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Abstract
The neuroendocrine-immune (NEI) network is fundamental for maintaining body's homeostasis and health. While the roles of 
microRNAs (miRNAs) and transcription factors (TFs) in disease processes are well-established, their synergistic regulation 
within the NEI network has yet to be elucidated. In this study, we constructed a background NEI-related miRNA-TF regula-
tory network (NEI-miRTF-N) by integrating NEI signaling molecules (including miRNAs, genes, and TFs) and identifying 
miRNA-TF feed-forward loops. Our analysis reveals that the number of immune signaling molecules is the highest and 
suggests potential directions for signal transduction, primarily from the nervous system to both the endocrine and immune 
systems, as well as from the endocrine system to the immune system. Furthermore, disease-specific NEI-miRTF-Ns for 
depression, Alzheimer’s disease (AD) and dilated cardiomyopathy (DCM) were constructed based on the known disease 
molecules and significantly differentially expressed (SDE) molecules. Additionally, we proposed a novel method using 
depth-first-search algorithm for identifying significantly dysregulated NEI-related miRNA-TF regulatory pathways (NEI-
miRTF-Ps) and verified their reliability from multiple perspectives. Our study provides an effective approach for identifying 
disease-specific NEI-miRTF-Ps and offers new insights into the synergistic regulation of miRNAs and TFs within the NEI 
network. Our findings provide information for new therapeutic strategies targeting these regulatory pathways.
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Introduction

The nervous, endocrine, and immune systems are the three 
important systems in human body. Neuroendocrine-immune 
(NEI) network, first proposed by Besedovsky and Sorkin in 

1977, proved that the nervous, endocrine, and immune sys-
tems can regulate each other, forming a regulatory network 
(Besedovsky and Sorkin 1977). NEI network plays a piv-
otal role in maintaining homeostasis and health (Vela-Patiño 
et al. 2022). Therefore, the dysregulation of NEI network 
can lead to the occurrence and development of diseases, 
including cancers, mental illnesses, and cardiovascular dis-
eases (Fioranelli et al. 2018; Huifang et al. 2022; Jara et al. 
2021; Jiang et al. 2020a; Klein 2021; Landgraaf et al. 2023; 
Sekaninova et al. 2020; Zefferino et al. 2021).

Previous studies have explored the interactions between 
diseases and NEI systems. Cancer is a systemic disease 
which manifested by dysfunction of NEI network, and it 
was found that NEI factors regulated cancer occurrence 
and metastasis at multiple levels, including central-, organ-, 
and microenvironment-level manipulation (Jiang et  al. 
2020a). Additionally, obesity is a multifactorial and mul-
tiorgan disease, whose pathophysiology can be explained 
by a complex crosstalk of NEI systems, and acupuncture, 
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as a multi-targeted treatment method, has been found to be 
able to treat obesity (Landgraaf et al. 2023). It has been 
reported that the interactions between COVID-19 and NEI 
system were associated with the susceptibility of old peo-
ple and patients with autoimmune rheumatic diseases, and 
explained that other comorbidities could develop into severe 
complications (Jara et al. 2021). Recently, a study reviewed 
the mechanism of poor dependence on aromatase inhibitors 
in breast cancer patients from NEI perspective, and dem-
onstrated that NEI mechanisms play a crucial role in poor 
adherence to endocrine therapy in breast cancer patients 
(Huifang et al. 2022). In addition, long-term dysregulation of 
the hypothalamic–pituitary–adrenal (HPA) axis associated 
with increased glucocorticoid secretion has been found to be 
linked to adverse cardiovascular function (Sekaninova et al. 
2020). Simultaneously, immune and endocrine properties of 
the heart as well as the central and autonomic regulation of 
cardiac functions have also been reviewed (Fioranelli et al. 
2018). In summary, the interactions between the nervous, 
endocrine, and immune systems form a complex biological 
network to maintain homeostasis.

MiRNAs and transcription factors (TFs) are two types 
of key regulators in biological networks, both of which are 
involved in many essential cellular processes, including cell 
differentiation, proliferation, and apoptosis (Hobert 2008). 
MiRNAs primarily regulate gene expression at the post-tran-
scriptional level, while TFs regulate gene transcription at the 
transcriptional level. Studies have demonstrated that miR-
NAs and TFs could cooperatively regulate the same target 
genes, and mutually influence each other, thereby forming 
feed-forward loops (FFLs). The FFLs could form recurrent 
network motifs and play important roles in mammalian gene 
regulatory network (Tsang et al. 2007).

