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Whether neurally-mediated vasodilatation may contribute to exercise hyperemia has
not been completely understood. Bilbring and Burn (1935) found for the first time
the existence of sympathetic cholinergic nerve to skeletal muscle contributing to
vasodilatation in animals. Blair et al. (1959) reported that atropine-sensitive vasodilatation
in skeletal muscle appeared during arousal behavior or mental stress in humans. However,
such sympathetic vasodilator mechanism for muscle vascular bed in humans is generally
denied at present, because surgical sympathectomy, autonomic blockade, and local
anesthesia of sympathetic nerves cause no substantial influence on vasodilatation in
muscle not only during mental stress but also during exercise. On the other hand,
neural mechanisms may play an important role in regulating blood flow to non-contracting
muscle. Careful consideration of the neural mechanisms may lead us to an insight about
a possible neural mechanism responsible for exercise hyperemia in contracting muscle.
Referring to our recent study measuring muscle tissue blood flow with higher time
resolution, this review has focused on whether or not central command may transmit

vasodilator signal to skeletal muscle especially at the onset of voluntary exercise.
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INTRODUCTION

Biilbring and Burn (1935) reported for the first time the existence
of sympathetic cholinergic nerve to skeletal muscle contributing
to vasodilatation in the cat and dog. It is histologically verified
that sympathetic cholinergic nerves innervate blood vessels of
skeletal muscle in several species such as the cat, dog, sheep,
etc., while muscle vasculature in the rat and mouse lacks sympa-
thetic cholinergic innervation (Bolme and Fuxe, 1970; Burnstock,
1980; Guidry and Landis, 2000). Moreover, there is no histologi-
cal evidence for the existence of sympathetic cholinergic nerves to
skeletal muscle in the monkey and man (Bolme and Fuxe, 1970).
Atropine-sensitive vasodilatation in skeletal muscle occurs dur-
ing fighting or arousal behavior in cats and dogs (Ellison and
Zanchetti, 1973; Just et al., 2000). Although Blair et al. (1959)
reported that the forearm vasodilator response to mental stress in
humans was atropine-sensitive and became absent after surgical
sympathectomy, no electrophysiological evidence for sympathetic
cholinergic nerves has been demonstrated in humans (Wallin and
Sundlof, 1982; Saito et al., 1993; Callister et al., 1994). Joyner and
Dietz (2003) suggested that circulating epinephrine and locally
released acetylcholine, but not sympathetic dilator nerve, play a
role in producing the vasodilator response to mental stress in
humans. Even in the dog possessing the sympathetic choliner-
gic system, exercise hyperemia of hindlimb contracting muscle is
not significantly influenced by surgical sympathectomy or gan-
glionic or muscarinic blockade (Donald et al., 1970; Buckwalter
et al., 1997; Buckwalter and Clifford, 1999). Taken together, it
has been currently thought that the sympathetic nervous system

is not responsible for exercise hyperemia as well as vasodila-
tion during mental stress, although sympathetic vasoconstriction
restrains blood flow to active muscle during exercise (Joyner et al.,
1992; Joyner and Halliwill, 2000; Clifford and Hellsten, 2004;
Joyner and Wilkins, 2007; Shoemaker, 2012). Since most previ-
ous findings were obtained with measurements of limb blood
flow via venous occlusion plethysmography and Doppler ultra-
sound at relatively low time resolution, a possible contribution
of neurally-mediated vasodilatation to exercise hyperemia will be
discussed referring to a recent study which measured muscle tis-
sue blood flow with near-infrared spectroscopy (NIRS) at higher
time resolution (Ishii et al., 2012).

