, on long-term basis, in a micro-
architectural, and possibly macro-architectural, redefinition
of bone shape and structure. The biological meaning of this
phenomena resides in the physical adaptation of bones (in terms
of shape, mass, and strength) to the changed environmental
conditions (applied forces) (2). However, the bony response to
exercise does not only depend on the biomechanical stimulus
but equally relies on other systemic mechanisms that make
the bone a center for the integration of the signals generated
during and following the exercise (3). A main signal is the
metabolic one: bone metabolism is highly-demanding in terms
of energy; parallel, during exercise the energy needs increase
with the increasing duration and intensity. Being not a lifesaving
function, bone metabolism is partially blocked in response to
acute exercise, regardless the degree of biomechanical load.
This block mainly pertains the anabolic function (osteoblastic
function, i.e., bone formation) while leaves almost unaltered the
catabolic side (osteoclastic function, i.e., bone resorption). The
acute unbalance toward bone resorption makes the calcium,
stored in the bone matrix, available to skeletal muscles (SKM)
and cardiac muscle for contraction and to the brain to sustain the
neuromuscular function (4). On the other hand, the chronically
established bone metabolic response to training is driven
by the degree of load: weight-bearing/high impact activities
(e.g., plyometric) shift the balance toward bone formation
and on average increase bone mass and bone mineral density
(BMD). Equally demanding activities featured by a low/absent
biomechanical load (e.g., swimming, cycling) shift the balance
toward resorption and causes a decrease in the average bone
mass and BMD (3). Another key signal, generated during
and following exercise and affecting bone metabolism, is the
immune/inflammatory one. Inflammation, acute and chronic,
is a main determinant for bone metabolism and the plethora
of inflammatory mediators, produced under either physiologic
or pathologic conditions, affects bone cells. Noteworthy, in
last 15 years an interdisciplinary branch of study embracing
(but not limited to) endocrinology, immunology, orthopedics,
and rheumatology, namely osteoimmunology, has developed
quickly thus becoming a central subject in metabolic diseases
of bone (5). A key role of the osteoimmune networking
has been highlighted by the clinical success and safety, over
the classical anti-resorptive drugs (6, 7), of the fully human
monoclonal antibody denosumab used in the treatment of
primary and secondary osteoporosis, in both males and females
(8), which is an inhibitor of the prototypic osteoimmunological
signaling pathway, the RANK/RANKL system, as described
elsewhere (9). Acute exercise represents a powerful inflammatory
stimulus itself while the inflammatory response to training is

a handbook example of adaptation to a continuous stimulus.
Exercise, indeed, initiates a series of inflammatory events, which
ultimately, if chronically continued, positively affects health. The
inflammatory response to exercise, however, takes place in the
immune system (IS), involving mainly the innate compartment
with fallouts on the humoral immunity, as well as in tissues other
than the IS, e.g., SKM, white and brown adipose tissues (WAT,
BAT), brain, liver (3, 10, 11). Notably, the acute response elicited
by exercise in terms of inflammatory mediators is often very
similar to that observed during pathological acute and chronic
inflammatory conditions (e.g., sepsis, obesity, autoimmune
diseases, tumors) but what determines the net result of this
response (pro- vs. anti-inflammatory) is the milieu in which
this response is generated, together with its temporal length
and the site of production. As an example, interleukin (IL)-6
expression is strongly induced by time, intensity and type of
muscle contractions-dependently as well as in sepsis (various
origin) but, in the latter case, it is driven by the previous increase
in another cytokine, the tumor necrosis factor (TNF)-α (12).
Based on the interdependence between bone and IS, it is implicit
that the acute inflammatory response induced by exercise- and
the modulation of the inflammatory status induced by chronic
training both affect bone cells differentiation and function and,
in turn, the bone metabolism. It should be kept in mind that,
other than a target of these endocrine and inflammatory stimuli,
the bone is itself a source of these mediators and, hence, it
actively enters in the regulation/modulation network of the
homeostasis (3).

This review aims at summarizing the experimental evidences
about the exercise- and training-dependent effects on bone
mediated by the IS and the other inflammatory sources in order
to depict additional, and less explored, link between bone and
inflammation as further mechanisms by which the physically
active status is a main determinant for health.

In order to go deep into the description, it is necessary to
introduce some key concepts, relative to the exercise physiology,
that will help the reader in fully understand the biological
meaning underlying the homeostatic response. About the types
of muscle actions, one can distinguish between static (isometric)
and dynamic (isotonic) actions. During the static (isometric)
action, muscles generate force without changing length due to
an external resistance (weight of an object) greater than the
force produced by the muscle; despite the energy expenditure,
no work is done due to lack of movement. The isotonic
action, instead, can be either (i) concentric, when muscles
produce enough force to overcome the external resistance and
the muscle contraction results in a work, or (ii) eccentric,
when the muscles lengthens while generate a force due to the
opposite movement of the external resistance and the sarcomere
shortening (13). Another series of concepts regard the terms
physical activity (PA), exercise, and training. PA is defined as
any bodily movement produced by SKM resulting in an energy
consumption. Everyone performs PA in order to sustain life
but the amount is subject to personal. The term “exercise,”
instead, although often erroneously used interchangeably with
PA, is defined as a PA featured by planning, structure, and
repetitiveness, which is aimed at maintaining or improving the
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TABLE 1 | Common and distinctive features of physical activity and exercise.

Physical Activity Exercise

Body movement generated

by skeletal muscles

Variable energy expenditure

Positive correlation with

physical fitness

Body movement generated by skeletal muscles

Variable energy expenditure

Positive correlation with physical fitness

Planned, structured, and repetitive

Aimed at maintain/improve physical fitness

physical fitness (14). The common and distinctive features of PA
and exercise are summarized in Table 1.

When a single bout of exercise (acute exercise) is continued
over the time, in the same fashion, it is defined training (exercise
training). Finally, the different types of exercise and training
can be categorized as follows: (i) endurance, mainly based on
the aerobic metabolism (e.g., distance running, road cycling,
swimming, triathlon), (ii) resistance (also known as strength),
mainly based on the anaerobic metabolism (e.g., weight lifting,
discus, hammer, and javelin throw) (15).

HOW DO EXERCISE AND TRAINING
AFFECT BONE METABOLISM?

The responsiveness of bone to mechanical stimulation was first
theorized by Frost who postulated, with the “mechanostat”
hypothesis, bone mass and structure remain constant around a
certain threshold of mechanical strains. Bone formation takes
place when the strain increases above this threshold, and it results
in an increased bone stiffness.When the strain experienced by the
bone segment is lower than this threshold bone loss can take place
(16). Later, it was shown that the threshold itself is modifiable by
several factors, mainly endocrine [parathyroid hormone (PTH),
sex hormones, etc.] (17). However, despite its importance, the
mechanical strains induced by strenuous PA is very small degree
attesting to up to 0.3% (3,000 microstrain) (18). Based on
that, it is likely that bone cells are exposed to and integrate
different PA-generated mechanical stimuli that altogether imply
an amplification of the environmental stimulation. A further level
of complexity is due to the fact that different types of bone cells
are anatomically exposed to different combinations of stimuli.
Bone marrow and endosteal osteoblasts experience the pressure
forces generated within the marrow cavity. Osteocytes buried
into the matrix with their interconnecting long cellular processes
running within the fluid-filled canalicular network experience
dynamic fluid flow pressure, shear stress forces, and dynamic
electric fields (due to the transit of charged ions in the interstitial
fluid). Mature osteoclasts and their precursors, residing in the
bone marrow, may be exposed to mechanical stimulation due
to dynamic pressure (19). Bone mechanosensitivity is mediated
by several cellular components (e.g., membrane, membrane
proteins, cytoskeleton, cilia, ion channels). Shear stress and
pressure deform the plasma membrane and, consequently, to
the cytoskeleton and, in turn, through integrins to the protein
machinery mediating the cell-to-matrix adhesion and to the
nucleus where it induces the expression of downstream genes

(20). In osteoblast, the deformation of the plasma membrane
is associated with the activation of ion channels (21), as
in osteocytes, whose cilia, protruding out of the dendritic
extensions, sense fluid flow and activate channel-mediated ion
fluxes that modulate the Wnt signaling pathway (22).