Existing researches have investigated the molecular reg-
ulatory mechanisms in diseases and biological processes 
based on collaborative regulation of miRNAs and TFs. For 
example, transcription factor Yin-Yang1 (YY1) was found 
to ameliorated liver ischemia/reperfusion injury (I/RI) in 
mice by repressing miR-181a-5p expression and stimulat-
ing ESR1-mediated activation of ERBB2 (Wu et al. 2023). 
Based on the constructed TF-mRNA-miRNA network 
associated with medullary thyroid carcinoma, 15 impor-
tant genes were identified, and a high hub-gene score or a 
low miRNA score indicated good prognoses of neuroen-
docrine tumors (Weng et al. 2022). Recently, a modeling 
framework to reveal co-regulation of transcription factors 
and noncoding RNAs on cardiac developmental dynamics 
was constructed, and conserved regulatory network between 
transcription factors and ncRNA existed in early cells, while 
significant differentiation occurred in late staged cells (Li 
et al. 2023). However, exploring the synergistic regulation 
of miRNAs and TFs on diseases from a neuroendocrine-
immune perspective has not been studied.

In the present study, we constructed the background 
NEI-miRTF-N based on the NEI signaling molecules and 
NEI-related miRNA-TF FFLs, and disease-specific NEI-
miRTF-N was then built using known disease molecules 
and significantly differentially expressed (SDE) molecules. 
Furthermore, we proposed a novel method for identifying 
significantly dysregulated NEI-related miRNA-TF regula-
tory pathways (NEI-miRTF-Ps) in diseases. The workflow 
is shown in Fig. 1.

Materials and Methods

Collection of NEI Signaling Molecules 
and the Regulatory Relationships Between Them

NEI signaling molecules including miRNAs, genes, and TFs 
were collected. According to previous studies (Jiang et al. 
2020b; Loscalzo 2011), NEI signaling genes were derived 
from Gene Ontology (GO) (Carbon et al. 2019) using key-
words “neurotransmitters”, “neuropeptides”, “hormones”, 
and “cytokines”. To improve the reliability of the results, 
molecular functions (MF) and biological processes (BP) 
branches were searched respectively, and the intersection 
of them was considered as NEI signaling molecules. Six 
TF-related databases including Transfac (Matys et al. 2003), 
Tred (Jiang et al. 2007), TransmiR (version 2.0) (Tong et al. 
2019), AnimalTFDB (version 4.0) (Shen et al. 2023), TF-
marker (version 1.0) (Xu et al. 2022), and hTF target (Zhang 
et al. 2020) and a previous report (Vaquerizas et al. 2009) 
were used to extract human TFs. Thus, NEI signaling genes 
and TFs were obtained (Supplementary Table S1).

NEI signaling miRNAs were retrieved by conducting 
a comprehensive literature review. We searched PubMed 
using the same keywords mentioned above and the keywords 
“microRNA”, “miRNA”, and “miR”. After unifying names 
according to miRbase (version 22) database and removing 
redundancy, NEI signaling miRNAs were collected (Sup-
plementary Table S1).

The acquisition of regulatory relationships between sign-
aling molecules was as follows. Firstly, experimentally veri-
fied miRNA-gene relationships were extracted from miRTar-
base (Release 9.0) (Huang et al. 2022) and Tarbase (version 
8) (Karagkouni et al. 2018) databases. Secondly, by using 
the human TF list obtained above, miRNA-TF interactions 
were extracted from the miRNA-gene relationships. Thirdly, 
TF-gene relationships were obtained from TransFAC (Matys 
et al. 2003), TRED (Jiang et al. 2007), and htfTarget data-
bases (Zhang et al. 2020), and experimentally confirmed 
interactions between TFs and miRNAs were derived from 
TransmiR (version 2.0) (Tong et al. 2019) (Supplementary 
Tables S2 and S3). It is worth noting that precursor miRNAs 
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were used, we mapped mature miRNAs to their correspond-
ing precursors based on the miRBase database.

