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A Bayesian Framework for Patient-Level
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Patient-level health economic data collected alongside clinical trials are an important component of the process of
technology appraisal. For end-of-life treatments, the modeling of cost-effectiveness data may involve some form of
partitioned survival analysis, in which measures of quality of life and survival for pre- and postprogression periods
are combined to generate aggregate measures of clinical benefits (e.g., quality-adjusted survival). In addition,
resource use data are often collected and costs are calculated for each type of health service (e.g., treatment, hospital,
or adverse events costs). A critical problem in these analyses is that effectiveness and cost data present some complex-
ities, such as nonnormality, spikes, and missingness, which should be addressed using appropriate methods to avoid
biased results. This article proposes a general Bayesian framework that takes into account the complexities of trial-
based partitioned survival cost-utility data to provide more adequate evidence for policy makers. Our approach is
motivated by, and applied to, a working example based on data from a trial assessing the cost-effectiveness of a new
treatment for patients with advanced non–small-cell lung cancer.
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The statistical analysis of health economic data is an
increasingly important component of clinical trials,
which provide one of the earliest opportunities to gener-
ate economic data that can be used for decision making.1

The standard analysis of individual-level data involves
the comparison of 2 interventions for which suitable
measures of effectiveness and costs are collected on each

patient enrolled in the trial, often at different time points
during the follow-up. Different types of resource use
data (e.g., hospital visits, consultations, scans, number of
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doses, etc.) are collected for each patient and time point
using electronic health records, self-reported question-
naires, or a combination of these. Service use informa-
tion is combined with unit prices to calculate patient-
level costs for different health services and then
summed up over the follow-up. The effectiveness is
often measured in terms of preference-based health-
related quality-of-life instruments (e.g., the EQ-5D
questionnaires2) and combined with national tariff sys-
tems to express the patients’ health states in terms of
utility scores. For the United Kingdom, utilities are
usually measured on a scale from �0:594 (worst ima-
ginable health) to 1 (perfect health).3 A utility of zero
is associated with death, whereas negative utilities
denote health states that are valued ‘‘worse than death’’
by the patients. A single metric, called quality-adjusted
life-years (QALYs), is then calculated by aggregating
the utility scores over the follow-up and represents the
health outcome of choice in the economic analysis. A
common approach for calculating a QALY is the area
under the curve (AUC)4:

QALYit =
XJ

j= 1

uijt + uij�1t

2

� �
dj, ð1Þ

where uijt is the utility score for the i-th patient in
treatment t at the j-th time in the trial, while
dj =(Timej � Timej�1)=(Unit of time) is the fraction of
the time unit (typically 1 y) between time j� 1 and j. We
note that for patients who die, assumptions have to be
made about their utility values at all time points after the
time of death so that their QALYs can be computed
using Equation 1. Often, a utility of 0 is associated with
a state of death at a given time point and is carried over
until the last follow-up.

When the primary endpoint of the trial is survival,
such as in cancer trials, in which patients may be either
dead or still alive at the end of the study, it is possible to
combine the information from both utility and survival
for each patient into a single measure. More specifically,
the patient-level survival at time j is multiplied by his or
her corresponding utility values at the same time to for-
mulate a QALY endpoint on an AUC scale, also known
as quality-adjusted survival (QAS):

QASit =
XJ

j= 1

uijt + uij�1t

2

� �
sijt + sij�1t

2

� �
dj, ð2Þ

where uijt and sijt are the utility and the survival time for
the i-th patient in treatment t at the j-th time. The calcu-
lation in Equation 2 can be thought as a time-to-event
analysis using the QALY as the analysis endpoint.5

Partitioned Survival Cost-Utility Analysis

When survival time changes rapidly after the progression
of the disease, inferences about mean utilities should take
into account the differences between pre- and postpro-
gression responses as well as their dependence relation-
ships. This is the rationale behind partitioned survival
analysis, which involves the partitioning of survival
data for the time-to-event endpoint, typically overall
survival (OS), into 2 components: progression-free sur-
vival (PFS) and postprogression survival (PPS), with
OS=PFS+PPS. In this context, QAS data can be
computed separately for PFS and PPS by multiplying
each survival component by the corresponding utilities
collected during the pre- and postprogression periods.
The partitioning of health-related quality-of-life data
based on different components of survival time forms
the basis for what is known as partitioned survival cost-
utility analysis, in which patient-level QAS based on OS
data can be expressed as