The different nature of the mechanical stimuli together with
the number of cell structures involved in mechanosensitivity
imply the integration of the different signals generated (19).
Indeed, the physical stimulus is translated into several chemical
signals including calcium, mitogen-activated protein kinase
(MAPK), Wnt, and RhoA/ROCK pathways. For instance,
the Frizzled-LRP5/6-mediated activation of Wnt induces the
expression of osteoblastic factors, as RUNX2 that promotes the
commitment of mesenchymal stem cells (MSCs) toward the
osteoblast lineage, induces proliferation and differentiation of
pre-osteoblast, and stimulates mineralization. Hence, exercise
shifts the adipogenic-to-osteogenic equilibrium, governing the
MSC fate, toward the osteoblastic commitment (23, 24). By
modulating the OPG and RANKL expression in osteoblasts, Wnt
signaling also downregulates osteoclastogenesis and osteoclast
activity (25). A key mechanism regulating the Wnt activity that
underlies the exercise-associated effects on bone is mediated
by sclerostin (Sost) (26). Osteocytes constitutively produce Sost
that inhibits the Wnt pathway, thereby osteoblastogenesis and
bone formation. Loading activates a molecular response that
inhibits Sost expression and, then, allow the activation of Wnt
signaling. Noteworthy, also prostaglandin E2 (PGE2), which is
induced by strain sensing, by activating its receptors EP2 and
EP4, facilitates the nuclear translocation of β-catenin and its
transcriptional action (27). Finally, the intracellular signaling
generated following mechanical stimulation can be propagated
to neighbor cells as calcium (e.g., between osteoblasts and
osteocytes) or adenosine triphosphate (ATP; e.g., osteoblast-to-
osteoclast) transients through the gap junction network (28, 29).

Another way by which exercise and recovery beneficially
affects bone metabolism, mineral content, and structure is by
increasing the blood flow to the bone and the consequent
improved supply of nutrients supporting its metabolic needs
(30, 31). Indeed, also from this point of view, bone is a
really active tissue as demonstrated by the fact that blood flow
to the bone and glucose uptake within the bone tissue are
increased in response to exercise (32). However, as exercise
load increases blood flow offs due to the sympathetic response
that shifts the flow to the active SKM. Moreover, perfusion in
bone, which ranges over a window wider than that expected
during exercise, is mainly ruled by chemoreceptors, and hence
nutrients, rather than by hypoxia (33). The exercise-induced
enhanced bone perfusion also causes an increased efflux of
stem cells from bone marrow (e.g., endothelial precursors) (34),
consequently to the endothelial production of nitric oxide (35)
and sympathetic nervous system activation (36). Finally, exercise-
induced muscular-derived adenosine could solve another key
role in bone blood flow determination (37).

The Effect of Acute Exercise
Despite the key role of loading, the bone tissue response
of the to a single bout of exercise is mainly driven by the
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exercise-dependent metabolic requests of noble organs and of
those organs that are directly involved in the activity. In other
terms, during PA, and mostly dependent upon its intensity
and duration, the metabolic needs of non-life saving organs
(e.g., the bone, skin, gut) are somehow “sacrificed” in order
to have all the fuels available for being used by brain, SKM,
and liver (3). After the conclusion of the PA, during recovery,
and with the chronic and/or long-term repetition of the act,
the loading/impact-induced anabolic response takes place. This
means that during PA the bone metabolism is mostly unbalanced
toward resorption. This is also a consequence of the key role of
bone in calcium homeostasis: PA implies the usage of calcium in
terms of functioning of the contractile machinery of the SKM,
release, and recycling of neurotransmitters and hormones. Being
resorbed, bone make the calcium promptly available. Indeed,
two activities both characterized by high energy expenditures
but differentiated by kind of biomechanical loading, one featured
by high load and impact (mountain ultra-trail) while the other
non-impact/loading (cycling), both display an anti-anabolic/pro-
catabolic acute response of the bone to the activity (38, 39).

By considering the biomechanical aspects, only dynamic
stimuli can generate an osteogenic response that, instead, is not
induced by static loading (40) and strain amplitude, number of
cycles and interval between the cycles are important, as well
(41, 42). Indeed, the anabolic response can be desensitized by
long-lasting activities while interval rest between the load cycles
may have an osteogenic effect (43, 44). On the contrary, inter-
cycles resting activates some mechanotransduction-sensitizing
mechanisms that sustain the osteogenic response (28).However,
too high magnitudes or number of cycles of load may fatigue
the bone tissue and consequently can cause microdamage that,
in turns, result in a series of catabolic events including local bone
resorption (45).

The Effect of Chronic Exercise and Training
Life-long PA is associated with a better bone quality, thus
potentially resulting in a stronger bone, e.g., improved cross-
sectional area, BMD, and moments of inertia. These features,
for example, and have been observed in gymnasts vs. non-
gymnasts (46, 47), and dominant vs. non-dominant limbs of
racquet sports players (48) or triple jumpers (49). By applying
the same external force, the deformation experienced by “weak
bones” is greater than that of “strong bones” and, consequently,
it elicits in larger tissue strains. This results in a greater anabolic
response in the weaker bone that attempts to become stronger
(50). In experimental models, loads causing high strains induce
bone formation in loaded areas, while areas with lower peak
strains featured by reduced bone formation or even increased
bone catabolism (51). Site-specific adaptation to loads takes also
place in human: in women, after skeletal maturity, the adaptation
to load is related to the energy equivalent strain, which means
that regions undergone to high-level strain experience bone
apposition than regions undergone to low-level strain (50).

However, the bone adaptation to chronic PA and training
mainly depends upon the kind of activity. This was clearly
demonstrated by Nikander et al. (52), who evaluate the bone
quality of the narrowest section of the femoral neck [areal

BMD (aBMD), hip structure analysis (HSA), cross-sectional
area (CSA), subperiosteal width (W), and section modulus of
strength (Z)] in 225 premenopausal women performing different
sports. Women performing high-impact (volleyball, hurdling)
and odd-impact (squash, soccer, speed skating, step-aerobic)
loading sports displayed the highest aBMD (+23 and +29% vs.
non-athletic women), CSA (+22 and +27%), and Z (+22 and
+26%) even following adjustment for age-, weight-, and height.
Contrarily, low-impact (orienteering, cross-country skiing) and
non-impact (cycling, swimming) repetitive loading activities
were associated with no gains in bone quality, compared with
the inactive controls (52). A Cochrane review evaluating the
preventive and therapeutic effects of training on postmenopausal
osteoporosis established that exercise has a small (about 3%)
but significant effect on bone mass and BMD. According to the
meta-analysis, femoral bone mass mostly benefits from high-
force non- weight-bearing exercises (e.g., resistance strength
training of the lower limbs). Vertebral bone mass, instead,
mostly benefits from the combination of exercises featured by
different types of dynamic loading. Consequently, the risk of
fracture across all exercise groups was not significantly different
compared to the control groups (53). Exercise-based, either
preventing or therapeutic, strategies aimed at affecting bone
health might account for this finding. Indeed, based on our
recent overview of systematic reviews andmeta-analyses, lifelong
age-specific exercise is effective in sustaining bone health in
women. School-based short bouts of high-impact plyometric
exercises positively affect peak bone mass in young girls, while
combined-impact exercises represent the best exercise modality
to preserve/improve BMD in both pre- and post-menopausal
women (54).

Beside the quite well-depicted effects of chronic exercising on
the physical feature of the bone, the effects on blood flow or
metabolism of human bone are scarce (33). Although neglected,
these studies are of key importance since they highlight a role
for bone in regulating the whole-body metabolism (55–57) and
also because the bone is central in the release of vascular
precursor and immune cells. Thus, it emerges that by influencing
bone status, exercise training could potentially affect vascular
impairments in pathological conditions such as diabetes (33) and
it may regulate the release of immune cells into the circulation
and, hence, to directly control the inflammatory status.

As important as loading, or even more important, is
detraining. Constant load (use of the skeleton) is essential for
osteocyte survival and in case of bone immobilization osteocyte
apoptosis occurs (58). Parallel, detraining causes bone loss and,
hence, training might be continued to maintain bone mass
(59) since unloading and disuse increase bone resorption rate.
This situation is encountered, for instance, in astronauts under
weightlessness conditions, spinal cord injured patients, and
elderly people forced to either partial or total immobilization
(19). Unloading affects both the cortical and trabecular portions
of the bone: spinal cord injured subjects experience a 20–40%
decrease in cortical thickness (60) and an average 14% (range 2–
80%) in trabecular density (61); for astronauts the mean BMD
loss of the trabecular compartment was 4% at the lumbar spine
and 12% at the proximal femur (62).
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HOW DO EXERCISE AND TRAINING
AFFECT THE INFLAMMATORY RESPONSE
AND THE IMMUNE FUNCTION?