Construction of Background NEI‑Related miRNA‑TF 
Regulatory Network (NEI‑miRTF‑N)

Background NEI-miRTF-N was constructed by combining 
miRNA-TF feed-forward loops (FFLs) we identified. Based 
on the main regulator, miRNA-TF FFLs can be categorized 

into three distinct types: miRNA-FFL, TF-FFL, and com-
posite FFL (Zhang et al. 2015). In a miRNA-FFL, miRNA 
is the main regulator that regulates a TF and their common 
target genes. Conversely, in a TF-FFL, TF is the main regu-
lator. In a composite FFL, miRNAs and TFs can regulate 
each other and jointly regulate the expression of their target 
genes. Using NEI signaling molecules and the interactions 
between them, miRNA-TF FFLs were identified, and the 
background NEI-miRTF-N was constructed. It is noteworthy 

Fig. 1  Workflow of the present study. Step 1. Collection of NEI sign-
aling molecules, including collection of NEI signaling genes, miR-
NAs, and TFs. Step 2. Construction and analysis of the background 
NEI-miRTF-N, including collection of regulatory relationships 
among molecules, identification of miRNA-TF FFLs, construction of 
the background NEI-miRTF-N and analysis of basic characteristics 
of the background NEI-miRTF-N. Step 3. Construction of disease-
specific NEI-miRTF-N. We mapped the known disease molecules 
and significantly differentially expressed (SDE) molecules into the 

background NEI-miRTF-N, ensuring all nodes within the FFLs are 
composed of these two types of molecules, ultimately deriving a 
disease-specific NEI-miRTF-N. Step 4. Identification of significantly 
dysregulated NEI-miRTF-Ps. Dysregulated NEI-miRTF-Ps were 
identified based on the depth-first-search (DFS) approach and the 
algorithm we developed. The “ggplot2” R package was used to gener-
ate all figures, with Adobe Illustrator employed for final layout adjust-
ments
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that NEI-miRTF-N is a network of NEI signaling miRNAs 
and TFs co-regulation, and it is a part of NEI network.

Obtaining of Disease‑Related Molecules

In this work, three diseases depression, Alzheimer's disease 
(AD), and dilated cardiomyopathy (DCM) were used as case 
studies. We compiled disease-related molecules by merging 
the known disease molecules and SDE molecules.

The known disease genes were retrieved from four widely 
used disease gene databases, CTD (Aug 2022) (Davis et al. 
2021), ClinVar (Jan 2020) (Landrum et al. 2018), OMIM 
(Jun 2015) (Amberger et al. 2015), and DisGeNET (Jan 
2017) (Pinero et al. 2017). The known disease miRNAs were 
obtained from the HMDD (version 3.2) (Huang et al. 2019) 
database (Supplementary Table S4).

We extensively collected disease-related expression data 
in the Gene Expression Omnibus (GEO) database in Sep-
tember 2022, and required that the datasets included case 
and control samples, and they were based on tissue sam-
ples. As a result, 17, 48, and 19 mRNA expression datasets 
and 2, 2, and 2 miRNA expression datasets for depression, 
AD, and DCM were obtained, respectively. To increase the 
reliability of the results, for mRNA datasets of depression 
and AD, the dataset with a sample size greater than 10 for 
each of the case and control groups was retained, while the 
threshold was selected as 5 for DCM due to its limited sam-
ples. Because miRNA expression dataset is small, it was 
not filtered. Finally, 12, 5, and 4 mRNA expression datasets 
and 2, 2, and 2 miRNA expression datasets for depression, 
AD, and DCM were derived, respectively (Supplementary 
Table S5). To increase the credibility of the results, we per-
formed preprocessing and differential expression analysis on 
each dataset separately, and finally retained the SDE mol-
ecules that appeared in multiple datasets, with consistent 
up- and down-regulation.

For microarray data with raw data, RMA standardization 
(Rohr et al. 2021) was performed. When the raw data was not 
available, the standardized data it provided was used. When 
one probe corresponded to multiple genes, we removed 
it, and when multiple probes corresponded to one gene, 
the median value was retained. We then reserved protein-
coding genes. The R ‘limma’ package was used to perform 
the differential analysis, and the genes with p-value < 0.05 
were selected as SDE genes. For RNA-seq data, the genes 
with zero count in all samples were excluded, and the R 
'DESeq2' package (Love et al. 2014) was employed to iden-
tify SDE genes. If the count data is not available, we applied 
R ‘limma’ package to implement differential analysis. For 
miRNA data, miRNA names were unified using miRbase 
(version 22) database, and the procedure was the same as 
mRNA data. Thus, SDE molecules were obtained (Supple-
mentary Table S4).

Construction of Disease‑Specific NEI‑miRTF‑N

Disease-specific NEI-miRTF-N was constructed based on 
disease-related molecules collected above. It was required 
that NEI-related miRNA-TF FFLs with all the nodes in it 
were disease-related molecules, and the disease-specific 
NEI-miRTF-N was acquired.

