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type 2 diabetes
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Jian Zhang1,2, Jiaxin Zhang1,2, Yi Zhang3* and Yunfeng Liu1*

1Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China, 2First
Clinical Medical College, Shanxi Medical University, Taiyuan, China, 3Department of Pharmacology,
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Owing to the increasing prevalence of type 2 diabetes, the development of

novel hypoglycemic drugs has become a research hotspot, with the ultimate

goal of developing therapeutic drugs that stimulate glucose-induced insulin

secretion without inducing hypoglycemia. Vasoactive intestinal peptide (VIP), a

28-amino-acid peptide, can stimulate glucose-dependent insulin secretion,

particularly by binding to VPAC2 receptors. VIP also promotes islet b-cell
proliferation through the forkhead box M1 pathway, but the specific

molecular mechanism remains to be studied. The clinical application of VIP is

limited because of its short half-life and wide distribution in the human body.

Based on the binding properties of VIP and VPAC2 receptors, VPAC2-selective

agonists have been developed to serve as novel hypoglycemic drugs. This

review summarizes the physiological significance of VIP in glucose

homeostasis and the potential therapeutic value of VPAC2-selective agonists

in type 2 diabetes.

KEYWORDS

vasoactive intestinal peptide, VPAC2, insulin secretion, glucose-dependence, VPAC2-
selective agonists
Abbreviations: AC, adenylate cyclase; ACh, acetylcholine; cAMP, cyclic adenosine monophosphate; Ccna,

cyclin A; Cdk1, cyclin-dependent kinase 1; CS-SeNPs, chitosan-modified SeNPs; ERK, extracellular-signal

regulated kinase; FoxM1, forkhead box M1; GLP-1, glucagon-like peptide-1; GLUT4, glucose transporter 4;

GPCR, G-protein-coupled receptor; IRS-1, insulin receptor substrate 1; PAC1, PACAP receptor type 1;

PACAP, pituitary adenylate cyclase activating polypeptide; PEG, polyethylene glycol; PKA, protein kinase

A; Plk1, polo-like kinase 1; SeNPs, selenium nanoparticles; SPIONs, superparamagnetic iron oxide

nanoparticles; VIP, vasoactive intestinal peptide; VPAC1, VIP/PACAP receptor type 1; VPAC2, VIP/

PACAP receptor type 2.
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Introduction

Diabetes is a chronic disease with multiple etiology and a

complicated pathogenesis, with a global prevalence that is

currently increasing annually. According to the statistics

released by the International Diabetic Federation in 2021, 537

million people suffer from diabetes worldwide, with an estimated

global prevalence of 10.5%. The number of cases is expected to

reach 783 million in 2045, with the prevalence rising to 12.2%

(1). Of this, 90% are patients with type 2 diabetes (2). Type 2

diabetes is a metabolic disease characterized by chronic

hyperglycemia and insulin resistance. Chronic hyperglycemia

leads to glucose toxicity to vital organs, including the eyes,

kidneys, and nerves; therefore, maintenance of glucose

homeostasis in the disease management of type 2 diabetes is

crucial. Although multiple oral glucose-lowering drugs can

effectively improve blood glucose levels in patients with type 2

diabetes, they may also cause hypoglycemia as a serious side

effect because the glucose-lowering activity of these drugs is

independent of the blood glucose levels of patients. If this side

effect occurs frequently, it will lead to life-threatening

cardiovascular and cerebrovascular complications. Currently,

novel hypoglycemic drugs exhibit the unique, ideal property of

promoting insulin secretion in a glucose-dependent manner

without causing hypoglycemia (3). There is evidence that

vasoactive intestinal peptide (VIP), a peptide hormone,

promotes insulin secretion in this manner. Therefore, VIP

may act as an insulinotropic drug without increasing the risk

of hypoglycemia following administration. One of the cell

receptors associated with VIP is VPAC2, which regulates

insulin secretion; thus, this interaction may potentially be key

towards a novel therapy. This review summarizes the

physiological significance of VIP in glucose homeostasis and

the therapeutic potential of VPAC2-selective agonists in the

treatment of type 2 diabetes.
Production of VIP and the
associated receptors

VIP (a 28-amino-acid peptide) was first isolated from the

duodenums of pigs in the early 1970s and was considered to be a

gut hormone with vasodilatory effects (4). It was soon found to be

widely distributed throughout the central nervous system and

peripheral tissues (5, 6), including the brain, gastrointestinal tract,

pancreas, immune organs and cardiovascular system (7, 8). Its

distribution reveals its pleiotropic functions as a neurotransmitter,

vasodilator, secretagogue and immunomodulator (9, 10). VIP is

generated by the splicing and processing of its precursor from

prepro-VIP, containing 170 amino acids (11), in addition to being

processed into peptide histidine methionine in humans or peptide

histidine isoleucine in other animals, which perform many
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common physiological roles (12, 13). VIP is a member of the