QASOS
it =QASPFSit +QASPPSit , ð3Þ

where QASPFSit and QASPPSit are the QAS computed as in
Equation 2 using patient-level utilities and survival times
for the pre- and postprogression periods, respectively. In
many cases, the different survival components in Equa-
tion 3 are analyzed separately using parametric regres-
sion models.6,7 However, direct modeling of QASPPSit is
not possible when the utility data are collected only up
to progression; in this case, the utilities after disease pro-
gressions are usually extrapolated based on some model-
ing assumptions and OS or PFS data.8

We note that the calculation of QAS in Equation 2
and Equation 3 assumes the absence of censoring. In
practice, however, some of the patients may be still alive
at the end of the trial (censored). When this occurs,
unfortunately, the calculation of QAS data based on util-
ity scores may alter survival times and result in informa-
tive censoring, which can distort the inferences.5 For the
rest of the article, we will assume that no informative
censoring occurs (in our case study, .99% of patients
had died during the follow-up) so that standard
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partitioned survival cost-utility analysis methods can be
assumed to be valid. In the ‘‘Discussion’’ section, we will
discuss the potential implications and possible methods
to perform the economic assessment in the presence of
censored data.

Statistical modeling for trial-based cost-utility data
has received much attention in both the health economics
and the statistical literature in recent years,9,10 increas-
ingly often under a Bayesian approach.11–13 From the
statistical point of view, this is a challenging problem
because of the generally complex relationships linking
the measure of effectiveness (e.g., QALYs) and the asso-
ciated costs. First, the presence of a bivariate outcome
requires the use of appropriate methods to account for
the correlation between the variables.14–16 Second, both
utility and cost data are characterized by empirical distri-
butions that are highly skewed, and simplifying assump-
tions, such as (bivariate) normality of the underlying
distributions, are usually not granted. The adoption of
parametric distributions that can account for skewness
(e.g., beta for the utilities and gamma or log-normal for
the costs) has been suggested to improve the fit of the
models.17–19 Third, data may exhibit spikes at 1 or both
of the boundaries of the range for the underlying distri-
butions, for example, zero costs and perfect health (i.e.,
utility of 1), which are difficult to capture with standard
parametric models.19,20 The use of more flexible formula-
tions, known as hurdle models, has been recommended
to explicitly account for these ‘‘structural’’ values.21–23

Hurdle models consist of a mixture of a point mass dis-
tribution (the spike) and a parametric model fitted to the
natural range of the relevant variable without the bound-
ary values. Finally, individual-level data from clinical
trials are almost invariably affected by the problem of
missing data. Analyses that are limited to individuals with
fully observed data (complete case analysis) are inefficient
and yield biased results when the completers are not a ran-
dom sample of all individuals in the trial. Alternative and
more efficient approaches, such as multiple imputation
and likelihood-based methods, rely on the less restrictive
assumption that missingness can be fully explained based
on the observed data, an assumption known as missing at
random (MAR).24,25 However, MAR can never be tested
from the data at hand, and when missingness depends on
some unobserved data, an assumption known as missing
not at random (MNAR), analyses based on the observed
data alone will yield biased results. Content-specific knowl-
edge and tailored modeling approaches can be used to
make inferences under MNAR, and within a Bayesian
approach, informative prior distributions represent a

powerful tool for conducting sensitivity analysis to differ-
ent missingness assumptions.26

Outline

In this article, we extend the current methods for model-
ing trial-based partitioned survival cost-utility data, tak-
ing advantage of the flexibility of the Bayesian approach,
and specify a joint probabilistic model for the health eco-
nomic outcomes. We propose a general framework that
is able to account for the multiple types of complexities
affecting individual-level data (correlation, missingness,
skewness, and structural values) while also explicitly
modeling the dependence relationships between differ-
ent types of quality of life and cost components. The
article is structured as follows: first, in the next section,
we present our modeling framework. In the ‘‘Example:
The TOPICAL Trial’’ section, we present our motivat-
ing example, and in the ‘‘Application to the TOPICAL
Study’’ section, we specify the model to handle the
characteristics of the data from the case study. In the
‘‘Results’’ section, we summarize the statistical and
health economic results of the analysis. Finally, in the
‘‘Discussion’’ section, we conclude with a discussion.