Identification of Significantly Dysregulated 
NEI‑Related miRNA‑TF Regulatory Pathways 
(NEI‑miRTF‑Ps) in Diseases

Since disease-specific NEI-miRTF-N has a complex struc-
ture, in this study, we focused on NEI-related miRNA-TF 
regulatory pathways (NEI-miRTF-Ps), which are paths 
linked to NEI signaling molecules in disease-specific NEI-
miRTF-N. By applying depth-first-search (DFS) approach, 
the pathways were identified from nodes with zero in-degree 
to nodes with zero out-degree. It is required that there were 
at least three nodes in a directed acyclic path, and that the 
path contained at least one signaling molecule for N, E, and I 
systems, respectively. We developed an algorithm to identify 
significantly dysregulated NEI-miRTF-Ps in diseases.

Firstly, we defined dysregulated score of a node consider-
ing two aspects: One is the node expression changes in case 
and control samples (Z. Bai et al. 2021a, b), and the other 
is the type of the node, that is known disease molecules 
(KDM) or SDE molecules (SDEM). Snode is dysregulated 
score of a node, which is defined as formula (1).

where Diffnode represents the differential expression extent 
of the node,� is a coefficient, representing the weight of the 
node. Diffnode can be computed using the Eq. (2):

where p-value indicates the significance of differential 
expression of a node. FC is the fold change of node gene 
expression. Since the expression of a molecule is detected 
in multiple datasets, we chose the dataset with the most sam-
ples to calculate the p-value and the FC.

We assumed that the weight of the KDM node is one, 
which is higher than that of SDEM node. If a node is both 
the KDM and SDEM, the weight is their sum.� is the weight 
of the node, which defined as the following formulas:

(1)Snode = � ⋅ Diffnode

(2)Diffnode = (− log10(p − value)) ⋅ | log2 FC|

(3)� =

⎧
⎪⎨⎪⎩

1 node ∈ KDM

�
� node ∈ SDEM

1 + �
� node ∈ KDM ∩ SDEM
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where � is the standard deviation of Diffnode for all nodes in 
the network.

Secondly, we calculated dysregulated score of a NEI-
miRTF-P by taking the average of all the node scores in 
the pathway.

where N is the number of nodes in the pathway.
Finally, p-values were calculated to screen significantly 

dysregulated NEI-miRTF-Ps. For a NEI-miRTF-P, we con-
structed a random NEI-miRTF-P by randomly selecting 
the same number of miRNAs, genes and TFs as the path-
way, and then computed the score of the pathway based 
on the above procedure. This process is repeated 1000 
times. The p-value was defined as the proportion of the 
randomly obtained path scores larger than the real path 
score as below:

In this work, the NEI-miRTF-Ps with p-value < 0.01 
was selected as significantly dysregulated NEI-miRTF-Ps 
in depression and DCM, while the threshold 0.05 was cho-
sen for AD due to its relatively small number of pathways.

Results

NEI signaling molecules

Signaling molecules in NEI systems were collected using 
key words “neurotransmitters”, “neuropeptides”, “hor-
mones”, and “cytokines” (detailed in “Materials and meth-
ods”). As a result, a total of 3144 protein-coding genes 
(2715 genes and 429 TFs) and 581 miRNA signaling mol-
ecules in NEI systems were obtained. Among them, there 
were 147 miRNAs, 578 genes, and 18 TFs in nervous sys-
tem, 414 miRNAs, 1092 genes, and 259 TFs in endocrine 
system, and 435 miRNAs, 1473 genes, and 262 TFs in 
immune system (Supplementary Table S1). The Venn dia-
grams of the collected NEI miRNA, gene and TF signaling 
molecules were shown in Supplementary Fig. S1a, b, and 
c, most of the signaling molecules in nervous system were 
also the signaling molecules of the other two systems.

(4)

�
� =

Diffnode −

(
min

nodei∈network
{Diffnodei} − �

)

(
max

nodei∈network
{Diffnodei} + �

)
−

(
min

nodei∈network
{Diffnodei} − �

)

(5)
Spathway =

∑
node∈pathway

snode

N

p−value = (Numberof Srandom
pathway

> Spathway)∕1000

Background NEI‑miRTF‑N

Background NEI-miRTF-N was constructed by integrating 
NEI-related miRNA-TF FFLs, which were identified through 
NEI signaling molecules and the interactions between 
them. As a result, 370,885 FFLs were obtained, comprising 
230,214 miRNA-type FFLs (62.07%), 92,248 TF-type FFLs 
(24.87%), and 48,423 composite FFLs (13.06%) (Fig. 2a, 
Supplementary Table S6). The number of nodes and links in 
these FFLs was represented in Table 1. Merging these FFLs 
resulted in the background NEI-miRTF-N, which consists 
of 2,658 nodes (494 miRNAs, 1991 genes, and 173 TFs) 
and 98,629 edges. For the background NEI-miRTF-N, there 
were 123 miRNAs, 160 genes and 4 TFs in nervous system; 
379 miRNAs, 925 genes and 117 TFs signaling molecules 
in endocrine system; 394 miRNAs,1,263genes and 102 TFs 
signaling molecules in immune system (Fig. 2b, c, and d).