secretin peptide family belonging to the same family as pituitary

adenylate cyclase-activating polypeptide (PACAP) and glucagon

and glucagon-like peptide-1 (GLP-1), which are coupled to

specific G-protein-coupled receptors (GPCRs) on the cell

surface (14, 15). VIP mainly relies on stimulating cyclic

adenosine monophosphate (cAMP) production to play

physiological roles in multiple tissues (16).

VIP exerts its physiological effects by binding to two receptor

subtypes belonging to class B of GPCRs, namely VPAC1 and

VPAC2 (17). PACAP can also activate the same receptors to

exert functions, as its amino acid sequence shares 68% homology

with that of VIP (18). PACAP has a specific receptor, termed

PAC1, which exhibits a high affinity for it, whereas VIP and

PACAP exhibit equally high affinity for VPAC1 and VPAC2 (19,

20). VIP receptors are expressed throughout the body and elicit a

wide range of biological effects, such as relaxation of smooth

muscles, promotion of gastrointestinal motility and regulation of

hormone secretion (21). The two specific receptors for VIP are

expressed on pancreatic islets (22), where VPAC1 is mainly

responsible for glucagon secretion and hepatic glucose

production (23, 24), while VPAC2 plays a role in improving

glucose tolerance by stimulating insulin secretion. Additionally,

VPAC2 appears to be less involved in the glycogenolytic

pathways of the liver (22, 25). Based on these characteristics of

VIP receptors, they can potentially be targeted for the treatment

of type 2 diabetes.
Endocrine function and signaling of
VIP in islets

Islets are innervated by parasympathetic, sympathetic, and

sensory nerves (26). Immunohistochemistry has confirmed that

VIP is localized in the postganglionic parasympathetic neurons,

which originate from the dorsal motor nuclei of vagus nerves

(27). VIP is released in islets after parasympathetic activation.

VIP exerts two distinct endocrine functions in islets, namely

glucagon secretion and insulin secretion, both of which are

associated with glucose concentration (24). VIP-induced

glucagon secretion occurs during hypoglycemia, while VIP

exerts its role of promoting insulin secretion during

hyperglycemia. In terms of glucose homeostasis, this review

focuses on the function of VIP-stimulated insulin secretion.

Glucose is the major factor triggering insulin secretion.

Glucose breakdown increases ATP/ADP ratio in b-cells, closes
ATP-dependent K+ channels, resulting in plasma membrane

depolarization and the opening of voltage-gated L-type Ca2+

channels, which leads to an increased influx of Ca2+ to secrete

insulin (28). The pathway of glucose-stimulated insulin secretion

is modulated by other peptides, such as VIP, GLP-1 and PACAP.

VIP amplifies the glucose-stimulated insulin secretion pathway
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through the cAMP cascade (29). VIP binding to VPAC2

receptors on b-cells preferentially interacts with Gs protein to

activate adenylate cyclase (AC), resulting in a dose-dependent

increase in cAMP (30, 31). As the second messenger, cAMP

activates protein kinase A (PKA) and the Epac family of cAMP-

regulated guanine nucleotide exchange factor (32, 33), both of

which cause an increase in intracellular Ca2+ levels and induce

insulin secretion (Figure 1) (22, 34). This mechanism is

predominantly relevant in hyperglycemia, suggesting a

glucose-dependent modality in the insulinotropic effect of VIP.

The activity of other hormones to stimulate insulin secretion is

also glucose-dependent, including GLP-1 and PACAP. VIP,

GLP-1, and PACAP show equal effectiveness in stimulating

insulin secretion (35). Interestingly, the combination of VIP

and PACAP has no additive effect on the levels of insulin

secretion, possibly because they share common receptors (36).
Roles of VIP and VPAC2 in
the pancreas

Several VIP-related animal models designed to study

pancreatic islets are summarized here to demonstrate the role

of VIP in the pancreas. In VIP-knockout mice, fasting insulin

levels were found to be significantly elevated compared to those

in wild-type mice. Moreover, their blood glucose levels in the
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VIP knockout mice did not decrease but instead increased (37),

suggesting insulin resistance in VIP-/- mice. No change in islet

mass was observed in these mice. It was speculated that this

observation may be due to the activity of other structurally

similar peptides, such as PACAP, which can activate VIP-

associated receptors to replace VIP effects in VIP-/- mice (38).

