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Abstract

A challenge to conducting high-impact and reproducible studies of the mechanisms of P. falciparum drug resistance,
invasion, virulence, and immunity is the lack of robust and sustainable in vitro culture in the field. While the technology
exists and is routinely utilized in developed countries, various factors–from cost, to supply, to quality–make it hard to
implement in malaria endemic countries. Here, we design and rigorously evaluate an adjustable gas-mixing device for the
in vitro culture of P. falciparum parasites in the field to circumvent this challenge. The device accurately replicates the gas
concentrations needed to culture laboratory isolates, short-term adapted field isolates, cryopreserved previously non-
adapted isolates, as well as to adapt ex vivo isolates to in vitro culture in the field. We also show an advantage over existing
alternatives both in cost and in supply. Furthermore, the adjustable nature of the device makes it an ideal tool for many
applications in which varied gas concentrations could be critical to culture success. This adjustable gas-mixing device will
dramatically improve the feasibility of in vitro culture of Plasmodium falciparum parasites in malaria endemic countries given
its numerous advantages.
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Introduction

In vitro culture of the P. falciparum parasite remains a major

advance in malaria research [1], and has resulted in a greater

understanding of parasite biology compared to other Plasmodium

species without such long term, robust culture systems [2,3].

Cryopreservation has allowed the transport of samples from

malaria endemic countries to non-endemic countries that have the

resources to perform sophisticated biological experiments. How-

ever, strains can fail adaptation after cryopreservation that would

have succeeded if cultured ex vivo for longer in the field. While

cryopreservation and culture adaptation have made performing

experiments with patient samples possible, it is important to

consider that many features that affect disease pathogenesis, such

as variant expression of antigenic families, can change with culture

adaptation [4,5]. The ideal situation would be to have the ability

to perform robust ex vivo as well as reproducible in vitro assays and

improve the capacity for long term in vitro culture of malaria

parasites in the field [6], bringing us closer to the ultimate goal of

performing experiments as close as possible to the in vivo state of

the parasite within the human host.

Studies that routinely utilize ex vivo or in vitro culture techniques

for P. falciparum use pre-mixed gas combinations: 1–5% O2, 5%

CO2, N2 balance. While such gas mixtures are readily available

and affordable in developed countries, they are not locally

available in most malaria endemic countries, especially in Sub-

Saharan Africa, which bears the preponderance of the disease

burden. The alternative for African malaria researchers is to order

mixed gas from abroad, which is 20–150 times more expensive

than in developed countries, and can have long wait times for

delivery. For example, our group in Senegal has waited more than

a year from order to delivery of pre-mixed cylinders. The other

alternative is to culture parasites for single-cycle ex vivo assays in a

‘‘candle jar’’ – a desiccator chamber in which a candle is lit and

will self-extinguish when most of the oxygen is combusted [7].

Candle jars are simple, but labor intensive and require daily media

changes in order to maintain the parasite growth through properly

buffered pH [1,8,9]. Additionally, culturing by this method is not
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Figure 1. Diagram of digital flow control box with flow controllers. A diagram showing the set up of the digital control box and gas flow
controllers. Inset diagrams the principle of the flow controls as adapted from the manual. Individual parts are detailed in Table 1 in addition to as
follows: A: Model 954 Digital Flow Box, B: 840L Mass Flow Controller –10 SLPM (N2) capacity, C: 840L Mass Flow Controller –1000 SCCM (CO2)
capacity, D: 840L Mass Flow Controller –1000 SCCM (O2) capacity, E: 840-CDCL (15 ft) Cable, F: Compression fitting Union Cross, G: Compression
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always optimal for long-term culture adaptation of field isolates

[10,11] or malaria parasites of different species [12]. The main

advantage to mixed gas over the candle jar is the reproducibility of

the gas concentrations obtained and the amenability to high

throughput assays.

We sought to meet the challenge of reliable, sustainable, and

cost-effective gas for malaria culture in the field by adapting a

device commonly used to mix gases for welding purposes. While

we are not the first to suggest a gas-mixing device for malaria

endemic countries [13], this report is the first to rigorously test and

validate such a device against the gold-standard of pre-mixed

imported gas, for both laboratory adapted lines and field isolates,

with gas concentration measurements. Additionally, we outline in

detail the necessary steps to assemble, test, and use this gas-mixing

device, which will enhance the feasibility of conducting robust ex

vivo and in vitro culture and assays in the field, as close to the in vivo

parasite biology as possible. We further suggest that use of such an

adjustable device could have implications and applications for the

culture adaptation of parasites representing different disease states

of P. falciparum as well as other Plasmodium species which have

proved refractory to culture adaptation efforts thus far.