Exercise profoundly affects the normal functioning of the
IS with immune responses to single bouts being transient
while an immune adaptation is likely to take place with
training. Exercise dose is important in determining the entity
of the immune response: prolonged intense training can have
depressive effects (e.g., increased infection risk), while regular
moderate-intensity exercise has more balanced effects that
mainly results in the improvement of the baseline immune
reactivity (63). Several evidences support this effect, chronic
exercise has been demonstrated to improve immune, and
hence health and behavioral outcomes, in several conditions of
deregulated immune response, such as aging, obesity, cancer,
and chronic viral infections (e.g., HIV) as well as in preventing
their onset (63–66). Interestingly, acute exercise is effective in
improving vaccines response (63). These effects are mediated,
from one hand, by the cells of the IS belonging to both the
innate and adaptive branches and, from the other hand, by
all the cells of the body that are induced to express either
a pro-inflammatory or anti-inflammatory phenotype. Exercise
activates inflammatory cascades involving cells belonging to
both the innate and adaptive immunity branches, cytokines,
and mediators with active roles in inflammation (myokines,
adipokines) that are in turn responsible for the generation of
an environment in which recovery, regeneration, and adaptation
take place. Exercise duration, mode, and intensity are the
determinants for the exercise-induced inflammatory response. At
the same time, training exerts anti-inflammatory actions through
several distinct mechanisms involving metabolic, endocrine,
and immune mediators of various tissues and organs (67).
However, exercise exerts its anti-inflammatory effect only after
the activation of pro-inflammatory cascades (67).

A special mentionmight be spent about cortisol. Although this

adrenal hormone has anti-inflammatory immunosuppressant

actions, and its occasionally increased circulating concentration
(e.g., following PA) are beneficial in reducing inflammation,

its chronically high levels (i.e., hypercortisolism) and

deregulated rhythms are associated with aging and age-
associated low-grade inflammation (68). Cortisol and the other

endogenous glucocorticoids (GCs) are the final products of

the neuroendocrine hypothalamus-pituitary-adrenal cortex
(HPA) axis that is responsible for the regulation of both the

energy balance and stress response. The physiological circadian

fluctuations of GC levels allow the correct functioning of
the intermediate metabolism and the development and the
maintenance of the homeostasis of a wide all the body tissues,
including the bone. Indeed, GCs are essential for bone modeling
and remodeling as they promote osteoblastogenesis to maintain
the bone architecture (69). Excessive energy intake (unbalanced
energy intake-to-energy expenditure ratio) and adiposity are
associated with chronic inflammation and stress which are in
turn responsible for a deregulated of the HPA axis. Moreover,
hypercortisolism is associated with a deregulated energy

metabolism that in turn is responsible for the maintenance
of the chronic inflammatory state (70). PA, by acting as a
chronoenhancer, also impacting on the HPA axis, is able to
improve the GC response in healthy subjects as well as to restore
the circadian rhythm in age-associated low-grade inflammation
dependent hypercortisolism and, hence, to improve the related
comorbidities (68).

Effects of Exercise and Training on
Inflammation
Effect of Acute Exercise
A single exercise bout starts a series of timely-defined
inflammatory events, which mainly depend upon mode,
intensity, duration, and training status (i.e., familiarity with the
exercise). This cascade starts with a pro-inflammatory phase
(1.5–24 h post-exercise) which is then followed by an anti-
inflammatory phase that sustains SKM regeneration (24–72 h
post-exercise). The exercise-induced inflammatory response is
evidenced by the rise of the circulating levels of myokines (i.e., IL-
6) and anti-inflammatory mediators (IL-10, IL-1ra). Moreover,
exercise downregulates the expression, on the surface of antigen-
presenting cells (APCs, e.g., monocytes) of those receptors
involved in the recognition of danger signals, i.e., toll-like
receptors (TLRs) (67). TLRs are highly evolutionarily conserved
transmembrane proteins involved in the recognition of classes of
molecules non-specifically associated with pathogens (pathogen-
associated molecular patterns, PAMPs) and “danger signals”
non-specifically induced/released following tissue damage due
to physical, chemical, or biological agents (danger-associated
molecular patterns, DAMPs) (71). TLRs activation leads to the
expression of inflammatory cytokines. Acute exercise affects the
expression of TLRs on monocytes and, hence, by desensitizing
these cells to pro-inflammatory stimulation, this results in a
push toward the anti-inflammatory phenotype. 2.5 h of cycling at
60% of VO2max induces a significant decrease in the expression
of TLRs on CD14+ monocytes, compared to rest, immediately
(TLR2, about −25%) and 1 h post-exercise (TLR1, −60%, TLR2
and TLR4,−50%, TLR3,−30%) (72).

Effect of Chronic Exercise and Training
There are several potential tissue-specific anti-inflammatory
mechanisms associated with regular PA and these include
reductions in body fat (particularly, visceral fat), enhanced
expression and release of contracting muscle-derived anti-
inflammatory mediators, downregulated expression of TLRs
in monocytes and macrophages, increased expression of anti-
oxidant species counteracting the exercise-associated rise in
reactive oxygen species (ROS) generation (73).

Exercise causes transient elevations in IL-6 coming from
exercising SKM (74). Contrarily, during inflammation, and
especially chronic low-grade inflammation, IL-6 is produced in
a slightly chronically elevated manner and, in this case, the
source is represented by immune cells and hepatocytes (3).
Muscle-derived IL-6 has anti-inflammatory effects by inducing
other anti-inflammatory cytokines (e.g., IL-1ra and IL-10) that
antagonize the pro-inflammatory IL-1β and TNF-α (12). IL-6,
but also the exercise-related increased energy needs, stimulate
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the release of cortisol that has an immunosuppressant activity
(74). The logic around the IL-6 release by the contracting
muscle resides in its activity aimed at increasing the usage and
delivery of energetic substrates to the myocytes, in concert with
the stress hormones (e.g., cortisol, epinephrine). By acting in
autocrine and paracrine fashions, indeed, IL-6 stimulates the
cellular uptake and the oxidation of glucose and fatty acids
by the SKM itself; contemporary, by acting in an endocrine
fashion, it induces lipolysis at the AT level and glycogenolysis
and gluconeogenesis. The insulin-mimetic effect of IL-6 on
glucose uptake is of particular interest. The binding of IL-6 with
the IL-6Rα/gp130Rβ receptor complex leads to the activation
of AMPK that triggers the plasma membrane translocation
of intracellular vesicles bearing the insulin-dependent glucose
transporter (GLUT4) allowing glucose uptake regardless the
insulin status. This accounts for the beneficial effects of PA on the
metabolic function also in impaired glucose tolerance and insulin
resistance (75). Moreover, other than stimulating the release of
IL-6, exercise training generates an appropriate environment
making the IL-6 effect distinctly anti-inflammatory: for instance,
aerobic training reduces the expression of TNF-α and IL-1α
by mononuclear cells and induces IL-4, IL-10, and TGF-β1 in
subjects at high-risks of heart disease (76).

Training exerts its effects by also reducing the activation
potential of the innate immune response activation in terms
of TLRs in an age-independent manner. Young (18–35 years
of age) and elderly (65–80 years of age) active subjects have a
one third reduced expression of TLR4 on CD14+ monocytes’
surface, compared to their inactive counterparts. Moreover, 12-
week of either endurance or resistance training halved TLR4
expression in monocytes from these inactive (old and young)
subjects to a level comparable to those found in active age-
matched controls, while the intervention was ineffective in the
already active subjects (72).

The anti-inflammatory effect of training might is also the
result of the modulation of nitric oxide (NO) and ROS
production and the consequent activation of their downstream
pathways. Exercise induces the synthesis of NO and ROS
which are important in inducing anti-inflammatory defensive
mechanisms especially by targeting muscle gene expression (77).
In the case of ROS, with training, the cyclic exercise-induced
spiked production (contrarily to what happens in chronic
inflammation) causes the activation of an adaptive response
that, in turn, protects SKM from exposure to the exercise-
dependent increase of ROS itself. This phenomenon accounts
also for the decreased expression of TNFα that may further
inflammation (77).