Methods

Consider a clinical trial in which patient-level information
on a set of suitably defined effectiveness and cost vari-
ables is collected at J time points on N individuals, who
have been allocated to T intervention groups. Assume
that the primary endpoint of the trial is OS, whereas the
secondary endpoints include PFS, a self-reported health-
related quality-of-life questionnaire (e.g., EQ-5D), and
health records on different types of services (e.g., drug fre-
quency and dosage, hospital visits, etc.). Following stan-
dard health economic notation, we denote with eit and cit

the 2 sets of health economic outcomes (effectiveness and
costs) collected for the i-th individual in treatment t of the
trial. For simplicity, we define eit and cit based on the
variables collected from our motivating example that is
presented in detail in the ‘‘Example: The TOPICAL
Trial’’ section, although the framework can be modified
to accommodate different types of outcomes.

The effectiveness outcomes are represented by prepro-
gression (ePFS

it =QASPFS) and postprogression (ePPS
it =

QASPPS) QAS data calculated using survival and utility
data collected up to and beyond progression. We denote
the full set of effectiveness variables as eit =(ePFSit , ePPSit ),
formed by the pre- and postprogression components.
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The cost outcomes are represented by a set of K vari-
ables (cit = ck

it, for k = 1, . . . ,K) calculated based on
K different types of health services and associated
unit prices. We denote the full set of cost variables as
cit =(c1

it, . . . , cK
it ), formed by the K different cost compo-

nents. Finally, it is also common to have some patient-
level information on a set of additional variables xit (for
example, on age, sex, or potential comorbidities) that may
be included in the economic analysis. Without loss of gen-
erality, we assume in the following that only 2 interven-
tions are compared: t = 1 is some standard (e.g., currently
recommended or applied by the health care provider), and
t= 2 is a new intervention being suggested to potentially
replace the standard.

The objective of the economic evaluation is to per-
form a patient-level partitioned survival cost-utility anal-
ysis by specifying a joint model p(eit, citju), where u
denotes the full set of model parameters. Among these
parameters, interest is in the marginal mean effectiveness
and costs m=(met,mct) that are used to inform the
decision-making process. Different approaches can be
used to specify p(eit, citju). Here, we express the joint dis-
tribution as

p(eit, citju)= p(eitjue)p(citjeit, uc), ð4Þ

where p(eitjue) is the marginal distribution of the effec-
tiveness and p(citjeituc) is the conditional distribution
of the costs given the effectiveness, respectively, indexed
by ue and uc, with u=(ue, uc). Based on previous
works,21,27 we specify the model in terms of a marginal
distribution for the effectiveness and a conditional distri-
bution for the costs. A key advantage of using a condi-
tional factorisation, compared with a multivariate
marginal approach, is that univariate models for each
variable can be flexibly specified to tackle the idiosyncra-
sies of the data (e.g., nonnormality and spikes) while also
capturing the potential correlation between the variables.
We now describe how the 2 factors on the right-hand
side of Equation 4 can be specified.

Marginal Model for the Effectiveness

For each individual and treatment, we specify a marginal
distribution of the effectiveness variables eit =(ePFSit ,
ePPSit ) using the conditional factorization:

p(eitjuet)= p(ePFSit juPFS
et )p(ePPSit jePFSit , uPPS

et ), ð5Þ

where uet =(uPFS
et , uPPS

et ) are the treatment-specific effec-
tiveness parameters formed by the 2 distinct sets that
index the marginal distribution of ePFSit and the condi-
tional distribution of ePPSit jePFSit . The parameters uet can
also be expressed in terms of location fiet =(fPFS

iet ,fPPS
iet )

and ancillary cet =(cPFS
et ,cPPS

et ) parameters, the latter
comprising some standard deviations set =(sPFS

et ,sPPS
et ).