Yet, glucose abnormalities were seen in VIP-/- mice, indicating

that VIP was involved in the regulation of glucose homeostasis.

In fact, mice overexpressing VIP effectively exhibited reduced

blood glucose levels and elevated insulin levels. This effect was

seen after feeding but not while fasting (39). In vitro studies, VIP

secretion was found to correlate with glucose concentration. The

islets isolated from mice overexpressing VIP were individually

exposed to media containing different concentrations of glucose.

A high glucose concentration significantly promoted VIP

secretion in pancreatic islets and enhanced glucose-induced

insulin secretion (39). Hypoglycemia has not yet been

identified in these models, which means that VIP induces

insulin secretion in a glucose-dependent manner. In addition,

VIP-overexpressing mice were still able to maintain glucose

tolerance after removing 70% of the pancreas (39).

As mentioned above, when VIP binds to VPAC2 receptors,

insulin secretion is induced. Therefore, VPAC2 receptor

knockout mice represent an important model to evaluate the

role of VPAC2 in pancreatic islets. In the oral glucose tolerance

test, VPAC2-deficient mice showed a similar glycemic response
FIGURE 1

VIP activates the VPAC2 signaling pathway in pancreatic islets. VIP binding to VPAC2 receptors on b-cells activates AC and increases the
concentration of cAMP, which activates PKA and the Epac family. PKA triggers the closure of ATP-dependent K+ channels, resulting in plasma
membrane depolarization, and the opening of voltage-gated Ca2+ channels, which leads to an increased influx of Ca2+. Activation of Epac
mobilizes the release of Ca2+ from internal storage. Both the processes cause elevated intracellular Ca2+ levels and the release of insulin
through exocytosis.
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to wild-type mice, but insulin levels were significantly reduced in

VPAC2-deficient mice (40). This suggests that the insulin

sensitivity of VPAC2-deficient mice was markedly increased.

This conjecture was confirmed in the insulin tolerance test. After

insulin administration, blood glucose levels in VPAC2-deficient

mice decreased to a greater extent than those in wild-type mice

(40). These observations indicate that VPAC2 plays an

important role in glucose homeostasis.

Previous studies have found that the effects of VIP on the

pancreas are influenced by age and metabolic status (41). Islets

from obese and lean mice of different ages were used to study the

effect of VIP on insulin release. The results showed that VIP

significantly enhanced insulin release in islets isolated from

young obese mice, while islets from lean mice showed a very

low sensitivity to VIP. In much older mice, VIP had no effect on

insulin release, regardless of the sizes of the animals (obese or

lean) (42). Therefore, age and metabolic status should be

considered when discussing the effects of VIP on optimal

insulin secretion (41).
Roles of VIP in the liver-to-
pancreatic neuronal relay

Islet b-cell mass contributes to glucose homeostasis by inducing

compensatory responses based on physiological requirements of

insulin (43, 44). In an insulin-resistant environment, such as that

caused by obesity, neuronal signaling from the liver is involved in

the compensatory proliferation of islet b-cells (45). Imai et al. has

proposed that the activation of hepatic extracellular-signal regulated

kinase (ERK) is transmitted to the central nervous system by
Frontiers in Endocrinology 04
afferent splanchnic nerves and then to the pancreas via efferent

vagal nerves to promote b-cell proliferation (46); this hypothesis has
been verified in different mouse models (47). Disruption of any

portion of neuronal transmission from the liver to the pancreas

inhibits b-cell proliferation, including inhibition of ERK

phosphorylation, pharmacological deafferentation of splanchnic

nerves, midbrain transection, and pancreatic vagotomy, which

demonstrates the role of a liver–brain–pancreas neuronal relay in

islet b-cell proliferation. Although it has been shown that hepatic

ERK activation triggers neuronal transmission from the liver to the

pancreas, how its ERK signaling travels down via visceral nerves is

unknown (46). In this neuronal transmission, vagal nerve signals

activate the forkhead box M1 (FoxM1) pathway in b-cells, thereby
promoting compensatory proliferation of b-cells and augmenting

insulin secretion (Figure 2) (48). FoxM1 is a key transcription factor

for cell proliferation (49, 50). It has been reported that vagal signals

activate the upregulation of FoxM1-related genes in islets, including

Foxm1, cyclin-dependent kinase 1 (Cdk1), cyclin A (Ccna) and

polo-like kinase 1 (Plk1), as well asMki67, all of which are involved

in the cell cycle and induce b-cell proliferation (47).