The AT is determinant in defining the inflammatory status.
The association of physical inactivity and high caloric intake
results in adipocyte and AT hypertrophy. As adipocytes grow,
the oxygen supply becomes limiting and the consequent
hypoxic stress leads to cell death and necrosis. Necrosis
recalls macrophages and potently induces an inflammatory
response (78). Notably, this process seems to involve mainly
the visceral AT that has a higher inflammatory potential than
the subcutaneous one. Exercise-induced caloric imbalance causes
lipolysis, aimed at mobilizing fats to be used as fuel by the

exercising muscle, with a reduction of the adipocytes’ size and,
thereby, hypoxic stress and inflammation (79).

Effects of Exercise and Training on
Immune Functions
Exercise profoundly affects the IS functioning. An exercise
bout causes an important redistribution of leukocytes as a
consequence of the hemodynamic response and the increased
blood levels of catecholamine and glucocorticoids, but the
effects depend upon exercise intensity and duration. Prolonged
periods of intensive training can impair immune functions,
and particularly those of T-cells, natural killer (NK)-cells,
and neutrophils; in elite athletes, during periods of heavy
training and competition, mucosal immunity is also affected
determining an increased risk of infections of the upper
respiratory tract. Contrarily, regular moderate-intensity activities
are beneficial having immune-enhancing effects and, as stated
above, throughout the reductions of inflammation, increased
immune cells turnover, enhanced immune surveillance, and
improvement of psychological stress status (63).

Effect of Acute Exercise
An exercise bout increases both the absolute and relative
leukocyte counts. Transient leucocytosis takes place already after
brief (minutes) dynamic exercise and is more sustained in the
case of prolonged endurance exercise (80) and returns to pre-
exercise levels within 6–24 h (63). Neutrophils and lymphocytes
are mainly involved in this response while a smaller contribute
is given by monocytes. The response, however, differs for
these cells: during the early phase of recovery (30–60min after
exercise), the neutrophilia is associated with lymphocytopenia
that can be particularly pronounced until clinically relevant
low levels (<1.0·109/L, which means −30 to −50% compared
to pre-exercise values) and can last up to 6 h (80). Other
features also characterize this response. Exercise tends to
mobilize cytotoxic cells (e.g., NK-cells, and CD8+ and γδ

T-cells) (81) and non-lymphocyte effector cells (e.g., CD16+
monocytes and CD16- neutrophils) (82, 83). The exercise-
dependent mobilization mainly involves those cells with a higher
migration potential, e.g., leukocytes expressing high levels of
integrins and intracellular adhesion molecules (84) and a wide
range of chemokine receptors (85). Finally, in these leukocytes
the expression of adrenoreceptors (β2-ARs) and glucocorticoid
receptors is upregulated, and are therefore they are highly
responsive to catecholamines and cortisol (81, 86, 87), this
indicates that leukocyte trafficking between the blood and tissues
is strongly influenced by both the sympathetic branch of the
nervous system and the HPA axis activation.

Other than being dislodged from liver, lung, and spleen
endothelia due to the exercise-induced increased blood pressure-
and cardiac output-mediated shear stress (80), leucocytes
come from lymph nodes, intestines, bone marrow, thymus,
and SKM that contain large numbers of white cells. The
contribution of primary (i.e., bone marrow, thymus) and
some secondary (i.e., lymph nodes), lymphoid organs to the
initial exercise-induced leucocytosis is limited, since their
content in mature/differentiated cells. The bone marrow
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likely sustains neutrophilia during recovery from prolonged
exercise, while lymph nodes and thymus mainly sustain the
restoration of the blood lymphocyte count following the transient
lymphocytopenia (63).

About innate immunity, submaximal exercises enhance
neutrophil chemotaxis (88), phagocytosis (89), and spontaneous
degranulation (90). Also the neutrophil oxidative burst is affected
by the exercise although in an intensity-and duration-dependent
fashion: cycling at 50 and 80% of VO2max have enhancing
and impairing effects, respectively; moreover, during recovery
from moderate-intensity exercise the oxidative burst is enhanced
while it is impaired following exhaustive and prolonged activities
(91, 92). Also NK-cell cytotoxicity is quickly induced by exercise
but this response is followed by a delayed suppression during
recovery but this likely mirroring changes in their number (93).

Adaptive immunity appears to be both augmented and
inhibited depending on intensity, duration, and modality of
exercise (63). In trained triathletes, following a half-Ironman
race, an intradermal inoculation containing several recall
antigens caused a reduced 48 h-delayed-type compared to both
resting triathletes and moderately trained healthy men (94).

Effect of Chronic Exercise and Training
In general, high-intensity and high-volume training is thought
to cause short- or long-term immune depressive states that can
increase infection risk. Repeated bouts of strenuous exercise,
performed without adequate recovery, result in a chronic
state of impaired immunity (80). The decline in the count
of circulating immune cells is associated with the increased
susceptibility to infections: although athletes and healthy
age-matched controls have comparable absolute and relative
leukocyte counts, endurance athletes may experience reduced
resting lymphocyte (runners) and NK-cell (swimmers, cyclists)
counts (95–97). Functional declines in adaptive immunity
associated with prolonged intensive training are related to
unbalanced expression of pro- and anti-inflammatory cytokines
and increased plasma levels of stress hormone (e.g., cortisol) (98).

Contrary to the strenuous, exhaustive exercise typically
practiced by athletes, moderate-intensity training has beneficial
effects on immune function (99). Moreover, exercise mode (i.e.,
aerobic, resistance, or combined) as well as the condition on
which the intervention is addressed are main determinants
of the immune effects. Indeed, moderate-intensity exercise
training associates with a life-long improvement/maintenance
of several aspects of the immune function (99, 100), such
as increased response to vaccine (101, 102), viral infections
(103, 104), and tumors (105–107), enhanced neutrophil
phagocytic activity (108), T-cell proliferation (93, 109),
NK-cell cytotoxic activity (93, 110), basal level of cytokines
(111) and IL-2 production (112) and decreased number of
senescent T-cells (113) and inflammatory response to bacterial
challenge (114).

The enhanced adaptive immune response is also sustained
by the improvement in systemic low-grade inflammation,
driven by the improved inflammatory status of the AT,
and hence in the associated adipokine profile (described
above). Indeed, the downregulation of TLRs on the surface

of monocytes (115) together with the direct exercise-induced
M1 (pro-inflammatory)-to-M2 (anti-inflammatory) shift in
macrophage phenotype, reduces the infiltration of the AT
and, hence, its inflammatory status (116). The stress-related
hormones released during exercise that have anti-inflammatory
properties are responsible of a further stimulus: cortisol
acting as an immunomodulatory and immunosuppressant
compound and adrenaline that downregulates the expression
of the inflammatory mediators IL-1β and TNF (73, 117).
Exercise also decreases the content of cholesterol of the
cell membranes that may improve T-cell receptor signaling
and the translocation of MHC molecules for antigen
presentation (118).