The node degree and its distribution in NEI-miRTF-
N were investigated. As shown in Fig. 2e, we found that 
only a small portion of nodes highly connected with other 
nodes, while most nodes had relatively small degrees. This 
was consistent with the characteristics of biological net-
works. The average node degree of miRNAs, genes, and 
TFs was 150.84 (range 2–1005), 44.34 (range 2–256), and 
199.25 (range 2–1663), respectively. Additionally, the node 
betweenness was examined (Supplementary Fig. S2), miR-
NAs and TFs have higher degrees and betweenness, indicat-
ing their greater importance in the network.

We further examined the distribution of neural, endo-
crine, and immune signaling molecules and their inter-
actions in the network. As demonstrated in Fig. 2f and g 
(Supplementary Tables S7 and S8), the number of immune 
signaling molecules is the highest, while the number of neu-
ral signaling molecules is the lowest. At the same time, the 
mutual regulation between immune signaling molecules and 
endocrine signaling molecules is also the most. Additionally, 
we investigated the significance of regulation relationships 
between signaling molecules compared with that of theo-
retical expectation using hypergeometric test. As shown in 
Fig. 2h and Supplementary Table S8, we found that signal-
ing molecules in neural system significantly regulate those 
in endocrine and immune system, and signaling molecules 
in endocrine system significantly regulate those in immune 
systems (p-value < 0.0001). This implied that the directions 
of signal transduction might mainly be from nervous system 
to the endocrine and immune systems, as well as from the 
endocrine to immune system.

Disease‑Specific NEI‑miRTF‑N

Disease-specific NEI-miRTF-N was constructed by map-
ping the known disease molecules and SDE molecules to the 
background NEI-miRTF-N. The method is applicable to all 
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the diseases, provided that known disease-related molecules 
and SDE molecules can be obtained. Depression, AD, and 
DCM were used as case studies. The acquisition of SDE 
molecules for the three diseases is as follows.

For depression, AD, and DCM, 12, 5, and 4 mRNA 
expression datasets and 2, 2, and 2 miRNA expression data-
sets were retained after filtration (details see Materials and 
methods). Molecules with p-value < 0.05 were selected as 
SDE molecules. To ensure the reliability of the data, up- 
and down-regulation of SDE molecules in multiple datasets 
were required to be consistent. According to UpSet plots, it 
is required that SDE genes were differentially expressed in 

at least 2, 5, and 3 datasets for mRNA expression of depres-
sion, AD, and DCM, respectively (Fig. 3a, d, g and Supple-
mentary Table S9). Due to the limited number of miRNA 
datasets, SDE miRNAs were taken as union sets, and it is 
required that the miRNAs in the intersection set had consist-
ent up- and down-regulation in datasets. Finally, 62 SDE 
miRNAs, 720 SDE genes, and 96 SDE TFs in depression; 
102 SDE miRNAs, 1085 SDE genes, and 72 SDE TFs in 
AD; 259 SDE miRNAs, 858 SDE genes, and 97 SDE TFs 
in DCM were obtained (Supplementary Table S4).

We thus constructed depression, AD and DCM-spe-
cific NEI-miRTF-Ns, respectively (Fig.  3b, e, and h, 

Fig. 2  Background NEI-
miRTF-N. a The distribution 
of three types of FFLs in back-
ground NEI-miRTF-N. b The 
Venn diagram of NEI signaling 
miRNAs. c The Venn diagram 
of NEI signaling genes. d The 
Venn diagram of NEI signal-
ing TFs. e Degree distribution 
of all nodes in background 
NEI-miRTF-N and degree 
distribution of miRNAs, genes, 
and TFs. f The number of NEI 
signaling miRNAs, genes, and 
TFs in background NEI-miRTF-
N. g The regulatory relation-
ships between NEI signaling 
molecules in background NEI-
miRTF-N. h The significance of 
regulation relationships between 
signaling molecules compared 
with theoretical expected cases 
using hypergeometric test