SYMPATHETIC VASODILATATION IN SKELETAL MUSCLE
DURING EXERCISE IN ANIMALS

Sympathetic cholinergic nerve can be activated when the local-
ized areas in the hypothalamus, the midbrain periaqueductal gray
matter, and the midbrain ventral tegmental area (VTA) are stim-
ulated in the cat (Eliasson et al., 1951; Abrahams et al., 1960;
Hilton et al., 1983; Bandler and Carrive, 1988; Matsukawa et al.,
1993, 2011). It is of interest that electrical and chemical stimu-
lation of neurons in the VTA increased blood flow and vascular
conductance of the rat triceps surae muscle (Matsukawa et al.,
2011; Nakamoto et al., 2011), although its muscular vasculature
lacks sympathetic cholinergic innervation (Guidry and Landis,
2000). The vasodilation may be mediated by nitrosyl factors
released from sympathetic postganglionic fibers and/or the vas-
cular endothelium (Davisson et al., 1994). When visualizing using
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an X-ray angiography the vascular responses of small arteries
(internal diameter, 100-500 um) in the cat triceps surae muscle,
stimulation of the hypothalamic defense area caused tremendous
increases in internal diameter and cross sectional area of the small
arteries, which were abolished by muscarinic blockade or sec-
tion of the sciatic nerve (Matsukawa et al., 1997). Although the
vasodilation is mediated by activating sympathetic cholinergic
nerve, whether the sympathetic cholinergic system is functionally
operating during exercise is controversial.

Atropine-sensitive vasodilatation in skeletal muscle occurs
during fighting or arousal behavior or classical conditioning of
limb flexion with conditioned audio-tone stimulus and uncon-
ditioned electrical stimulation of a paw in animals (Ellison and
Zanchetti, 1973; Just et al., 2000). However, the increase in
femoral blood flow during treadmill exercise is unaffected by sur-
gical sympathectomy or muscarinic blockade (Donald et al., 1970;
Buckwalter et al., 1997; Buckwalter and Clifford, 1999). A rea-
son responsible for the discrepancy may be that the sympathetic
cholinergic vasodilatation, if any, may be masked by other mecha-
nisms such as metabolic or flow-mediated vasodilatation and may
appear during a voluntary type of exercise with a smaller mus-
cle mass, rather than automatic rhythmic movement with whole
body mass. Komine et al. (2008) found that brachial blood flow
of the exercising forelimb, heart rate (HR), arterial blood pres-
sure (AP) increases at the onset of voluntary static exercise in
cats and intravenous injection of atropine blunts the increases
in brachial blood flow and vascular conductance (Figure 1). It is
likely that the sympathetic cholinergic mechanism is capable of
evoking muscle vasodilatation at the onset of a voluntary type
of exercise in conscious animals as well as fighting or arousal
behavior.

MUSCLE SYMPATHETIC NERVE ACTIVITY DURING EXERCISE
IN HUMANS

Sympathetic mechanisms responsible for muscle vasodilatation,
if any, can be explained by withdrawal of sympathetic adren-
ergic vasoconstrictor activity and/or facilitation of sympathetic
cholinergic or nitroxidergic vasodilator activity. Saito et al. (1993)
and Callister et al. (1994) reported that muscle sympathetic
nerve activity (MSNA) to a resting leg or arm decreases dur-
ing anticipation and initiation of cycling exercise and then
increases during the later period of exercise, suggesting sympa-
thetic withdrawal prior to and at the start of exercise. However,
the response of MSNA to non-contracting muscle at the onset
of one-legged cycling is still controversial [increased (Herr et al.,
1999), decreased (Saito and Mano, 1991), and unchanged (Ray
et al., 1993)]. Fisher et al. (2005) reported that vascular con-
ductance in the resting leg transiently increases at the onset
of contralateral isometric exercise, whereas MSNA to the leg is
unchanged, suggesting that the transient increase in vascular con-
ductance at the onset of exercise is unrelated to the changes in
MSNA. Thus, withdrawal of muscle sympathetic vasoconstric-
tor activity if any cannot explain the initial vasodilatation during
exercise.