Results and Discussion

Field Implementation Considerations
In setting up and testing our gas-mixing device (Figure 1), a

number of implementation challenges were identified. The first

challenge is that of dust. As suggested to us by the company, the

flow box and controllers are very robust, however are very

sensitive to dust. Therefore, we installed Pall Acro 0.2 mm PTFE

vent filters (Figure 1, Item L) at the output of each gas cylinder to

protect each downstream sensor, and after the copper coil to

protect the parasites in the incubator chamber. In-line filters are

available for the J inch copper or brass tubing as well (Table 1,

Item Q) and we will use these going forward. We keep our box and

sensors protected with dust covers to try to minimize dust

accumulation as much as possible.

Another important consideration is the frequency of power

surges and/or outages in malaria endemic countries. To

circumvent the challenge of power surges, we keep the gas-mixing

device plugged into a voltage converter/surge protector and upon

shutdown, we unplug the power cable from the digital flow box

(Figure 1, Item A). To allow for uninterrupted use during power

outages, one might envision adapting car batteries, solar powered

generators, or other energy alternatives as are frequently employed

to resource-poor settings. Converters exist which allow the 12 V

DC battery of a car to run a 115 V AC battery, which is the

energy input requirement needed to run the gas mixer.

A third and very critical consideration for the success of our gas-

mixing device is the quality of the input gas. To directly assess the

gas quality, we found the Dräger X-am 5000 Gas Monitor to be

an essential accessory (Table I, Useful accessories). On our first test

of the gas mixer, we observed the oxygen levels were not reaching

the desired 1.0%, but remained constant at 18.6%. We tested each

gas cylinder independently, and discovered that the nitrogen gas

which had been delivered was 17.6% O2, 0.6% CO2, and nitrogen

balance–rather than 100% pure N2 because the company had

supplied us with ‘‘industrial grade’’ nitrogen cylinder instead of

‘‘medical grade’’ nitrogen. When we obtained the correct

‘‘medical grade’’ nitrogen cylinder, the desired 0% O2, 0%

CO2, and 100% N2 was observed. Upon installing the medical

grade nitrogen, our gas mixer gave the desired gas percentages

(Figure 2). We anticipate that the gas quality may represent a

substantial challenge in malaria endemic countries as without a

Gas Monitor, there is no way to independently verify the gas

quality prior to mixing, and gas percentages are not always tested

by each company. This challenge can be overcome as long as

‘‘medical grade’’ gas is ordered because medical grade gas is

usually held to a higher standard of quality control. In addition,

the concentrations should be verified using a Gas Monitor.

Effect of Gas Concentration on Parasite Processes
We first determined the time to optimal gas concentration for

the gas-mixing (GM) device. Of note, the mass flow sensor used in

the GM will deliver a consistent amount of gas over a broad

temperature range, in contrast to volumetric gas mixers. The

benefit of this type of sensor is that it accurately measures mass of

gas regardless of temperature and pressure. Our flow controller

was designed to have a maximum output pressure of 2 PSI

(14 kPa) and 10 standard liters per minute (SLPM) at 70 degrees F

and 1 atmosphere (14.5 PSIA absolute pressure) – in keeping with

the maximum flow rate capacity of the modular incubator

chamber (Billups-Rothenberg Inc.) – which is less than the flow

rate and pressure we routinely use when gassing directly from a

mixed gas cylinder at approximately 10 PSI (69 kPa). We

compared O2 and CO2 concentrations in each method by

measuring gas concentrations with a Dräger X-am 5000 Gas

Monitor fitted with XXS E O2 and XXS CO2 sensors (Table 1,

Useful accessories). Four independent measurements were per-

formed. We observed that the time to 1% oxygen was 1.6 minutes

for a pre-mixed cylinder (CYL: 10 PSI, 69 kPa) and 3.8 minutes

for the gas-mixing device (GM: 2 PSI, 14 kPa) (Figure 2A). Error

bars (representing standard deviation) were extremely tight,

demonstrating the accuracy and reproducibility of the measure-

ments and implying that, once established for a new set of

cylinders, a fixed gas time can be used for each chamber

(Figure 2A, inset).