Table 1  Summary of three types of NEI-related miRNA-TF FFLs

Number of nodes Number of links

Motif Number of FFLs Genes miRNAs TFs Total miRNA-gene miRNA-TF TF-gene TF-miRNA Total

miRNA-FFL 230,214 1957 438 173 2568 56,414 5981 22,953 – 85,348
TF-FFL 92,248 1862 399 106 2367 39,593 – 16,968 2721 59,282
Composite-FFL 48,423 1751 224 87 2062 27,786 826 11,772 826 41,210
Total 370,885 1991 494 173 2658 64,159 6807 24,116 3547 98,629
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Supplementary Table S6). There were 162 nodes and 669 
edges, 62 nodes and 181 edges, 124 nodes and 652 edges 
in the three networks, respectively. For depression-spe-
cific NEI-miRTF-Ns, 492 FFLs were included, comprising 
of 288 miRNA-type FFLs (58.54%), 159 TF-type FFLs 
(32.32%), and 45 composite FFLs (9.15%) (Fig. 3c). For 
AD-specific NEI-miRTF-Ns, 104 FFLs were included, 
comprising of 92 miRNA-type FFLs (88.46%), 10 TF-type 
FFLs (9.62%), and 2 composite FFLs (1.92%) (Fig. 3f). 
For DCM-specific NEI-miRTF-Ns, 526 FFLs were 
included, comprising of 458 miRNA-type FFLs (87.07%), 
49 TF-type FFLs (9.32%), and 19 composite FFLs (3.61%) 
(Fig. 3i).

Significantly Dysregulated NEI‑Related miRNA‑TF 
Regulatory Pathways (NEI‑miRTF‑Ps) in Depression, 
AD, and DCM

In this study, considering dysregulated extent of the known 
disease molecules and SDE molecules, we developed an 
algorithm to identify significantly dysregulated NEI-miRTF-
Ps in diseases (details see “Materials and Methods”). As 
a result, 553, 11, and 290 significantly dysregulated NEI-
miRTF-Ps in depression, AD, and DCM were identified, 
respectively (Supplementary Tables S10, 11, and 12). For 
dysregulated NEI-miRTF-Ps in depression, there are 17 
miRNAs, 9 mRNAs, and 16 TFs in them, which included 

Fig. 3  a UpSet plots of SDE genes for depression. b Disease-specific 
NEI-miRTF-N for  depression. c The distribution of three types of 
FFLs for depression. d UpSet plots of SDE genes for AD. e Disease-
specific NEI-miRTF-N for  AD. f The distribution of three types of 

FFLs for  AD. g UpSet plots of SDE genes for  DCM. h Disease-
specific NEI-miRTF-N for DCM. i The distribution of three types of 
FFLs for DCM
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5, 33, and 27 signaling molecules for N, E and I systems, 
respectively. The length of these pathways ranges from 4 to 
16. For dysregulated NEI-miRTF-Ps in AD, there are 8 miR-
NAs, 2 mRNAs and 2 TFs in them, which included 8, 11, 
and 10 signaling molecules for N, E and I systems, respec-
tively. The length of these pathways ranges from 3 to 5. For 
dysregulated NEI-miRTF-Ps in DCM, there are 25 miRNAs, 
42 mRNAs, and 5 TFs in them, which included 13, 69, and 
42 signaling molecules for N, E, and I systems, respectively. 
The length of these pathways ranges from 3 to 11.

The top 5 dysregulated NEI-miRTF-Ps in depression, AD 
and DCM were investigated, which were shown in Table 2 
and Fig. 4a, b and c. Although the molecules in the pathway 
and the interactions between them were collected from rel-
evant databases, most of them have not been experimentally 
validated. We examined these dysregulated NEI-miRTF-Ps 
from four aspects: (1) The associations between the mol-
ecules and diseases, as well as NEI systems. (2) The regula-
tory relationships between the molecules in the pathway. (3) 
The relations between biological functions of the molecules 
and diseases, as well as NEI systems. (4) The comparison of 
these dysregulated NEI-miRTF-Ps with the known disease-
related KEGG pathways.

We performed a comprehensive literature search, as 
represented in Supplementary Tables S13 and S14, the 
vast majority of molecules are associated with N, E or 
I and corresponding diseases, and most of the regula-
tory relationships between molecules have been verified. 