Regarding sympathetic cholinergic nerve in animals, only a
few studies have reported activity of presumable muscle sym-
pathetic cholinergic fibers in the cat (Horeyseck et al., 1976;
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Lopes and Palmer, 1977; Dean and Coote, 1986). These studies
revealed that postganglionic cholinergic fibers have quite differ-
ent characteristics from sympathetic adrenergic vasoconstrictor
fibers and they are spontaneously inactive and excited in asso-
ciation with atropine-sensitive vasodilatation during hypotha-
lamic stimulation. In contrast, a microneurographical attempt
to record sympathetic cholinergic vasodilator activity has been
failed in humans (Wallin and Sundlof, 1982; Saito et al., 1993;
Callister et al., 1994). This may be attributed to no anatom-
ical innervation of sympathetic cholinergic nerve for skele-
tal muscle (Bolme and Fuxe, 1970) or to a reason that it
is difficult to measure sympathetic cholinergic activity with
a conventional microelectrode. Thus, direct electrophysiologi-
cal evidence for sympathetic cholinergic nerves is lacking in
humans.

CAN NEURAL MECHANISMS CONTRIBUTE TO EXERCISE
HYPEREMIA IN SKELETAL MUSCLE AT THE ONSET OF
EXERCISE IN HUMANS?

Neural mechanisms may play an important role in regulating
blood flow in non-contracting muscle. Accordingly, before con-
sidering neural mechanisms responsible for exercise hyperemia
in contracting muscle, neural control of blood flow in non-
contracting muscle during contralateral limb exercise should be
taken into account. As candidates for this, it is considered that
sympathetic cholinergic and/or f-adrenergic mechanisms may
cause vasodilation in blood vessels of in non-contracting muscle,
while a sympathetic a-adrenergic mechanism may cause vasocon-
striction (Eklund and Kaijser, 1976; Sanders et al., 1989; Reed
et al., 2000). These mechanisms affect in concert blood flow to
non-contracting muscle, depending on the time course, modality,
and intensity of exercise, to what extent muscle mass is engaged
during exercise, of which limb blood flow is measured, and age
(Duprez et al., 1989; Taylor et al., 1989, 1992). For example, the
vascular response of non-contracting muscle changes along the
time course of exercise (Taylor et al., 1989). However, as long
as the initial transient phase of exercise is targeted, blood flow
in a resting limb may increase during static or dynamic exer-
cise of the contralateral limb (Eklund et al., 1974; Eklund and
Kaijser, 1976; Rusch et al., 1981; Taylor et al., 1989; Jacobsen
et al., 1994). Eklund and Kaijser (1976) suggested that vasodi-
latation of the resting forearm during contralateral handgrip is
mediated by B-adrenergic mechanisms and, if the contraction
is prolonged, a-adrenergic vasoconstriction takes place. Reed
et al. (2000) suggested that B-adrenergic mechanisms due to
circulating catecholamines and locally-released nitric oxide con-
tribute to the vasodilatation, while sympathetic dilator nerves
are not responsible for the limb vasodilatation seen after stellate
block. In contrast, Sanders et al. (1989) reported that the ini-
tial vasodilatation in the resting limb was blocked by atropine
but not by propranolol, suggesting that sympathetic cholinergic
nerves may play a role in causing vasodilatation. The discrep-
ancy among the previous findings may be partly attributed to
technical limitation of blood flow measurement with venous
occlusion plethysmography, which is a useful technique but does
not provide the rapid dynamic changes in muscle tissue blood
flow (Casey et al., 2008). Recently, Ishii et al. (2012) examined
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FIGURE 1 | (A) The effect of atropine on the responses in heart rate (HR), conductance during static exercise. All cardiovascular responses at the onset
arterial blood pressure (AP), and brachial blood flow during voluntary static of exercise were blunted by atropine. Especially, the peak increases in
exercise in a conscious cat. In the presence of atropine, the increase in brachial blood flow and vascular conductance were decreased by atropine to
brachial blood flow was blunted, although the baseline blood flow was not 54-55% of the control responses. 'Significant difference (P < 0.05) before
altered. (B) The effect of atropine on the average responses in HR, mean and after atropine. *Significant difference (P < 0.05) at a given time from the
arterial blood pressure (MAP), brachial blood flow, and brachial vascular preexercise level. Adopted from Komine et al. (2008) with permission.