We next analyzed gas concentrations of commonly used field

culturing methods, namely candle jar, pre-mixed gas, and gas

mixed by our gas mixer (Figure 2B). Three independent

measurements were performed (with five measurements for the

Gas-mixing device) and error bars represent standard deviation.

We observed that compared to ambient air with an oxygen

concentration of 20.9%, the candle jar resulted in a depletion of

oxygen to 16.1% and an increase in carbon dioxide levels to 3.5%,

the pre-mixed gas cylinder resulted in oxygen levels of 1.03% and

carbon dioxide levels of 5.0%, and the gas mixer resulted in

oxygen levels of 1.18% and carbon dioxide levels of 5.0%. Our

values for the candle jar were similar to those previously measured

by gas chromatography: 80% N2, 3% CO2, 17% O2 [7].

It has been proposed that gas concentration can affect parasite

phenotypes such as rosetting rates, growth rates, and drug IC50s.

There is an extensive literature evaluating candle jars versus mixed

gas as well as various kinds of flow devices

[1,14,15,16,17,18,19,20,21]. While side-by-side comparisons of

candle jar and mixed gas showed small or no difference in growth

rate [20,21,22], differences in antimalarial IC50s have been

observed. While in most studies, changes in oxygen concentration

threaded adapter, H: Barbed fittings, I: Copper tubing, J: Brass tubing, K: Clear PVC tubing, L: Pall Acro 0.2 mm PTFE vent filter, M: Modular Incubator
Chamber, N: N2/CO2 Gas regulator, O: O2 Gas regulator, P: (Optional) 840L Mass Flow Controller –1000 SCCM (Air). Gas flow rates shown for B, C, and
D correspond to a total flow rate of 10 SLPM at the appropriate gas percentages for parasite culture (94% N2, 5% CO2, 1% O2).
doi:10.1371/journal.pone.0090928.g001
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Table 1. Necessary supplies and useful accessories for assembling an adjustable gas mixer.

Item Vendor Catalog Number Description (Use)
Number
Needed

Figure 1
Code

Model 954 Digital Flow Box Sierra Instruments 954-PS-V1 Control box to control the flow rates
monitored by the 3 flow controller/sensors

1 A

840L Mass Flow Controller –
(N2, 10 SLPM)

Sierra Instruments 840L-2-OV1-SV1-D-V1-S1-
840L

Controlling the N2 Flow Rate 1 B

840L Mass Flow Controller -
(CO2, 1000 SCCM)

Sierra Instruments 840L-2-OV1-SV1-D-V1-S1-
840L

Controlling the CO2 Flow Rate 1 C

840L Mass Flow Controller –
(O2, 1000 SCCM)

Sierra Instruments 840L-2-OV1-SV1-D-V1-S1-
840L

Controlling the O2 Flow Rate 1 D

840-CDCL (15 ft.) Cable to
go to display box

Sierra Instruments 840-CDCL Connecting the Flow controllers to
the control box

3 E

Compression fitting Union
Cross, 1/4 inch inner
diameter

Parker Hannifin 4ECR4-B Connecting all 3 flow controllers to
the cross enabling a single output

1 F

Compression threaded
adapter, brass, 1/40

male NPT

Cole-Parmer EW-31412-35 Connecting Flow Controllers to
copper/brass tubing

16 G

Barbed fittings, NPT male pipe
adapter, Brass, 1/40

NPT male to 3/8 inch tubing

Cole-Parmer EW-30904-11 Connecting the Flow controllers to the
gas cylinders via the clear PVC tubing

1 (5 pack) H

Copper tubing 1/4 inch outer
diameter

Hardware store Connecting the Flow Box to the Flow
Controllers and cross; making the mixing coil

15 feet I

Brass tubing 1/4 inch outer
diameter, 1 foot long

Hardware store Connecting the Flow Box to the Flow
Controllers and cross

12 J

Nalgene 180 Clear PVC
Tubing (inner diameter
3/80, outer diameter 1/20)

Thermo Scientific 8000-4120 Connecting the Flow controllers to the gas
cylinders

50 feet K

Pall Acro 50 0.2um PTFE
vent filter

Pall Corporation 4251 Filtering the gas exiting the cylinders,
filtering the gas
entering the modular incubator chamber

4 L

Modular Incubator Chamber Billups-Rothenberg MIC-101 Incubator chamber for culturing
parasites (2 PSI max input)