IMMUNO-MEDIATED EFFECTS OF
EXERCISE AND TRAINING ON BONE

Inflammasome Activation and Bone
Metabolism
The innate immune function depends upon the recognition,
by germline-encoded pattern-recognition receptors (PRRs),
of PAMPs, derived from invading pathogens, and DAMPs,
induced by endogenous stresses. PAMPs-/DAMPs-dependent
activation of PRRs triggers the downstream signaling cascades
and induces the expression of type I interferons (IFN-α, IFN-β)
and pro-inflammatory cytokines (119). Inflammasomes are
multimeric protein complexes assembling within the cytosol
after sensing PAMPs or DAMPs (120, 121). They serve as
scaffolds to recruit the inactive zymogen pro-caspase-1 that
oligomerizes allowing the auto-proteolytic cleavage into active
caspase-1. Active caspase-1 cleaves the precursor cytokines
pro-IL-1β and pro-IL-18 generating the biologically active
forms (122–124). Furthermore, when activated, caspase-1 can
activate a series of intracellular events that lead to a form of
cell-death mediated by inflammation which is known with
the term of pyroptosis (125, 126). Several PRRs families are
involved in inflammasomes activation, in both mice and
humans, including the nucleotide-binding domain, leucine-
rich repeat containing proteins (NLRs, NOD-like receptors),
and absent in melanoma 2-like receptors (ALRs, AIM2-like
receptors) (127). Following stimulation, the relevant NLR or
ALR oligomerizes and becomes a caspase-1-activating scaffold.
Inflammasomes have been linked to several auto-inflammatory
and autoimmune diseases, neurodegenerative diseases (e.g.,
multiple sclerosis, Alzheimer’s disease, Parkinson’s disease),
and metabolic disorders [atherosclerosis, type-2 diabetes
(T2DM), obesity] (126). Inflammasomes play either causative
or contributing roles in inflammatory diseases onset, and also
increase the severity of the condition in response to host-derived
factors (119). Many PRRs can sense metabolic signals, such
as free fatty acids (FFAs) and ceramides (CERs), whose blood
concentrations increase during aging. These signals activate
critical inflammatory signaling cascade pathways, such as
IκBα kinase/nuclear factor-κB (IKK/NF-κB), endoplasmic
reticulum (ER) stress-induced unfolded protein response
(UPR), and NLRP3 inflammasome. Notably, other than in
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immune cells, PRRs are expressed in several metabolically active
tissues (liver, SKM, AT) where they prime the inflammatory
cascades (128).

Besides the established role of inflammation (and age-

associated low-grade inflammation) in the pathogenesis of
osteoporosis (129–131), very recent findings have linked it to
inflammasomes activation. PA counteracts all the molecular

mechanisms involved in inflammatory signaling cascades and
inflammasome complexes activation (128). In post-menopausal
osteoporosis, IL-18 blood levels are increased while those of

its antagonist, IL-18BP, are decreased. According to Mansoori
et al., IL-18BP enhanced murine osteoblast differentiation and

inhibits the activation of NLRP3 inflammasome and caspase-
1, in vitro, and improved the metabolic and bone statuses

in ovariectomized rats (a rodent model of post-menopausal
OP) (132). Further evidences derived from the association
of NLRP3 mutations with arthropathy and OP (133) and
the SIRT1-dependent inhibition of osteogenic differentiation

and enhancement adipogenic differentiation, in mesenchymal
stem cells (MSC), following lipopolysaccharide (LPS)-induced
NLRP3 inflammasome activation (134). It is known that bone
matrix organic and inorganic components, released during
high-rate bone turnover (e.g., chronic low-grade inflammation,
estrogen deficiency, primary hyperparathyroidism), promote
osteoclastogenesis. This process, however, was importantly
reduced in Nlrp3−/− cells and mice and pharmacologic
inhibition of bone resorption (with bisphosphonates, e.g.,
zoledronic acid) attenuated inflammasome activation in vivo.
These evidences suggest that the DAMPs-NLRP3 inflammasome
axis may represent a novel mechanism supporting bone
resorption (135).

PA effectively counteracts all the molecular mechanisms

involved in the inflammatory signaling cascades (e.g., IKK/NF-
κB, ER-UPR, inflammasomes) although the evidences about
the effects of exercise on inflammasome are currently limited
to NLRP3 activation and only in mouse models and in
obesity. According to Ringseis, in obese mice both endurance
(treadmill, 80% VO2max, 10 weeks) and resistance exercise
(intermittent vertical holding, 10 weeks) decrease NLRP3
mRNA in AT and IL-18 in plasma (128). A number of
human studies demonstrated that PA reduces plasma IL-
18 levels providing the evidence for the exercise-dependent
NLRP3 pathway inhibition: 12-week aerobic interval training in
males and females with metabolic syndrome; 6-month aerobic
training (50–85% VO2max) in overweight T2DM individuals;
8-week high-intensity training on a rowing ergometer (≥70%
VO2max) in obese. In diet-induced obese rats, exercise
strongly reverses TLR4 signaling and IKKβ phosphorylation
in AT, SKM, and liver, suggesting a priming role for the
exercise-induced inhibition of NLRP3 inflammasome. Key
primers of NLRP3 activation are saturated FFA and CERs,
whose circulating levels are increased in aging and metabolic
dysfunctions while are decreased in response to exercise in
obese animals and humans. Exercise may also reduce ER stress
that primes NLRP3 activation via ROS production and NF-κB
activation (128).

Extra-Immune Systemic Inflammation and
Bone Metabolism
Beside the above described prototypic adipo-myokine IL-6 with
its anti-inflammatory actions (induction of IL-10 and IL-1ra and
inhibition of IL-1β and TNFα), SKM and AT secrete a plethora of
active molecules that act in autocrine, paracrine, and hormone-
like fashion the blood concentrations of many of which have
been associated with several metabolic, immune-related, and age-
related pathological conditions (3). It is well-known that the post-
exercise rise of circulating IL-6 is supported by SKM (136) but
contrarily, chronically slightly elevated blood IL-6 are found in
metabolic conditions such as metabolic syndrome and insulin
resistance, obesity, and T2DM (137–139). In these cases, themain
source of IL-6 is represented by the visceral AT, the liver, and
the activated immune cells upon NF-κB signaling (140). Indeed,
in both overweight and lean males the contribution of the AT
to the circulating amount of IL-6 is mainly in the post-exercise
phase (141).

In bone, IL-6 stimulates bone resorption by enhancing
osteoclastogenesis/osteoclast differentiation throughout the
induction of RANKL expression (142, 143) and by inducing
prostaglandin E2 (PGE2) expression in osteoblasts (144–146).
Bones from IL-6 transgenic mice developed osteoporosis
in association with an increased number of osteoclasts and
decreased osteoblasts while, on the contrary, IL-6 knock out
(KO) improved the arthritis phenotype, associated with a
reduced osteoclast recruitment at the erosion sites, in a murine
model of arthritis (147, 148). Ovariectomy in rats, model
of postmenopausal osteoporosis, decreased trabecular bone
volume (TBV) and impaired hormone and inflammatory profile
(decreased estradiol and calcitonin and increased bone-derived
IL-1β, IL-6, and cyclooxygenase-2). Contrarily, the treadmill-
exercised counterparts displayed an overall improved phenotype
(149). Parallel, postmenopausal women have BMD and muscle
strength correlated with soluble IL-6 (150).

Low-impact high-intensity interval training (HIIT) acutely
increased bone alkaline phosphatase activity (BAP) and the
expression of OPG, RANKL, and pro-inflammatory cytokines
(IL-1α, IL-1β, IL-6, TNFα) while decreased bone resorption
[N-terminal cross-linked telopeptide of type I collagen (NTx)]
(151). In obese subjects (n= 173), the degree of obesity and
BMD were related to IL-6 levels (in males), osteocalcin (in
females), C-reactive protein (CRP), and leptin indicating that
adiposity and systemic inflammation are associated with low
BMD (152). In obese, a 32-week combined loading training
improved muscle strength and BMD at various sites along with
an improved metabolic/inflammatory status (decreased CRP,
interferon (IFN)-γ, IL-6) (153).

The leukemia inhibitory factor (LIF), a myokine belonging
to the IL-6 superfamily, stimulates the proliferation of satellite
cell which is essential in post-injury muscle regeneration (e.g.,
exercise-induced muscle damage, EIMD) and SKM hypertrophy
(154). It was induced, at least in term of mRNA, by acute aerobic
and resistance exercises (155). In bone, LIF stimulates bone
turnover, osteoblast proliferation and bone matrix deposition,
and prostaglandin-induced bone resorption depending on
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the differentiation stage of the target cells: enhancement of
differentiation in progenitors, inhibition of function (e.g.,
mineralization) in mature osteoblasts (156). Exercise-induced
LIF acts on periosteal osteoblast in order to modulate their
activity (157).

IL-7 is essential for T-cell and B-cell development (136)
but it is also expressed by the contracting muscles where it
acts paracrinally to induce migration in satellite cells (158).
As such, IL-7 mediates the oestrogens deficiency-induced bone
loss: it induces RANKL and TNFα expression in T-cells (159)
and, hence, it activates mature osteoclast and stimulates the
progenitors differentiation (160) as also observed in vivo in
mice following systemic administration (161). It also promotes
survival and differentiation of dendritic cells, B220+ subset, into
osteoclasts (162). However, despite their beneficial effects on
bone, exercise and training seem to increase the SKM expression
of IL-7. Indeed, plasma IL-7 has been found to be induced, in
elite female soccer players, after a 90-min soccer games (163), 30-
min post resistance exercise but not after 12 weeks of resistance
training (164), while the mRNA expression level was induced in
SKM by 11-week long strength training (158). Therefore, as IL-
6, the biological significance of SKM- and IS-derived IL-7 resides
into basal-to-peak ratio (3).