To demonstrate the role of vagal signals in the liver–brain–

pancreas neuronal relay, mouse islets were treated with a

combination of neurotransmitters released from vagus nerves,

including acetylcholine (ACh), VIP and PACAP (26); the results

showed that they indeed promoted b-cell proliferation.

Additionally, gene expression analysis showed that the

expression levels of FoxM1-related genes and Mki67 gene were

significantly increased (47). To explore the role of each of these

neurotransmitters in the FoxM1 pathway, they were used

individually to treat rat isolated islets, the above outcome was

not observed. Meanwhile, when ACh was removed from the
FIGURE 2

Schematic of a liver–brain–pancreas neuronal relay. In insulin-resistant individuals, hepatic ERK activation transmits sensory signals to the
central nervous system through the afferent splanchnic nerves, which in turn reach the pancreas via vagal nerves. Vagal factors induce islet b-
cell proliferation to secrete more insulin through activation of the FoxM1 pathway.
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combined treatment of multiple neurotransmitters, no

upregulation of these genes was observed in pancreatic islets,

suggesting that ACh plays a decisive role in the FoxM1 pathway.

Upon combined treatment of islets with ACh plus VIP or

PACAP, the expression levels of FoxM1-related genes and

Mki67 gene were markedly increased, and the gene expression

levels of ACh combined with VIP and ACh combined with

PACAP were similar, causing significant proliferation of b-cells
(47). ACh stimulates insulin secretion by activating Gq signaling

(51, 52), while VIP and PACAP, as Gs-signaling activators, exert

insulinotropic effects (30), implying that vagal signals may

activate the FoxM1 mechanism by simultaneously stimulating

multiple pathways to enhance b-cell proliferation. At present,
the exact molecular mechanism of vagal factors and the FoxM1

pathway is unclear and needs to be further investigated. It has

previously been demonstrated that the content of VIP in the

pancreas of diabetic mice is increased, but its effect on

stimulating insulin secretion is lower than that in normal mice

(53). One plausible reason is a diminished VIP-receptor

sensitivity in diabetic mice, and another can be attributed to

the inhibition of FoxM1 pathway activation. Recently, it has

been found that the reduced expression levels of ACh in diabetic

mice with poor islet function are associated with pancreatic

autonomic nerve damage (54, 55), which may attenuate the role

of vagal signals in activating the FoxM1 pathway, indirectly

suggesting that neuronal signaling from the liver to the pancreas

is impaired in diabetic mice. This may imply that patients with

type 2 diabetes have a disorder in the liver–brain–pancreas

neuronal relay. Elucidation of the mechanism governing vagal

signals in neuronal transmission from the liver to the pancreas

could open up new treatment avenues for type 2 diabetes.
Development of
VPAC2-selective agonists

The amino acid sequence of VIP is highly conserved in different

species. The sequence of VIP is identical in mammals, except for the

VIP sequence of guinea pigs, wherein 4 amino acids are replaced

(56, 57). Amino acid substitutions also exist in some vertebrates

such as chickens and frogs (58, 59), but this does not affect its

biological activity. PACAP, the homolog of VIP, exists in two forms,

specifically as a 38-amino acid peptide (PACAP38) and 27-amino

acid peptide (PACAP27), with PACAP38 being its main form that

plays a role in various tissues and organs (14). PACAP is one of the

most conserved peptides in the secretin peptide family (60), with a

consistent amino acid sequence in most animals except for one

amino acid difference in chickens and frogs (15). The high sequence

conservation of VIP and PACAP makes them attractive targets for

disease treatment. Due to their structural similarity to GLP-1, VIP

and PACAP are rapidly recognized and degraded by dipeptidyl

peptidase-IV in vivo, contributing to their short half-lives, which

results in transient effects (61). Although VIP and PACAP have
Frontiers in Endocrinology 05
been shown to induce insulin secretion, they can cause undesired

redundant responses because of the wide distribution of their

receptors in the body. These disadvantages constitute a technical

barrier to the development of therapies for type 2 diabetes.