1 (at least) M

100% N2 gas, medical grade Local Gas Supplier N2 gas source 1

100% CO2 gas, medical grade Local Gas Supplier CO2 gas source 1

100% O2 gas, medical grade Local Gas Supplier O2 gas source 1

N2/CO2 gas regulator Local Gas Supplier Regulator for N2 and CO2 gas, do
not exceed 25 psi (1.75 bar)

2 N

O2 gas regulator Local Gas Supplier Regulator for O2 gas, do not exceed
25 psi (1.75 bar)

1 O

Dräger X-am 5000 Gas
Monitor

Dräger 4543749 Monitoring purity of gas in the cylinders,
measuring the output gas percentages
after mixing

1a

Dräger Sensor XXS E O2 Dräger 6812211 Measuring the O2 percentage 1a

Dräger Sensor XXS CO2 Dräger 6810889 Measuring the CO2 percentage 1a

Dräger Calibration cradle Dräger 8318752 Adapting the gas monitor to small
space measurement (tubing
connecting to incubator chamber)

1a

USB DIRA with USB cable,
communication
adapter infrared to USB

Dräger 8317409 Electronically recording gas levels
for downstream analysis

1a

840L Mass Flow
Controller - 10 SLPM

Sierra Instruments 840L-2-OV1-SV1-D-V1-S1-
840L

Checking the flow rates of each sensor,
calibrated for Air

1a P

840-CDCL (15 ft.) Cable to
go to display box

Sierra Instruments 840-CDCL Connecting the Flow controllers
to the control box

1a E

Copper Tubing Cutter Hardware store Cutting the copper tubing with
an even ‘‘square’’ cut

1a

Ultra-high efficiency 0.01
micron in line filters

Cole-Parmer EW-02917-60 Preventing dust from damaging
flow controllers

4a

aNon-essential, but useful accessories.
doi:10.1371/journal.pone.0090928.t001
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result in no statistically significant changes in the IC50s of

chloroquine or other quinolone containing antimalarial drugs

[23,24,25], some studies do report differences [26]. The IC50s of

other classes of antimalarial drugs (such as antibiotics and

mitochondrial inhibitors) were affected by the oxygen concentra-

tions found in a candle jar compared to that of mixed gas (1% O2,

3% CO2) [23]. Changes in carbon dioxide concentrations have

been reported to have significant effects on the IC50s of

chloroquine [27].

These results emphasize the importance of considering the gas

concentrations and culture method used when comparing field-

generated drug resistance data, but also emphasizes the need for

standardization of a robust, reproducible, and practical solution to

in vitro culture in the field. The challenge of culturing the blood

stage of P. vivax may also be due in part to an optimal oxygen

tension that is different than that for P. falciparum. Our adjustable

device will allow us to systematically test this hypothesis.

Performance of Gas Mixer Compared to Pre-mixed
Cylinder Gas

As we achieved the same oxygen and carbon dioxide

concentrations as pre-mixed cylinder gas (Figure 2B), it was not

necessary to test a broad range of phenotypic assays. However,

with an adjustable gas mixer such as this one, the effect of varying

oxygen concentrations could be tested for the same parasites in the

same assays.

We first sought to evaluate our device by evaluating the

functional readout of parasite growth. As this device is ideally

suited for field-implementation, we tested a broad range of

parasites from hardy laboratory isolates to fragile, previously

uncultured clinical isolates. We found in quantitative 4-cycle

growth assays, semi-quantitative long-term culture assays, and

quantitative thaw comparisons, that our gas mixer was equivalent

to pre-mixed gas cylinder in all assays tested.

Figure 2. Gas concentration comparisons for field applicable culture methods. A. Graph of time and oxygen percentage as measured
through modular incubator chamber output nozzle. Inset shows the time to reach 1% O2 for each method. Four independent experiments were
performed and error bars represent standard deviation. B. Concentrations of CO2 and O2 for field applicable culture methods: Candle Jar, Pre-mixed
gas cylinder (CYL), and gas-mixing (GM) device, compared to ambient atmospheric percentages. Three independent measurements were made (with
five measurements for the gas-mixing device) and error bars represent standard deviation.
doi:10.1371/journal.pone.0090928.g002
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Side-by-side Parasite Growth Comparisons
We validated the gas mixer by comparing it to the gold standard