Modeling of the location parameters as a function of
other variables is typically achieved through a general-
ized linear structure and some link function that relates
the expected value of the response to the linear predic-
tors in the model. For example, consider

ePFSit ; f PFS(fPFS
iet ,cPFS

et ) and ePPSit jePFSit ; f PPS(fPPS
iet ,cPPS

et ),

ð6Þ

where f PFS( � ) and f PPS( � ) are generic parametric distri-
butions that model ePFSit and ePFSit jePFSit , respectively. The
location parameters are then modeled as

g(fPFS
iet )=aPFS

0t + ½. . .�,
g(fPPS

iet )=aPPS
0t +aPPS

1t (ePFSit � mPFS
et )+ ½. . .�,

ð7Þ

where g( � ) is the link function, aPFS= (aPFS
0t , . . . ) and

aPPS= (aPPS
0t ,aPPS

1t , . . . ) are the sets of regression para-
meters indexing the 2 models, and the notation + ½. . .�
indicates that other terms (e.g., quantifying the effect of
relevant covariates xit) may be included in each model.
In the absence of covariates, the quantities mPFS

et =
g�1(aPFS

0 ) and mPPS
et = g�1(aPPS

0 ) can be interpreted as the
population mean effectiveness for ePFS and ePPS, respectively.

Conditional Model for the Costs Given the
Effectiveness

We factor the distribution of citjeit as the product of a
sequence of K conditional cost distributions:

p(citjeit, uct)= p(c1
itjeit, u

1
ct) � � � p(cK

it jeit, c
1
it, . . . , cK�1

it , uK
ct),

ð8Þ

where uct =(u1
ct, . . . , uK

ct) are the treatment-specific para-
meters that index the K conditional cost distributions.
These parameters can be expressed in terms of K location
fict =(f1

ict, . . . ,fK
ict) and ancillary cct =(c1

ct, . . . ,cK
ct)

parameters, the latter including some standard deviations
sct =(s1

ct, . . . ,sK
ct). We can model each conditional cost

distribution as

1036 Medical Decision Making 41(8)



c1
itjeit ; f 1(f1

ict,c
1
ct), � � � ,

cK
it jeit, c

1
it, . . . , cK�1

it ; f K (fK
ict,c

K
ct), ð9Þ

where f 1( � ), . . . , f K ( � ) denote the distributions associ-
ated with the K cost components. The location para-
meters are modeled as a function of other variables using
the generalized linear forms:

g(f1
ict)=b1

0t +b1
1t(e

PFS
it � mPFS

et )+b1
2t(e

PPS
it � mPPS

et )+ ½. . .�,

..

.

g(fK
ict)=bK

0t +bK
1t(e

PFS
it � mPFS

et )+bK
2t(e

PPS
it � mPPS

et ) +

bK
3t(c

1
it � m1

ct)+ . . . +bK
K + 1, t(c

K�1
it � mK�1

ct )+ ½. . .�,
ð10Þ

where b1 =(b1
0t,b

1
1t,b

1
2t, . . . ), . . . ,bK =(bK

0t,b
K
1t,b

K
2t,b

K
3t,

. . . ,bK
K + 1, t . . . ) are the sets of regression parameters index-

ing the K models. Assuming other covariates are absent, the
quantities m1

ct = g�1(b1
0t), . . . ,mK

ct = g�1(bK
0t) can be inter-

preted as the K population mean cost components.
Figure 1 provides a visual representation of the pro-

posed modeling framework. The effectiveness and cost dis-
tributions are represented in terms of combined ‘‘modules’’
(red and blue boxes), in which the random quantities are
linked through logical relationships. Notably, this is gen-
eral enough to be extended to any suitable distributional
assumption as well as to handle covariates in each module.
In the following section, we present our motivating exam-
ple and describe the modeling specification in our analysis.

Figure 1 Joint distribution p(e, c), expressed in terms of a marginal distribution for the effectiveness variables e=(ePFS, ePPS) and
a conditional distribution for the cost variables c=(c1, . . . , cK ) given e, respectively, indicated with a solid red and blue box. The
parameters indexing the corresponding distributions or modules are denoted with different Greek letters, whereas i and t denote
the individual and treatment indices. The notation b1

�t and bK
�t indicates the set of the conditional mean cost regression parameters

for c1 and cK , excluding the intercepts. The solid black and colored arrows show the dependence relationships between the
parameters within and between different modules, respectively. The 3 large dots indicate the inclusion in the framework of the
conditional distributions for the cost variables ck je, ck , . . . , ck�1, for 2\k\K, omitted for clarity from the figure, whereas the
small dots enclosed in the square brackets indicate the potential inclusion of other covariates at the mean level in each module.
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Example: The TOPICAL Trial