Therefore, novel drug discovery and development of VIP

analogues as well as a suitable drug delivery system are the main

goals in developing VIP as hypoglycemic drugs.

Previous studies have demonstrated that the activation of

VPAC2 receptors on b-cells is involved in promoting insulin

secretion without triggering hepatic glycogenolysis and glucagon

secretion, which results in hypoglycemic effects. Because of this,

VPAC2 receptors can be a novel target for the treatment of type 2

diabetes. BAY55-9837 has been developed as a selective agonist for

VPAC2, which was designed via site-directed mutations of VIP and

PACAP (15, 62). It is a complete agonist for VPAC2 receptors and

stimulates insulin secretion in a glucose-dependent manner. Islets

isolated from rats and humans were placed into a medium at

different glucose concentrations and supplemented with an

appropriate amount of BAY55-9837. BAY55-9837 induced

insulin secretion in islets in a medium containing 8 mmol/L

glucose. However, its effect on insulin secretion was not observed

in the 3 mmol/L glucose medium (62), effectively demonstrating

that BAY55-9837 stimulates glucose-dependent insulin secretion.

When BAY55-9837 was administered to rats either intravenously or

subcutaneously, both the administration methods effectively

induced insulin secretion and reduced blood glucose levels, and

the hypoglycemic effect exhibited was similar to that of GLP-1.

Additionally, there was no sign of hypoglycemia even with long-

term continuous administration. Continuous subcutaneous

injection of BAY55-9837 into rats resulted in a dose-dependent

decrease in mean arterial pressure (62), which drew our attention.

Unfortunately, BAY55-9837, similarly to natural VIP, exhibits a

high sensitivity to dipeptidyl peptidase-IV, has poor metabolic

stability (63), and deamidation at its asparagine sites results in

rapid renal clearance (64). Therefore, this agonist would require

continuous administration to maintain its pharmacological

effectiveness, which limits its potential application in the

treatment of type 2 diabetes.

To improve the stability of peptides, the recombinant peptide

DBAYL (32 amino acids) was designed and produced using the

gene recombination technology (65). The poor stability of BAY55-

9837 is due to the high sensitivity of the H-S sequence at the N-

terminus to dipeptidyl peptidase-IV, which prevents it from

activating VPAC2 (61, 65). DBAYL adds a methionine to the N-

terminus, blocking the N-terminal sensitive sequence, thus

improving its stability and biological activity. DBAYL, a derivative

of PACAP, activates VPAC2 to stimulate insulin secretion in a

glucose-dependent manner, thereby effectively increasing glucose

disposal (65). The accumulation of cAMP reflects the receptor

potency of DBAYL. Its binding affinity to human VPAC1 receptors

is only 1/1083 of its affinity to human VPAC2, and it has no activity

against human PAC1 receptors. The half-life of DBAYL in mice is

1.98 h, which is approximately 23.8 folds that of BAY55-9837 in
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vitro (65, 66), prolonging the hypoglycemic time. In 3T3-L1

adipocytes treated with DBAYL, the expression of insulin

receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT4)

is significantly increased (65). IRS-1 is a key molecule for insulin

signal transduction, and GLUT4 is an important carrier in glucose

transport (67, 68). In addition, DBAYL increases the translocation

of GLUT4, which is translocated from the cytoplasm to the

cytomembrane in a non-insulin-dependent manner (65, 69).

These proteins facilitate effective glucose uptake and utilization.

Although DBAYL has some advantages, its half-life limits its use as

a viable therapeutic drug for type 2 diabetes.

One approach to improve the stability of peptides is to attach

polyethylene glycol (PEG) to peptides to prolong their action time.

PEGylation increases the molecular weight of peptides, reduces

renal clearance, prevents the degradation by peptidases, and

maintains effective plasma concentration (70, 71). Therefore, the

structure of BAY55-9837, which is prone to deamidation, was

modified by adding a cysteine to the C-terminus to link it to

PEG to produce its analogues, such as BAY (Q9Q28C32) PEG22

and BAY (Q9Q28C32) PEG43 (22- and 43-kDa PEGylated

peptides, respectively) (72, 73). Both of them retained a high

selectivity for VPAC2, extending their bioactivity. An

intraperitoneal glucose tolerance test was performed in rats 3 h

after subcutaneous injection of BAY (Q9Q28C32) PEG22 and BAY

(Q9Q28C32) PEG43; both of these analogues induced substantially

enhanced glucose disposal in rats. Moreover, a glucose tolerance test

conducted 6 h later showed that only BAY (Q9Q28C32) PEG43

triggered a hypoglycemic effect. This indicates that the

hypoglycemic action duration of BAY (Q9Q28C32) PEG22 and

BAY (Q9Q28C32) PEG43 is at least 3 and 6 h, respectively (72).