of pre-mixed gas in quantitative 4-cycle growth assays. The

advantage of these assays is that there is no manipulation of the

cultures after the initial set up. We performed these assays with

two robust laboratory adapted strains (3D7 and Dd2) (Figure 3A

and 3B), as well as two short-term adapted clinical isolates from

Senegal (P19.04 and Th32.09) (Figure 3C and 3D). Cultures were

seeded at initial parasitemia of 0.05%, split in two dishes, and

cultured either in a modular incubator chamber gassed with a pre-

mixed cylinder or the gas-mixing device, with orbital shaking in

the same 37 degree C incubator. Parasitemia was measured by

flow cytometry after each cycle and cultures were allowed to

continue until 4 cycles of growth (or until parasite crash, as was

observed for 3D7 and Dd2 by cycle 4). For all strains tested, there

was no difference over 3–4 cycles of growth between the pre-

mixed cylinder and the gas-mixing device (Figure 3).

We performed semi-quantitative comparisons of long-term

culture (between 20–30 days) to validate the gas mixer over many

cycles of parasite replication (Figure 4). These assays are semi-

quantitative because manipulation is necessary in the long-term

culture process–cultures were split 1:10 every cycle. Cultures were

seeded at initial parasitemia of 1%, split in two dishes, and

cultured either in a modular incubator chamber gassed with a pre-

mixed cylinder or the gas-mixing device, with orbital shaking in

the same 37 degree C incubator. We tested the robust laboratory

isolate 3D7 (Figure 4A) in addition to two short-term adapted

isolates from Senegal (P19.04 and Th32.09) (Figure 4B and 4C).

No difference was observed in the growth rates between pre-mixed

cylinder and the gas-mixing device over time.

When gas concentrations were optimal (5% CO2, 1% O2, N2

balance) we observed no difference in growth rates between the

pre-mixed cylinder and the gas-mixing device. However, we

observed a difference in growth rates when the oxygen concen-

tration was higher in the gas-mixing device (Figure S1). For the

first cycle of growth, the gas-mixing device was used at a final

oxygen concentration of 5% rather than 1%, and an approxi-

mately 2.5 fold difference was observed between the cylinder and

the gas-mixing device. Cultures were split 1:10 and the oxygen

concentration was decreased to 1%. At this stage in the

experiment, the gas-mixing cultures were ‘‘rescued’’, and subse-

quent growth in both methods was comparable. This experiment

illustrates the importance of low oxygen concentration on robust

parasite growth as well as the advantage of an adjustable gas-

mixing device to test the impact of different gas concentrations on

parasite phenotypes.

We validated the gas mixer in the recovery of fragile, previously

non-adapted cryopreserved parasites from Senegal by comparing

2 isolates: Th029.09 and Th033.09. These isolates were thawed,

split in two dishes, and cultured either in a modular incubator

chamber gassed with a pre-mixed cylinder or the gas-mixing

device, with orbital shaking in the same 37 degree C incubator

(Figure 5). The recovery times and growth rates were the same for

both isolates, demonstrating that this device can be used for

primary culture adaptation of P. falciparum.

Figure 3. Quantitative 4-cycle growth assays. A & B. Laboratory adapted isolate 4-cycle growth rate comparisons: A. 3D7 and B. Dd2. C & D.
Short-term adapted Senegalese isolate 4-cycle growth rate comparisons: C. P19.04 and D. Th32.09. Results from individual experiments are shown,
conducted in triplicate, with error bars representing standard error.
doi:10.1371/journal.pone.0090928.g003

Gas-Mixer for In Vitro Plasmodium Culture

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90928



Figure 4. Semi-quantitative comparisons of long-term routine culture. A. Laboratory adapted (decades) isolate (3D7) routine growth
comparisons. Cultures were split 1:10 every cycle. B & C. Short term adapted (months) Senegalese isolates routine growth comparisons. Cultures were
split 1:10 every cycle, or media change only as appropriate, as indicated by action on odd days. Results from individual experiments are shown,
conducted in triplicate, with error bars representing standard error.
doi:10.1371/journal.pone.0090928.g004
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Field Implementation: Senegal Malaria Collection 2013
We next tested our gas-mixing device for the culture adaptation

of primary isolates from Thiès, Senegal during our 2013 collection.