The TOPICAL study was a double-blind, randomized,
placebo-controlled, phase III trial conducted in the
United Kingdom. Participants were elderly patients with
non–small-cell lung cancer receiving best supportive care
and considered unfit for chemotherapy because of poor
performance status and/or multiple medical comorbid-
ities.28 Subjects were randomly assigned to receive a con-
trol (oral placebo, t = 1) or erlotinib (150 mg per day,
t= 2) until disease progression or unacceptable toxicity.
The original trial investigated 350 patients in the active
treatment and 320 in the placebo group, with the time
horizon of the cost-effectiveness analysis being 1 y. For
our analysis, we had access to patient-level QAS and cost
data related to a subsample of 300 patients from the
original study (150 in the placebo and 150 in the erlotinib
group, respectively).

The primary endpoint of the trial was OS; secondary
endpoints were PFS (defined as the time between rando-
mization and progression or death) and health-related
quality of life measured by the EQ-5D-3L questionnaire,
which was collected at monthly intervals up to and beyond
progression for each patient. Because all patients pro-
gressed/died during the follow-up of the study, no extrapo-
lation of OS and PFS was required. For each individual,
PFS and PPS QAS data were obtained by combining his
or her available EQ-5D utilities with the corresponding
survival times during the follow-up using the formula
shown in Equation 2. This implies that QAS may take
both negative and positive values according to the utilities
and survival observed during the pre- (ePFS

it ) and postpro-
gression (ePPS

it ) periods. Given the small proportions of
missing EQ-5D data in both treatment groups (reported in
the online supplementary material), individual-level QAS
was available for more than 80% of the patients.

The costs are calculated on 3 different components: 1)
drug (erlotinib), radiotherapy, and additional anticancer
treatments, denoted with c

drug
it ; 2) patient management

(e.g., hospital visits), denoted with chosit ; 3) and manage-
ment of treatment-related adverse events (e.g., rash),
denoted with caeit . Resource use was collected monthly on
case report forms and combined with unit prices from
published sources to derive the costs for each compo-
nent. Figures 2 and 3 show the histograms of the distri-
butions of the different components of the observed
QAS and cost data in both treatment groups, respec-
tively. The number of observations and the empirical
mean and standard deviations for each variable are
reported in the graphs. The observed distributions of
ePFSit and ePPSit show a considerable degree of skewness in
both treatment groups, especially for postprogression

QAS data. Although most of the values for ePFSit lie in
½0:002; 0:2� with no actual observed zero values, the dis-
tributions of ePPSit show a lower bound at zero, with
about 50% of the individuals in each group being associ-
ated with this boundary (structural value). All 31 patients
(12 in the control and 19 in the intervention) associated
with negative ePFS values (mean = 20.05, SD = 0.12)
have either died or improved to positive ePPS values in
the postprogression period. The observed distributions
of c

drug
it , chosit , and caeit show a high degree of skewness,

especially in the intervention group. All costs are defined
on a positive range, but each component has a different
variability, with cdrug in the intervention being the com-
ponent associated with the largest standard deviation.
The proportions of individuals who are associated with a
structural zero cost are 60% (only in the control group)
for c

drug
it , 25% (in each group) for chosit , and 18% (in each

group) for caeit .
The total number of individuals with fully observed

data for all variables (completers) was 249 (83%),
whereas among those with partially observed data (51;
27%), most were associated with unobserved values for
either ePFSit , ePPSit , or c

drug
it or a combination of these (29/

51 = 57%). A detailed presentation of the missingness pat-
terns is reported in the online supplementary material. We
note that missingness in e is only due to incomplete EQ-5D
questionnaires (and thus utility scores) and not censoring of
survival time, as all patients progressed/died by the time of
the analysis. Missingness in c is due to incomplete informa-
tion from the case report forms on resource use.