In addition, IL-15 is considered an exercise-related myokine
although the effect of exercise on its expression and secretion
by the SKM are not well-understood. Current evidences account
for a role of IL-15 in the first phase of adaptation to exercise
since it has been found upregulated (in muscle and in blood)
in inactive/normally active subjects following an acute bout of
exercise but not following the completion of a training program
(165). Indeed, IL-15 mRNA expression in SKM was not affected
by a 3-h treadmill run in trained subjects (marathon runners)
(166) as well as in healthy physically active men after 3-h cycling
(167). However, despite no changes in plasma levels after 12-week
endurance training, the protein content in SKM was increased
(167). Increased blood IL-15 was found after a 30-min run on
a treadmill at 70% of maximum heart rate in untrained healthy
young men (168), acute resistance exercise in young healthy
inactive subjects but not after 10-week chronic training (169) as
well as SKM mRNA, in healthy normally active men, after an
heavy bout resistance exercise (170). IL-15 is a powerful inducer
of TNF-α expression, and hence of RANKL, in osteoblasts
and stromal cells, resulting in enhanced osteoclastogenesis.
Furthermore, in rat bone marrow cultures, it stimulates pre-
osteoclasts differentiation independently from TNF-α (171). IL-
15 acts synergistically with RANKL in osteoclastogenesis by
activating ERK (172). These data suggest that IL-15 positively
regulate osteoclastogenesis (173).

Myostatin, is a member of the transforming growth factor
beta (TGF-β) superfamily [also known as growth-differentiation
factor (GDF)-8], negatively regulates SKM hypertrophy and
hyperplasia (174) and it may cause SKM mass loss during aging
(sarcopenia) and with metabolic and inflammatory conditions
(175, 176). As such it is negatively regulated by PA (acute
endurance (177), acute resistance (178–180), chronic (6-month)
aerobic training in overweight and obesemen (181). The recovery
strategy seems to have in determining the net effect of exercise

(182). Different factors act as antagonist of myostatin and
among them follistatin (FST) (183), follistatin-like 1 (FSTL1)
(184), and decorin (185). Acute resistance exercise did not affect
follistatin mRNA expression in SKM from lean young and old
men (180) while it had enhancing effects in postmenopausal
women (179). Decorin mRNA expression in SKM was induced
by chronic combined strength and endurance training (186)
but also by acute endurance exercise (187) and, in terms
of plasma levels, by acute resistance exercise (186). FSTL1
plasma levels were increased in young healthy men after acute
endurance exercise (188) while chronic strength training induced
mRNA expression in SKM (189). Myostatin has direct effects
on osteoclastogenesis (190). Indeed, osteoclasts number on
trabecular bone surfaces is increased in unloading conditions in
both wild-type andmyostatin KOmice (191), however myostatin
deficiency suppresses subperiosteal resorption with unloading,
suggesting that at least a part of the effects myostatin on
osteoclasts are localized to the muscle-bone interface (192). Wnt-
independent bone resorption consequent to strong endurance
effort (e.g., ultramarathon) has been associated to increased
myostatin and decreased FST (193). FST and its related factors
(FSTL1, FSTL3, decorin) are induced by exercise and their
importance in bone and muscle development is evidenced in
the severe phenotypes consequent to their mutation. Fstl3−/−

mice experienced frequent fractures together with the loss of
mechanosensitivity which led to the loss of bone gain and Sost
response to exercise. Importantly, a decreased FSTL3 expression
is associated with aging (176). FST is induced by hyper-gravity
and inhibited by microgravity (194).

Although its indisputable role as a myokine (195), brain-
derived neurotrophic factor (BDNF) is mostly expressed in
the brain, as is its receptor (196, 197), indeed 70–80% of the
circulating protein origins from brain (9). BDNF plasma levels
are raised by acute endurance and high-intensity, but not low-
intensity, exercise in both males and females (195, 198–200)
and also in response to chronic endurance training in young
adult males (201). On the other hand, 10-week chronic resistance
exercise did not affect BDNF serum levels compared to physically
inactive (202). Interestingly, BDNF plasma concentrations
were found to be lower in young compared to middle-aged
women. After high-intensity resistance exercise BDNF follows
a biphasic response featured by a decrease 1 h and an increase
24 h post exercise (203). On the contrary, 12-week moderate
aerobic training (nordic walking) increased circulating BDNF
in middle-aged women in association with improvement in
cognitive functions (204). The BDNF receptor, TrkB, is expressed
by active trabecular osteoblasts, growth plate hypertrophic
chondrocytes during intramembranous ossification, and in
osteoblasts and endothelial cells in fracture healing site (205,
206). Mice BDNF conditional KO in brain, beside the metabolic
phenotype (hyperphagia, increased abdominal AT, obesity, leptin
resistance), displayed increased femur length, high BMD and
BMC (207).

The chemokine MCP-1 (also known as CCL2) is the primary
ligand for the CCR2 receptor, which is normally expressed
on monocyte/macrophages. As such it is a key regulator of
osteoclastogenesis and has a pivotal role in inflammation and
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tumor-induced osteolysis (208). It is also an adipo-myokine
acting as chemoattractant for monocytes and T lymphocytes
(209). MCP-1 expression in SKM is strongly induced by acute
and chronic resistance exercise, in terms of both mRNA and
protein (164, 210), in healthy young and elderly (211). Also acute
endurance activities (70% VO2max for 40min, high-intensity
treadmill running) increase mRNA expression in SKM in lean,
obese, and T2DM (164), and circulating protein in well-trained
male runners subjects (212). Therefore, expression of MCP-1
seems to be influenced by the intensity of the exercise rather than
the kind of activity. Moreover, MCP-1 is affected by acute exercise
while its response is not affected by training in both young and
elderly healthy subjects, males and females, regardless the type of
activity (211, 213).

The pro-inflammatory TNFα, the prototypic early mediator
of local inflammation and initiator of the acute phase response,
is expressed, other than from the immune cells, also by
AT and SKM. In the AT, its expression is related to the
fat mass (140) while in the SKM, the mRNA expression is
inhibited following training (endurance and resistance) (214,
215). The muscle expression is neither affected by the metabolic
status, being comparable between lean, overweight, and T2DM,
nor by acute exercise (141, 216, 217). Circulating TNFα
concentrations, however, are inversely related with the amount
of PA (218) but, contrarily to moderate-intensity exercise,
high-intensive training causes a temporary rise in systemic
inflammation (e.g., TNFα) during recovery in response to
muscle damage (10) as a propaedeutic step needed for the
following regeneration (219). TNF-α is a powerful stimulus for
bone resorption and is strikingly implicated in inflammatory
bone diseases (220). By activating NF-κB signaling, it induces
osteoclast differentiation form progenitors in the presence
of M-CSF and in the absence of RANKL (221) and it
also enhance RANKL sensitivity in osteoclast progenitors
by inducing the expression of RANK (222). TNF-α can
accelerate RANKL-dependent osteoclastogenesis by activating
NF-κB and AP-1 throughout TRAF2/5 and MAPKs cascades
(223) and RANKL enhances TNFα-induced osteoclastogenesis
via TRAF6-independent signaling (224). TNF-α stimulates
osteoclastogenesis also indirectly by inducing the expression of
M-CSF and RANKL stromal cells, osteoblasts, and activated T
cells (161, 225).