Additionally, for each pathway in top 5 significantly dys-
regulated NEI-miRTF-Ps, functional enrichment analysis 
was implemented using g:Profiler (Kolberg et al. 2023), 
significantly enriched GO BP terms and KEGG path-
ways were identified with Benjamini–Hochberg adjusted 
p-value < 0.05 (Supplementary Tables S15, S16, and S17). 
As shown in Fig. 4d, e, and f, we found that the large 
majority of significantly enriched biological functions 
have been validated to be associated with corresponding 
diseases as well as the nervous, endocrine, or immune 
systems.

Furthermore, we searched the KEGG pathways of the 
three diseases. There were 60, 384, and 103 genes in depres-
sion, AD, and DCM KEGG pathways, respectively. For each 
disease, we examined the enrichment of genes of signifi-
cantly dysregulated NEI-miRTF-Ps in the KEGG pathway 
by applying hypergeometric test. When only considering 
genes and TFs in dysregulated NEI-miRTF-Ps, the p-values 
were not significant for the three diseases. While taking into 
account of miRNAs, they were all significantly enriched 
(p-value = 0.001 for depression, p-value = 4.77 × 10⁻5 for 
AD, and p-value = 0.001 for DCM). When we limited it to 
the top 5 dysregulated NEI-miRTF-Ps, it was not signifi-
cantly enriched for depression (p-value = 0.130), marginally 
significantly enriched for AD (p-value = 0.069), and sig-
nificantly enriched for DCM (p-value = 0.019). The above 
results showed that the identified dysregulated NEI-miRTF-
Ps were credible.

Table 2  The top 5 significantly dysregulated NEI-miRTF-Ps in depression, AD, and DCM

A-∙B denotes A regulates B; A⊣B represents A inhibits B, A∙⊣ B denotes A inhibits B and B regulates A

Disease Rank Dysregulated NEI-miRTF-P Path-
way 
length

Pathway p-value Pathway score

Depression 1 ARNTL -∙ hsa-mir-576 ∙⊣ CREB1 -∙ MRAS 4 0 120.645
2 ARNTL-∙hsa-mir-576 ⊢∙ HDAC2 -∙ MRAS 4 0 120.640
3 ARNTL -∙ hsa-mir-576 ∙⊣ CREB1 -∙ hsa-mir-185 ⊣ MRAS 5 0 96.516
4 ARNTL -∙ hsa-mir-576 ⊢∙ CREB1 -∙ hsa-mir-212 ⊣ HDAC2 -∙ MRAS 6 0 80.435
5 ARNTL -∙ hsa-mir-576 ∙⊣ CREB1 -∙ TIMP2 4 0 74.958

AD 1 hsa-mir-16–2 ⊣ PPARG -∙ CRH 3 0.019 8.394
2 hsa-mir-324 ⊣ PPARG -∙ CRH 3 0.019 8.375
3 hsa-mir-16–2 ⊣ PPARG -∙ hsa-mir-142 ⊣ CRH 4 0.023 6.301
4 hsa-mir-324 ⊣ PPARG -∙ hsa-mir-142 ⊣ CRH 4 0.026 6.286
5 hsa-mir-17 ⊣ RARG -∙ KANK2 3 0.035 5.423

DCM 1 hsa-mir-144 ⊣ NR2F2 -∙ NPPB 3 0 10.860
2 hsa-mir-183 ⊣ CBX3 ⊢∙ hsa-mir-103a-2 ⊣ RXRA ⊢∙ hsa-mir-21 ⊣ NR2F2 -∙ 

NPPB
7 0 6.818

3 hsa-mir-183 ⊣ CBX3 ⊢∙ hsa-mir-103a-2 ⊣ RXRA ⊢∙ hsa-mir-21 ⊣ EIF4EBP2 6 0 6.453
4 hsa-mir-144 ⊣ NR2F2 -∙ hsa-mir-30d ⊣ CBX3 ⊢∙ hsa-mir-103a-2 ⊣ RXRA ⊢∙ 

hsa-mir-21 ⊣ TGFBR2
8 0 6.085

5 hsa-mir-182 ⊣ FOXO3 ⊢∙ hsa-mir-21 ⊣ TFPI 4 0.001 8.616



Cellular and Molecular Neurobiology            (2025) 45:2  Page 9 of 12     2 

Discussion

To investigate the synergistic regulation of miRNAs and 
TFs from an NEI perspective, in this study, we constructed 
the background NEI-miRTF-N by collecting NEI signaling 
molecules and identifying NEI-related miRNA-TF FFLs. 
Three disease-specific NEI-miRTF-Ns for depression, AD, 
and DCM were then constructed based on the known dis-
ease molecules and SDE molecules. We further proposed 
a novel method for identifying significantly dysregulated 
NEI-miRTF-Ps in disease-specific NEI-miRTF-Ns, and we 

verified the reliability of the identified pathways from vari-
ous perspectives.