the dynamic changes in concentration of oxygenated-hemoglobin
(Oxy-Hb) of the non-contracting vastus lateralis (VL) muscle
with NIRS as an index of muscle tissue blood flow. The Oxy-Hb
in the non-contracting VL rapidly increased at the start of con-
tralateral one-legged exercise (Figure2A) but failed to increase
at the start period of passive one-legged exercise. Since the Oxy-
Hb also increased during mental imagery of the exercise, central

command may contribute to increasing tissue blood flow in the
non-contracting muscle at the start of contralateral exercise. On
the other hand, Fisher and White (2003) reported that both vol-
untary and electrically-evoked isometric plantar flexion caused
an initial increase in calf vascular conductance of the contralat-
eral resting leg and Wray et al. (2005) and Trinity et al. (2010,
2011) reported that passive knee movement increased blood
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FIGURE 2 | (A) The time courses of the relative changes in
oxygenated-hemoglobin (Oxy-Hb) and deoxygenated-hemoglobin (Deoxy-Hb)
of the contracting (e) and non-contracting (o) vastus lateralis (VL) muscles
during voluntary one-legged cycling exercise in humans. Vertical dashed lines
indicate the start and end of one-legged cycling. A vertical dotted line is
placed at 15s from the exercise onset. At the start of voluntary one-legged
exercise, Oxy-Hb in the contracting and non-contracting VL muscles
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increased with the same time course and magnitude. There was no
significant difference (P > 0.05) in the Oxy-Hb response between the two
muscles at the initial 15's period of exercise. Subsequently, Oxy-Hb
decreased and Deoxy-Hb increased in the contracting VL as long as exercise
was continued. Adopted from Ishii et al. (2012) with permission. (B) A
hypothesis that centrally-induced vasodilator signal is equally transmitted to
bilateral VL muscles at the start of voluntary one-legged exercise in humans.

flow to the contralateral leg. These studies suggest that exercise
pressor reflex, probably muscle mechanoreflex, may play a role
in inducing the contralateral vasodilatation as well. In addition,
the hyperemic response may result in part from a central hemo-
dynamic mechanism, i.e., an increase in cardiac output resultant
from mechanoreflexly evoked tachycardia (Trinity et al., 2010,
2011).

Control of increased blood flow to active muscles is much
more complicated and is mainly the result of the interplay of neu-
ral vasoconstrictor activity, locally derived vasoactive substances
(released from contracting muscles, vascular endothelium, or
red blood cells), and mechanical factors (Rddegran and Saltin,
1998; Saltin et al., 1998; Clifford and Hellsten, 2004; Wray et al.,
2005; Trinity et al., 2010, 2011, 2012). On the other hand, it
has been thought that the sympathetic nervous system does not
appear to be responsible for vasodilatation, although sympa-
thetic a-adrenergic vasoconstrictor restrains blood flow to active
muscles during exercise (Williams et al., 1985; Joyner et al,

1992; Clifford and Hellsten, 2004; Joyner and Wilkins, 2007).
Instead, locally derived vasoactive substances and mechanical fac-
tors should determine the increase in blood flow to active muscle.
Nevertheless, since the increase in Oxy-Hb of the contracting
muscle had the almost same time course and magnitude as the
increase in Oxy-Hb of the non-contracting muscle at the initial
15-s period of one-legged cycling (Figure 2A; Ishii et al., 2012),
this finding leads to an idea that centrally-induced vasodilator
signal may be transmitted to active muscle at least partly at the
start of exercise (Figure 2B). However, a more comprehensive
study including autonomic blockade will be necessary to test this
hypothesis.
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