Visfatin/NAMP (alternatively known as pre-B cell
colony-enhancing factor, PEBF) (226) is synthesized
as both an intracellular form, acting as nicotinamide
phosphoribosyltransferase (eNAMPT) in NAD biosynthesis,
and extracellular one, visfatin, mainly secreted by the visceral
AT, acting as an insulin-mimetic, pro-inflammatory/immuno-
modulating adipokine (227). Its circulating levels are associated
with obesity/fat mass, insulin resistance (228), and the energy-
bone crosstalk (57). NAMPT expression was two-fold higher
in SKM of athletes compared to that found in SKM from
sedentary obese, non-obese, and T2DM subjects (229). However,
in obese (>30 kg/m2) men no difference circulating visfatin
concentrations were found between subjects with high and low
cardiorespiratory fitness (230). NAMPT mRNA expression and
protein content in the SKM of the exercising leg was doubled

compared to the non-exercising limb, of non-obese sedentary
individuals after 3 weeks of one-legged endurance exercise
training endurance training (231). Acute exercise, instead, affects
eNAMPT/visfatin in an intensity-dependent manner: 3-h cycling
at 60% VO2max had no effect (232) while an acute bout of
high-intensity running-based anaerobic sprint exercise had an
inductive effect (233). In vitro visfatin stimulates osteoblast
proliferation through the activation of insulin-receptor (234),
induces osteoblastic differentiation in association with inhibition
of OC expression (235), inhibits osteoclastogenesis throughout
the suppression of RANK and NF-AT pathways (236), stimulates
adipogenesis in mesenchymal stem cells (MSC) throughout
the induction of PPAR-γ (237). Plasma visfatin did not differ
between less than moderately trained subjects and experienced
ultramarathon runners but, in this latter group it was two-fold
induced after a mountain ultramarathon (39). Similarly, despite
the worse metabolic profile, sedentary subjects had comparable
serum visfatin concentration than professional rowers (238).
Patients with metabolic syndrome had higher plasma visfatin
than their age-matched counterparts which was correlated with
lumbar spine BMD in men (239).Furthermore, in different
women population (Chinese, Iranian) visfatin independently
predicted BMD (240, 241) although it was not correlated with
either BMD or BMC in a cohort of adolescent female athletes,
participating in different sports (242).

Adiponectin is a prototypic adipokines that increases fatty
acid oxidation and glucose uptake in SKM while inhibiting
hepatic gluconeogenesis (243) and its circulating levels are
inversely related to BMI and adiposity (244). It has anti-
inflammatory effects since it inhibits expression and secretion of
TNFα in macrophages and induces the expression of IL-10 (245,
246). Although it is considered a classical adipokine, adiponectin
is also expressed by the SKM (247, 248). Plasma adiponectin
levels are decreased in obesity and insulin resistance but the SKM
expression of its receptors (AdipoR1 and R2) is increased (249).
Acute exercise has no clear effects on circulating adiponectin
with researches depicting inductive (250, 251), depressing (141)
or no effects (252–256), regardless the metabolic state of the
subjects. Contrarily, in healthy lean and overweight and obese
subjects with impaired glucose tolerance, endurance training
increased plasma adiponectin levels and induced the expression
of AdipoR1/R2 in SKM (257). In highly-trained professional
cyclists, plasma adiponectin was increased during a 3-week
stage race (38). Fatouros and co-workers, instead, reported
that high-intensity, but not moderate-intensity, either acute or
chronic resistance exercise increased plasma adiponectin levels
(258, 259), suggest that exercise intensity is a key determinant
of the regulation of adiponectin release in blood. Among the
adipokines, adiponectin is the most closely associated with BMD
(negative) and fracture risk (positively) regardless gender and
menopausal status (260). Hence, it exerts negative effects on bone
mass although it is inversely associated with fat mass, promotes
insulin sensitivity, and fat oxidation. However, bone osteocalcin
induces adiponectin expression in adipocytes that, in turn,
improves glucose tolerance (261, 262). AdipoRs and adiponectin
are expressed by osteoblasts and osteoclasts (263, 264). Current
evidences suggest that adiponectin acts autocrinally/paracrinally
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to simulate osteoblast function, while systemic adiponectin
has inhibitory effects on osteoblasts activity while enhances
osteoclastogenesis (265, 266).

Leptin is another adipokine involved in the regulation
of energy homeostasis (267) it is an adiposity signal that
suppresses appetite. As for adiponectin, also leptin is expressed
in SKM (268) but the relative contribution of AT and
SKM to circulating leptin has been not fully understood
(165). Leptin and leptin receptor KO mice (ob−/− and
db−/−) which are obese have also higher bone mass and
intracerebroventricular infusions improved the metabolic status
and reverted the high bone mass phenotype (269). Leptin effects
on bone formation are mediated by the sympathetic nervous
system (SNS), independently from AT, indeed by high bone
mass phenotype obtained following the inhibition adrenergic
signaling cannot corrected by intracerebroventricular infusion
of leptin (270, 271). In strenuous exercise-induced hypogonadal
women, leptin induced oestrogens that partially improved
the bone phenotype (272). Circulating leptin was decreased
in highly trained professional cyclists during a 3-week stage
race (38) and in experienced ultramarathon runners after a
mountain ultramarathon (39). However, in these runners resting
levels of leptin were significantly lower than their less than
moderately trained counterparts (39). Interestingly, in competing
professional cyclists the decrease in leptin was associated with
increased bone resorption and GluOC-to-GlaOC ratio (38).
Similarly, 8-week aerobic training decreased fat mass and leptin,
improved insulin sensitivity, and increased both total OC and
GluOC in obese youngmales experienced (273). On the contrary,
in competing ultramarathon runners, a comparable trend in
leptin was associated with a reduced GluOC-to-GlaOC ratio
(39). Finally, soluble leptin, insulin, and OC were increased by
bed rest independently from resistive vibration exercises (274).
These data indicate that load may regulate leptin release. Leptin
mRNA expression in AT after acute endurance exercise were
found either unaffected (275) or decreased in lean and overweight
subjects (141). Several studies have shown a delayed (24–48 h
post exercise) reduction of circulating leptin levels in healthy
active men (276–279). Taken together, the current evidences
suggest that exercise training decreases plasma leptin levels,
while is ineffective on mRNA expression in AT (165). Weight
loss in elderly obese accelerated bone turnover but PA can
attenuates BMD decrease and stimulated a greater decrease in
circulating leptin (280). The detrimental bony effects of leptin
also depends upon its pro-inflammatory action: stimulation
of neutrophil chemotaxis and phagocytic function, induction
of pro-inflammatory cytokines in monocytes, and induction
of T helper (Th)-1 cytokines (246). These data suggest that
the exercise-dependent beneficial effects on bone may be also
mediated by the exercise-dependent reduction in circulating
leptin (3).

Resistin, an inflammatory marker, is positively associated
with fat mass, waist circumference, and obesity-related diseases,
and it causes oxidative stress and nitric oxide production
downregulating, thus, determining endothelial dysfunction (281,
282). Both circulating levels and AT mRNA expression are
not affected by acute endurance training in overweight and

lean males (141, 253). However, the baseline training status of
the subjects seems to affect the resistance exercise-dependent
response to exercise with regularly training subjects experiencing
a decrease over 6 months (281). Also osteoclasts, osteoblasts, and
bone marrow-derived MSC express resistin, and in vitro it may
stimulate both osteoclastogenesis and osteoblastogenesis (234,
235). Similarly to visfatin, resistin induces PPAR-γ expression
in MSC and, thus, the adipogenic differentiation (237). It has
been negatively associated with BMD (240, 283), although not
definitively (284–286), and in postmenopause its circulating
levels are doubled compared to premenopause (287). Resistin
correlated positively with previous osteoporotic fractures and
much more in the presence of diabetes (288).