In order to ensure the reliability of the results, the data 
used in this study was screened rigorously. For retriev-
ing NEI signaling genes and TFs, we used BP and MF 
branches in GO database and took the intersection. For 
collecting NEI signaling miRNAs, we manually inquired 
4678 articles from PubMed using the keywords. For regu-
latory relationships between the signaling molecules, we 
integrated multiple commonly used databases and the 
vast majority of them were experimentally verified. For 

Fig. 4  a The top 5 significantly dysregulated NEI-miRTF-Ps in 
depression. b The top 5 significantly dysregulated NEI-miRTF-Ps in 
AD. c The top 5 significantly dysregulated NEI-miRTF-Ps in DCM. 
d Literature validation of significantly enriched biological functions 
of molecules from the top 5 dysregulated NEI-miRTF-Ps in depres-

sion. e Literature validation of significantly enriched biological func-
tions of molecules from the top 5 dysregulated NEI-miRTF-Ps in AD. 
f Literature validation of significantly enriched biological functions of 
molecules from the top 5 dysregulated NEI-miRTF-Ps in DCM
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collecting disease-related expression profile data, it is 
required that the datasets were based on tissue samples 
and mRNA dataset for depression and AD with a sam-
ple size greater than 10 for each of the case and control 
groups was retained, while the threshold was selected as 
5 for DCM due to its limited samples. For screening SDE 
molecules, we required SDE molecules to be differentially 
expressed across multiple datasets, with consistent up- and 
down-regulation.

For the background NEI-miRTF-N, we analyzed the regu-
lations between the signaling molecules in the three systems. 
It was found that the signaling molecules in nervous system 
significantly regulated the signaling molecules in the other 
two systems, and the signaling molecules in endocrine sys-
tem also significantly regulated the signaling molecules in 
immune system, while the regulations in other directions 
were not significant. This did not mean that there was no 
regulation in other directions, but might be relatively weak.

We analyzed the top 5 dysregulated NEI-miRTF-Ps in 
depression, AD, and DCM, discovering that the majority 
of these molecules are linked to N, E, or I, as well as their 
respective diseases. Furthermore, most of the regulatory 
interactions between these molecules have been validated. 
For example, ARNTL, a clock gene, whose gene expression 
has been reported to be significantly higher in controls than 
in depression in peripheral mononuclear blood cells (Ben-
gesser et al. 2022). Simultaneously, ARNTL acts through 
neurons and hormones, with expression in liver, kidney, 
lung, heart, suprachiasmatic nucleus of brain, and other 
various cell types of tissue (Pan et al. 2020). It is reported 
that co-expression of hsa-miR-182-5p and hsa-miR-154-5p 
may potentially show diagnostic value for DCM (Zaragoza 
et al. 2019), and miR-182 has been shown to be related 
with endocrine and immune (Bai et al. 2021a, b; Zhao et al. 
2022). Additionally, transcription factor CREB1 activates 
expression of a gene locus that produces hsa-miR-212 in 
newborn hippocampal neurons in young adult mice (Magill 
et al. 2010).

There are some limitations in the work. For synergistic 
regulation of miRNAs and TFs, we focused on miRNA-TF 
FFLs, and the constructed background NEI-miRTF-N was 
also based on the FFLs, other synergistic regulatory modes 
between miRNAs and TFs were not considered. When con-
structing disease-specific NEI-miRTF-Ns, all three nodes in 
an FFL were required to be either the known disease mol-
ecules or SDE molecules, so certain important molecules, 
but which are neither the known disease molecules nor SDE 
molecules, were not included. For identifying significantly 
dysregulated NEI-miRTF-Ps, it is required that the path-
ways contained at least one signaling molecule for nervous, 
endocrine, and immune systems respectively, while other 
situations were not taken into account. However, the identi-
fied significantly dysregulated NEI-miRTF-Ps for the three 

diseases have been validated from multiple perspectives, 
demonstrating their credibility.

In summary, we constructed the background NEI-miRTF-
N, and developed an effective approach for identifying sig-
nificantly dysregulated NEI-miRTF-Ps in diseases. Our 
results will shed new light on deciphering the pathogenesis 
of diseases, and provide a theoretical basis for studying the 
synergistic regulation of disease-related miRNAs and TFs 
from an NEI perspective.
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