Our goal was to perform side-by-side comparisons with a pre-

mixed gas cylinder, as we did in Figures 3–5. However, as

evidence of the challenges with ordering and delivery of pre-mixed

gas in malaria endemic countries, our pre-mixed cylinders

(ordered 10 months prior) had yet to arrive at the start of the

collection. We selected parasites with greater than 0.4% parasit-

emia for long-term (greater than 2-cycles) in vitro culture adapta-

tion (Figure S2). We successfully cultured 63 of 63 isolates for

between 9 and 45 days. All cultures were growing robustly and

required subculture each cycle. A subset of cultures was frozen

down on collection day 28 prior to termination on day 45 due to

capacity constraints with so many successful cultures.

In addition to in vitro culture adaptation, a number of ex vivo

phenotypic assays were performed using our gas-mixing device.

We successfully performed Erythrocyte Invasion Assays, Drug-

Resistance Assays, Rosetting Assays, Variant Surface Antigen

(VSA) Flow Cytometry Assays, demonstrating the utility of this

device for biological experiments in malaria-endemic settings.

Advantages of the Adjustable Gas Mixer Over Existing
Alternatives

While the gas mixer demonstrated equivalent performance to

the pre-mixed gas cylinder, it has a number of advantages that are

especially relevant in disease endemic settings. The gas used by the

gas mixer is 5–20 times less expensive than available pre-mixed

alternatives, and locally available, dramatically decreasing the time

to delivery from minimum of 6 months to 2 days (Table S1). These

advantages are critical to performing routine, in vitro culture in the

field and for carrying out primary research in malaria endemic

countries. The cost of the gas mixer itself is $5838.00, which is

approximately the cost of a single cylinder of mixed gas when

ordered and delivered from outside of Africa (Table S1). While the

cost difference and the supply may not dramatically affect

laboratories in developed countries, these factors play a major

role in culture feasibility in disease endemic countries. The device

described in this study represents an accurate, affordable, and

effective means of conducting robust ex vivo and short term in vitro

assays in disease endemic countries.

Further Experimental Applications
It has previously been shown that dramatic changes occur in the

parasite after long term in vitro culture adaptation, especially in

genes that mediate virulence properties [4,5,28,29,30,31]. Having

the ability to conduct robust experiments in rural, disease endemic

settings, as close as possible to the in vivo state of the parasites

within the human host represents a fundamental advance for the

field and an important application for this gas-mixing device.

Additionally, this adjustable gas-mixing device provides the

ability to vary experimental conditions in an extremely reproduc-

ible fashion, which may have applications for the culture of other

Plasmodium species (such as P. vivax) as well as modeling gas

concentrations relevant to different host niches or different malaria

disease states. Such applications reach beyond the field application

described here and may be useful for laboratories in non-disease

endemic countries as well.

Materials and Methods

Ethics Statement
This study was approved by both the Institutional Review

Board of the Harvard School of Public Health (CR-16330-01) and

by the Ethics Committee of the Ministry of Health in Senegal

(0127MSAS/DPRS/CNRES). All patient samples used in this

study came from consenting uncomplicated malaria patients.

Written consent was obtained from all patients, or their parents or

guardians for minors, provided they could read French; for those

who could not, oral consent was obtained. The patient being

consented, or their parents or guardians, as well as a third party

documented consent and signed consent forms were stored in a

secured location. The ethics committees and IRB approved these

consent procedures.

Details and Design of 954 Flow Meter and Sensors
We designed our gas-mixing device with a number of

optimizations to make it more amenable to the application of

in vitro P. falciparum growth. First, we selected a digital flow control

box with dual voltage possibility (115 V/230 V input) to facilitate

its use in many countries. Secondly, we adjusted the output flow

rate on the flow controllers so that the input maximum flow rate

should not exceed 25 psi ,1.75 bar (172 kPa) of pressure in the

lines, and the output pressure is a maximum of 2 PSI (14 kPa) –

the maximum pressure allowed by the modular incubator

chamber, and a flow rate of 10 SLPM. Further, rather than a

Figure 5. Cryopreserved field isolate recovery time. Time to positive growth from field prepared cryopreserved parasites without previous
culture adaptation: A. isolate Th29.09. B. isolate Th33.09. Results from individual experiments are shown, conducted in triplicate, with error bars
representing standard error.
doi:10.1371/journal.pone.0090928.g005

Gas-Mixer for In Vitro Plasmodium Culture

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e90928



fixed flow rate box, we opted for an adjustable model which allows

us to vary all gas concentrations.