Irisin is a newly discovered myokine released into the
circulation following the cleavage, mediated by unknown
proteases, of the transmembrane glycoprotein fibronectin type
III domain containing 5 (FNDC5). In target cells, mainly
white adipocytes, it induces the expression of the mitochondrial
uncoupling protein 1 (Ucp1) that uncouples the respiratory chain
from the oxidative phosphorylation: the energy derived from the
oxidation of energy substrates (e.g., carbohydrates, fatty acids),
and generated by the passage along electrochemical gradient
of the electrons, is released as heat. This process normally
occurs in the thermogenic BAT rather than in fat-storing
WAT. Irisin induces a metabolic shift in the white adipocytes,
namely browning, making them expressing an intermediate beige
phenotype (289). Irisin is induced by exercise and its circulating
levels are higher in trained, males and young subjects than in
sedentary, females, and elderly, as a function of the muscle
mass and the muscle activation level (290). Along with animal
studies (291), researches in human have highlighted that high-
intensity acute exercise (292), endurance training (293, 294), cold
exposure (295), lifestyle changes as in obese children (296) and
pregnant women (297) all increase blood irisin in association
with an improved metabolic status. However, these results have
not been always replicated and there are still doubts about
its physiology (182, 291). Such discrepancies could be, at least
partially, imputed to the methodological issues emerged about
some commercially available immunoassays when compared
to the gold standard mass spectrometry-based method (298).
Irisin is also expressed by the AT and respond to PA as for
its muscle counterpart (299, 300). Other than being directly
induced by exercise, irisin expression is regulated by several
exercise-modulated factors such as BDNF, myostatin, follistatin,
TGFβ, FFAs, cytokines, betatrophin (291). Irisin could be a
link between exercise and BDNF expression (289). Indeed, 30-
day voluntary free running-wheel induced FNDC5 expression
in mice hippocampus, which in turn into and increased
expression of BDNF (301). This correlation might support the
neuroprotective effects of exercise. Still, data directly evaluating
the impact of exercise (especially in human), its time duration
and intensity on irisin, BDNF, and cognitive function are unclear.
By affecting adiposity, irisin can improve the inflammatory status
and, recently, a direct relationship between irisin concentrations
and inflammatory markers in metabolic syndrome has been
described (302). Irisin is involved in the SKM-bone endocrine
connection and it its involvement in bone mass gain in muscle
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disease-associated osteopenia has been proposed (303). Irisin
levels have been, indeed, associated with osteoporotic fractures
in postmenopausal women (304) with an inverse correlation
with fat mass and PA status (305). In vitro, irisin promotes
osteoblast differentiation while in vivo it induces osteoblast
proliferation and differentiation, inhibits osteoclast activity,
increases cortical BMD (306), and prevents muscle atrophy-
induced bone loss (307).

Adaptive Immunity Activation and Bone
Metabolism
Besides the role of innate immunity, several examples exist
about the interplay between bone and IS. First of all, as already
stated, osteoclasts are monocytic/macrophagic origin and M-
CSF, a key cytokine for this lineage is also important in
osteoclast differentiation (308) and antigen-presenting cells, such
as dendritic cells, retain the capability to transdifferentiate into
bone-resorbing osteoclasts (309, 310). Moreover, several soluble
mediators regulate osteoblasts and osteoclasts differentiation and
activity (311). Interestingly, a subset of osteogenic cells, called N-
cadherin-positive spindle-shaped osteoblasts are an integral part
of the hematopoietic stem cell (HSC) niche and solve a key role in
the maintenance of the HSC pool that gives rise to all blood and
immune cells (312).

When activate, under inflammatory conditions (e.g.,
autoimmune diseases, inflammatory bowel diseases, periodontal
infections), T- and B-lymphocytes secrete RANKL and TNFα
that stimulate osteoclast differentiation and function and,
therefore, bone resorption (313). However, under physiological
conditions, B-cells represent an important source of the
osteoclast inhibitor OPG. For instance, human tonsil B-cells
secrete OPG and the activation of the CD40 costimulatory
pathway on these cells, in vitro, further induced OPG expression
(314); parallel, bone marrow B-cells contribute up to 64% of
the total OPG, in mice (315). Consequently, B-cells KO mice
experienced increased bone resorption rate, reduced BMD
and bone mass, in association with low circulating OPG; the
restoration of the B-cells pool into young B-cell prevented
the bone phenotype. The ligand of CD40, CD40L, is mainly
expressed by activated T-cells and the deletion of either CD40
or CD40L on T-cells caused a powerful inhibition of OPG
expression in B-cells and bone loss (315). It is, thus, suggested
that under physiological conditions B-cells, regulated by the
T-cells co-stimulatory action, protect the skeleton by secreting
OPG, while under inflammatory conditions B- and T-cells
negatively affect bone metabolism by secreting RANKL and
inflammatory cytokines (316).

Postmenopause-related estrogen deficiency gives an
explicative example. Indeed, oestrogens mediate powerful
anti-inflammatory effects and loss of estrogen causes significant
proliferation of T- and B-lymphocytes (129, 317). This was
demonstrated by the fact that while ovariectomized wild-type
rats experienced bone loss, T-cell-deficient null mice were
protected by osteoclastic bone resorption (318). RANKL is
secreted by activated T but not in conditions of estrogen
deficiency, in mice. Contrary, in this condition, circulating and

tissue TNFα is raised (318, 319) and TNFα and TNFRI (p55)
KO in mice prevented ovariectomy-induced bone loss (318).
In agreement to this model, estrogen loss causes the expansion
of TNFα-secreting T-cells and TNFα sustains and amplifies
the RANKL-induced osteoclast-mediated bone resorption
(320). IL-7 expression in several tissues anticipates T-cells
expansion (321); this cytokine increases the sensitivity of T-
cells to otherwise tolerogenic antigens and, hence, decreases
the antigen-dependent T-cell activation threshold (320).
Consequently, the differentiation of T-cells into the different T
helper subsets (i.e., Th1) leads to TNFα secretion along with
IFNγ, that upregulates the expression of CIITA in macrophage, a
transcription factor that in turn upregulates MHCII expression
and, hence, antigen presentation to T-cells, further amplifying
T-cells activation (317). Also the Th17 subset is induced in
this process; these cells secrete IL-17A a pro-osteoclastogenic
cytokine that induces expression RANKL in osteoblasts. IL-17
expression is raised by ovariectomy (322): treatment with
anti-IL-17 antibodies (323) or the IL-17 gene deletion (324)
improves bone loss in ovariectomized mice. The downregulation
of TGFβ is another step in this process. TGFβ is expressed in
response to oestrogens and has immunosuppressive effects by
inducing regulatory T-cells (Tregs) that down-regulate T-cells
activation (316).

Importantly, T-cell activation-dependent ovariectomy-
induced bone loss depends upon antigen stimulation. Indeed,
ovariectomy in mice with silenced antigen presentation due
to a mutated T-cell receptor, only responsive to chicken
ovalbumin: when no antigen is presented, mice were fully
protected from ovariectomy-induced bone loss while, after
exogenous administration of ovalbumin (i.e., the antigen)
the bone response was retained (317). Evidence suggests
that, in human, these antigens are derived from the gut
microbiota (325, 326) since the gut permeability is regulated by
oestrogens (326).

T-cells are critical in the mechanisms of action of parathyroid
Hormone (PTH) in bone (327). Chronic elevated production
of PTH (hyperparathyroidism, HPT) causes skeletal and extra-
skeletal diseases: primary HPT (PHPT) is associated with
increased bone turnover and osteopenia (328), while secondary
HPT (SHPT) is involved in the pathogenesis of age-associated
osteoporosis (329). Continuous PTH infusion mimics PHPT
and SHPT, while intermittent administration has pro-anabolic
effects on bone (330). T-cells express PTH-1R, the functional G
protein coupled PTH receptor and they may contribute to the
catabolic effect of PTH, in vivo (327, 331). Continuous PTH
treatment at doses that mimic HPT failed to induce osteoclast
formation, bone resorption, and cortical bone depletion in
mice deficient for T-cells (331). On the contrary, intermittent
PTH stimulates Wnt10b expression in bone marrow CD8+
T-cells and activate the canonical Wnt signaling in pre-
osteoblasts (332).

Currently, there are no available study depicting the effects of
the exercise on the relationship between adaptive IS and bone
cell function. Hence, in order to improve the use of PA as a
therapy for bone loss it is necessary to increase the knowledge in
this field.
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PRACTICAL IMPLICATIONS,
CONCLUSIONS, AND PERSPECTIVES

The complex net of physiological connections linking bone
metabolism and IS branches in relationship with physical exercise
is, now, only a little depicted. The great majority of the current
knowledge concern the inflammation-mediated effects of PA
while, only a few is known about the adaptive immunity-
mediated effects.

Chronic PA is a powerful stimulus for bone and lifelong
exercising is the most effective strategy to improve bone mass
(in childhood and adolescence) and to keep bone health (in
adulthood and older ages). However, there is no consensus on
the best kind of PA to be prescribed at this purpose. There
are evidences that sustain the effectiveness of load and impact
and this is further improved when the activity is carried on

in an intermittent way (54). Therefore, the role of loading is

central in this discussion but, importantly, the direct effect of
the applied forces onto the skeleton on the immune function
are not known and this point must be developed in the
next years.
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