Application to the TOPICAL Study

Model Specification

Throughout, we refer to our motivating example to
demonstrate the flexibility of the proposed approach for
dealing with the complexities of cost-utility data. The
selection of the parametric distributions to model each
variable is based on relative and absolute measures of fit,
including predictive information criteria and predictive
checks, which are explained and reported in detail in the
‘‘Model Assessment’’ section. We start by modeling ePFSit

using a Gumbel distribution with an identify link func-
tion for the mean:

ePFSit ;Gumbel(fPFS
et ,sPFS

et ),

fPFS
et =aPFS

0t ,
ð11Þ

where fPFS
et and sPFS

et are the mean and standard devia-
tion of ePFSit . The Gumbel distribution has already been
recommended for modeling utility data, as it is defined
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on the real line while also being able to capture skew-
ness.29 We parameterize the Gumbel distribution in
terms of mean and standard deviation to facilitate the

specification of the priors on the parameters, compared
with using the canonical location a (real) and scale b.0

parameters. More specifically, the mean and standard

Figure 2 Histograms of the distributions of the pre- and postprogression quality-adjusted survival (QAS) data, in the control (a,
b) and intervention (c, d) group. About 50% of the individuals in both groups are associated with zero postprogression survival
QAS (highest bars in panels b and d), while no actual zero is observed for progression-free survival QAS, which mainly lies
between ½0:002, 0:2� (highest bars in panels a and c).
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deviation of the Gumbel distribution are linked to
the canonical parameters through the relationships
a=f� bk and b=(s

ffiffiffi
6
p

)=p, where k is the Euler’s con-
stant. We refer to the online supplementary material for
a detailed presentation of the Gumbel distribution.

When choosing the model for ePPSit , it is important to
take into account the considerable proportion of people
associated with a zero value in both treatment groups
(Figure 2). Here, we specify a hurdle approach that
expresses the distribution of ePPSit as a mixture of a point
mass distribution at zero and a parametric model for the
natural range of the variable excluding the zeros. Specifi-
cally, for each subject, we define an indicator variable
dPPS

it taking value 1 if the i-th individual is associated
with ePPSit = 0 and 0 otherwise (i.e., ePFSit .0). We then
model the conditional distribution of dPPS

it jePFSit with a
Bernoulli distribution using a logit link function for the
probability of being associated with a zero:

dPPS
it jePFSit ;Bernoulli(pPPS

iet ),

logit(pPPS
iet )= gPPS

0t + gPPS
1t ePFSit ,

ð12Þ

where pPPS
iet is the probability associated with ePPSit = 0,

which is expressed as a linear function of ePFSit on the

logit scale via the intercept and slope parameters gPPS
0t

and gPPS
1t , respectively. Other covariates, which are

thought to be strongly associated with the chance of

having a zero, can also be included in the logistic

regression to improve the estimation of the probabil-

ities. However, in our analysis, the inclusion of any of

the baseline variables available in the trial did not lead

to substantial changes in the inferences, while also not

improving the fit of the model to the observed data

compared with Equation 12. Thus, we decided to

remove these variables and keep the current specifica-

tion for the model of dPPS
it . We model ePPSit jdPPS

it = 0, ePFSit

Figure 3 Histograms of the distributions of the 3 cost components (drug, hospital, and adverse events) in the control (a–c) and
intervention (d–f) groups (all costs are expressed in pounds).

1040 Medical Decision Making 41(8)



with an exponential distribution using a log-link function

for the conditional mean:

ePPSit jdPPS
it = 0, ePFSit ;Exponential(fPPS

iet ),

log (fPPS
iet )=aPPS

0t +aPPS
1t ePFSit ,

ð13Þ

where aPFS
0t and aPPS

1t are the intercept and slope regres-
sion parameters for ePPSit .0, defined on the log scale.
Again, the choice of the exponential distribution was
made according to the fit to the observed ePPSit after com-
paring alternative model specifications. We note that the
canonical rate parameter r of the exponential distribu-
tion can be retrieved from the mean parameter through
the relationship r = 1

f
.

Next, we specify the conditional distributions of the
cost variables cit =(cdrugit , chosit , caeit ) using a hurdle approach
to handle the zero costs and fit log-normal distributions to
the positive cost values (chosen in light of the better fit to
the observed data compared with Gamma distributions).
For each modeled cost variable, we checked whether the
inclusion of any of the available baseline covariates from
the trial could lead to some model improvement in terms
of fit to the observed data or parameter estimates. How-
ever, results from the different model specifications suggest
that there is no substantial gain from including these vari-
ables, which were therefore removed. We model the condi-
tional distribution of the zero drug cost indicators and
drug cost variables given eit as