We also added a homemade gas-mixing coil, post union cross,

(Figure 1) to facilitate the mixing of the gas prior to entry into the

modular incubator chamber. (This coil was made by wrapping

copper tubing around a fire extinguisher). After complete set up,

the system was confirmed to be leak free.

Measurement of Gas Levels
Measurement of gas levels was performed using a Dräger X-am

5000 Gas Monitor (Cat. No. 4543749) fitted with XXS E O2 (Cat.

No. 6812211) and XXS CO2 (Cat. No. 6810889) sensors and

modified for confined space entry using a calibration cradle (Cat.

No. 8318752) to permit the measurement of gas flow through

PVC tubing either at incubator chamber entry or exit.

Parasites
P. falciparum isolates used in this study came from several

sources: long-term laboratory adapted isolates: 3D7 and Dd2;

short-term culture adapted Senegalese isolates (in culture for 1

month each): P19.04, Th32.09; un-adapted cryopreserved Sene-

galese isolates: Th029.09, Th033.09; and ex vivo patient Isolates

from Senegal (Th001.13–Th116.13). Infected erythrocytes were

cultured in O+ human erythrocytes at 2% hematocrit in RPMI-

1640 based media supplemented with 25 mM HEPES (EMD

Biosciences), 2 mg/ml sodium bicarbonate, 50 mg/ml hypoxan-

thine, and 0.25% Albumax II (Invitrogen) and 5% human O+
serum. For long and short term adapted parasites, cultures were

triple synchronized with 5% D-sorbitol prior to assay initiation at

rings. Chemicals were purchased from Sigma unless otherwise

specified. Cultures were monitored every 48 hours at which point

gas was exchanged.

Measurement and Comparison of Parasitemia
Quantitative 4-cycle growth assays were performed as previ-

ously described [32]. Briefly, cultures were seeded at low

parasitemia (0.05%) and low hematocrit (0.25%), split into two

dishes, and cultured either in a modular incubator chamber gassed

with a pre-mixed cylinder (CYL) or the gas-mixing device (GM).

Cultures were incubated with orbital shaking (50 rev/min), to

optimize for high parasitemia and low multiplicity of infection

[22].

Semi-quantitative comparisons of long-term routine culture

were also performed to measure the growth differences over time.

For these experiments, cultures were seeded at an initial

parasitemia of 1%, split into two dishes and cultured either in a

modular incubator chamber gassed with a pre-mixed cylinder

(CYL) or the gas-mixing device (GM), with orbital shaking

(50 rev/min), to optimize for high parasitemia and low multiplicity

of infection [22]. Cultures were split 1:10 every cycle and parasite

growth and morphology were monitored by standard microscopy.

Parasitemia was quantitatively measured by SYBR Green Flow

Cytometry [33] at each re-invasion cycle. While ‘‘1 cycle’’ is

approximately 48 hours for all strains, over-long term culture the

synchronicity of the culture will disintegrate resulting in a mixed-

stage culture. Parasitemia measurements by flow cytometry

include all stages (rings, trophs, and schizonts), culture viability is

monitored by microscopy (to ensure the absence of gametocytes or

pyknotic forms) and gas is changed every 48 hours.

Supporting Information

Figure S1 The quantitative effect of oxygen concentra-
tion on parasite growth. The effect of oxygen concentration

on parasite growth was measured for two short-term adapted field

strains: P19.04 (A) and Th32.09 (B). From Day 0 to Day 2 (the first

cycle of growth), the oxygen concentration was 5% whereas the

pre-mixed cylinder was fixed at 1%. A 2.5-fold difference in

growth was observed for both strains. All cultures were split 1:10

and the oxygen concentration was decreased to 1% (the same as

the pre-mixed cylinder). From this point onward, cultures grew

equivalently. Results from individual experiments are shown,

conducted in triplicate, with error bars representing standard

error.

(EPS)

Figure S2 Senegal malaria collection 2013. Selected

samples from the 2013 collection are shown, days in culture from

enrollment date until final collection day. Parasites with greater

than 0.4% parasitemia were in vitro culture adapted using gas from

the gas mixer and static culture conditions. Each bar represents an

individual sample with robust growth (requiring subculture) from

the day of collection enrollment until termination, either by

freezing down (Day 28) or culture termination (Day 45). All

cultures were growing robustly at the time of termination.

(EPS)

Table S1 Costs and logistical comparisons affecting
feasibility of obtaining gas supplies from different
sources.

(DOCX)
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