Compared with that of the original analogue BAY55-9837, these

PEGylated peptides have significantly prolonged the half-lives. The

structural stability of VPAC2-selective agonists remains to be

improved, but it has been shown that the activation of VPAC2

on b-cells promotes insulin secretion in a glucose-dependent

manner, which will inform future hypoglycemic drug innovations.
Application of nanoparticles on
VPAC2-selective agonists

Amino acid site-directed mutagenesis and PEGylation can

prolong the half-life of BAY55-9837, but the duration of its

hypoglycemic effect is currently not sufficient to allow its use as a

viable treatment for type 2 diabetes. The emerging nanoparticle

technology can be used to create applicable drug delivery systems

that may be able to prolong drug action time and reduce side effects

(74); hence, the current advances in the development of

nanoparticle-based VPAC2-selective agonists are considered in

this review. Nanoparticles, as sustained-release carriers, can slowly

release VPAC2-selective agonists to maintain their effective

concentration in patients and continually stimulate insulin

secretion without causing hypotension and other potential side
Frontiers in Endocrinology 06
effects caused by current drug candidates, which are related to

infusion rate and high dose (75, 76). Nanoparticle conjugation with

VPAC2-selective agonists can not only prolong the half-lives but

can also facilitate a targeted drug delivery to improve drug efficacy

(74, 77). Selenium nanoparticles (SeNPs) have been proven to delay

the progression of diabetes owing to their antioxidant properties

(78, 79). However, the unstable state of selenium can easily cause its

transformation, this can be prevented by modifying SeNPs with

chitosan to maintain its stability; additionally, chitosan is also

biocompatible (80–82). Therefore, the developed VPAC2-selective

agonists, including BAY55-9837 and DBAYL, have been inserted

into chitosan-modified SeNPs (CS-SeNPs) to form BAY-CS-SeNPs

and SeNPs-CTS-DBAYL, respectively, which are regarded as

potential drugs for the treatment of type 2 diabetes (66, 83).

BAY-CS-SeNPs exhibited a reduced renal clearance due to its

increased molecular weight but showed a significantly extended

half-life of approximately 20.81 h. In vitro medium, a rapid release

of BAY55-9837 was observed in the first 12 h of BAY-CS-SeNPs

administration, which stimulated insulin secretion in a glucose-

dependent manner; the drug release gradually slowed down until

completion at 72 h. The early rapid release phase maymeet the high

insulin requirement for maintaining postprandial glucose, while the

later slow release may maintain nocturnal insulin levels (83). Taken

together, the release rate of BAY-CS-SeNPs satisfies the time curve

of human physiological demand for insulin. Similarly, SeNPs-CTS-

DBAYL was able to rapidly release DBAYL during the first 12 h,

followed by a slow release up to 48 h (66). Its release rate, similarly

to that of BAY-CS-SeNPs, fulfils human physiological requirement

for insulin. The half-life of SeNPs-CTS-DBAYL in mice was up to

14.12 h, 7.1-fold that of DBAYL. The DBAYL released from SeNPs-

CTS-DBAYL was able to highly and selectively activate VPAC2,

induce glucose-dependent insulin secretion, and increase insulin

receptor expression and glucose uptake. The treatment of

hyperglycemia using SeNPs-CTS-DBAYL was evidently better

than that using DBAYL. It inhibited oxidative damage in INS-1

cells due to the presence of CS-SeNPs. Diabetic mice with regular

SeNPs-CTS-DBAYL administration for long periods of time

exhibited regulated blood glucose levels, improved insulin

sensitivity and lipid profile, and preservation of the normal

morphology of pancreas and adipose tissues (66).

The widespread distribution of VIP and its receptors is a major

obstacle to the development of hypoglycemic drugs. Studies have

found that exosomes are nanoscale vesicles secreted by a variety of

cells and have a low immunogenicity and a high drug-carrying

capacity (84, 85). Exosomes can serve as ideal sustained-release

carriers that are highly stable and thus can prolong the half-lives of

drugs. Currently, exosomes are being used in the treatment of

tumors and have yielded promising results (86); hence, attempts to

adapt them in the development of VPAC2-selective agonists are

underway. Because exosomes lack the ability to target pancreatic

islets, they were combined with superparamagnetic iron oxide

nanoparticles (SPIONs), which have the ability to target a specific

location in the body to produce the desired therapeutic efficacy.
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SPIONs are biocompatible and can be targeted to transport drugs

via an external magnetic force to the target location, thus reducing

side effects (87). Recently, a new nanomedicine for VPAC2-selective

agonists has been devised. It consists of BAY55-9837 loaded into

SPIONs-modified exosomes named BAY-exosome-SPION (88).

BAY-exosome-SPION targets and aggregates on b-cell surface
under the action of a magnetic force, and the released BAY55-

9837 binds to VPAC2 receptors on b-cells and enhances insulin

secretion. During the release curve of the BAY-exosome-SPION, it

was observed that BAY55-9837 was released rapidly during the first

5 h and continued to be released until 60 h later. Due to the

presence of exosome-SPION, the half-life of BAY55-9837 in

circulation was extended to 8.39 h and the plasma clearance rate

was reduced (88), implying that the rapid degradation of BAY55-

9837 was prevented, thereby reducing the frequency of

administration. Diabetic mice were treated with BAY-exosome-

SPION twice a day, and they showed significantly reduced

glycosylated hemoglobin levels and body weights as well as

improved lipid profiles after 8 weeks. Furthermore, no significant

toxic damage was observed in mice treated with BAY-exosome-

SPION, which indicated that BAY-exosome-SPION demonstrated

a good biosafety profile in vivo (88). These nanomedicines exert

ideal hypoglycemic effects through suitable drug delivery systems

and possess unique advantages, paving new ways to improve

VPAC2-selective agonists. The characteristics of the VPAC2-

selective agonists mentioned above are summarized in Table 1.

The developed VPAC2-selective agonists are currently in the early

stages of in vitro and in vivo studies, and the clinical specificity and

efficacy still need further research; hence, it would be a while before

viable applications of these agents could be implemented in type 2

diabetes treatment.
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Conclusion

Previous hypoglycemic drug and exogenous insulin

administration reduces blood glucose levels regardless of the

blood glucose levels in vivo, greatly increasing the risk of

hypoglycemia. The emergence of novel hypoglycemic drugs

circumvents this drawback. Several studies have demonstrated

that the specific binding of VIP with VPAC2 receptors on b-cells
can stimulate insulin secretion in a glucose-dependent manner,

eliminating the risk of hypoglycemia. This characteristic has been

used to design and produce VPAC2-selective agonists. In addition,

VIP promotes b-cell proliferation through synergistic activation of

the FoxM1 pathway in a liver–brain–pancreas neuronal relay, but

the molecular mechanisms underlying this pathway still require

further research. Currently, VPAC2-selective agonists are

constantly being innovated to improve their stability and efficacy,

which indicates the possibility of their successful clinical

applications in type 2 diabetes treatment in the future.
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TABLE 1 Structure and half-life of VIP and VPAC2-selective agonists.

Peptide Structure Half-life

VIP HSDAVFTDNYTRLRKQMAVKKYLNSILN Less than 1 min

PACAP27 HSDGIFTDSYSRYRKQMAVKKYLAAVL 5-10 min

PACAP38 HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK 5-10 min

BAY55-9837 HSDAVFTDNYTRLRKQVAAKKYLQSIKNKRY 5 min

DBAYL MHSDAVFTDQYTRLRKQLAAKKYLQSLKQKRY 1.98 h

BAY(Q9Q28C32)PEG22 HSDAVFTDQYTRLRKQVAAKKYLQSIKQKRYC-PEG22 kDa –

BAY(Q9Q28C32)PEG43 HSDAVFTDQYTRLRKQVAAKKYLQSIKQKRYC-PEG43 kDa 3.5 h

BAY-CS-SeNPs BAY55-9837, SeNPs and chitosan 20.81 h

SeNPs-CTS-DBAYL DBAYL, SeNPs and chitosan 14.12 h

BAY-exosome-SPION BAY55-9837, SPION and exosome 8.39 h
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