d
drug
it jeit ;Bernoulli(pdrug

ict ),

logit(pdrug
ict )= d

drug
0t + d

drug
1t ePFSit + d

drug
2t ePPSit ,

c
drug
it jd

drug
it = 0, eit ;Lognormal(fdrug

ict ,sdrug
ct ),

f
drug
ict =b

drug
0t +b

drug
1t ePFSit +b

drug
2t ePPSit ,

ð14Þ

where p
drug
ict is the probability of having c

drug
it = 0, while

f
drug
ict and s

drug
ct are the mean and standard deviation

parameters for c
drug
it .0 on the log scale. The regression

parameters ddrug = (ddrug0t , d
drug
1t , ddrug2t ) and bdrug =

(bdrug
0t ,bdrug

1t ,bdrug
2t ) capture the dependence between drug

costs and the effectiveness variables for the zero and
nonzero components, respectively. The conditional dis-
tribution of the zero hospital cost indicators and hospital
cost variables given eit and c

drug
it is specified as

dhos
it jeit, c

drug
it ;Bernoulli(phos

ict ),

logit(phos
ict )= dhos

0t + dhos
1t ePFSit + dhos

2t ePPSit + dhos
3t log (cdrugit ),

chosit jdhos
it = 0, eit, c

drug
it ;Lognormal(fhos

ict ,s
hos
ct ),

fhos
ict =bhos

0t +bhos
1t ePFSit +bhos

2t ePPSit +bhos
3t log (cdrugit ),

ð15Þ

where phos
ict is the probability of having chosit = 0, while

fhos
ict and shos

ct are the mean and standard deviation para-
meters for chosit .0 on the log scale. The regression para-
meters dhos and bhos capture the dependence between
hospital costs, the effectiveness, and the drug cost vari-
ables for the zero and nonzero components, respectively.
Finally, we specify the conditional distribution of the
zero adverse event cost indicators and adverse events cost
variables given eit, c

drug
it and chosit as

dae
it jeit, c

drug
it , chosit ;Bernoulli(pae

ict),

logit(pae
ict)= dae0t + dae1t e

PFS
it + dae2t e

PPS
it

+ dae
3t log (c

drug
it )+ dae4t log (c

hos
it ),

caeit jdae
it = 0, eit, c

drug
it , chosit ;Lognormal(fae

ict,s
ae
ct ),

fae
ict =bae

0t +bae
1t e

PFS
it +bae

2t e
PPS
it

+bae
3t log (c

drug
it )+bae

4t log (c
hos
it ),

ð16Þ

where pae
ict is the probability of having caeit = 0, while fae

ict

and sae
ct are the mean and standard deviation parameters

for caeit .0 on the log scale. The regression parameters dae

and bae capture the dependence between adverse events
costs, hospital costs, the effectiveness, and the drug cost vari-
ables for the zero and nonzero components, respectively.

We note that, in all hurdle model specifications,
predictor-specific parameters of logistic and log-linear
regressions can be interpreted, respectively, as the change
in the log odds for having a zero and in the log-mean
for nonzero values, due to a unit variation in the corre-
sponding predictor. In addition, when all predictors are
centred, the intercept parameters can be interpreted as
the log odds of having a zero value and the marginal
mean of nonzero values on the log scale. For all
parameters in the model, we specify vague prior distribu-
tions: a normal distribution with a large variance on the
appropriate scale for the regression parameters (e.g.,
Normal(0, 10000)) and a uniform distribution over a
large positive range for the standard deviations (e.g.,
Uniform(0, 10000)). Although the proposed model
requires the specification of a relatively large number of
parameters, it does not ultimately affect the interpreta-
tion of the final analysis, which exclusively focuses on
the marginal mean of eit and cit.

Estimation of the Marginal Means

When standard parametric distributions are used, the
marginal mean effectiveness and cost parameters for each
type of modeled variable could be retrieved by simply
centering each variable in the effectiveness and cost
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modules. However, the use of nonnormal distributions
and hurdle models makes it difficult to identify the mar-
ginal means in terms of the model parameters. To over-
come this problem, we used an alternative approach
based on numerical algorithms, known as Markov Chain
Monte Carlo (MCMC) methods,30 to approximate the
posterior distributions of the marginal mean parameters.
MCMC methods allow sampling from the desired poster-
ior distributions of some parameters of interest via itera-
tive and simulation-based algorithms. Specifically, we
fitted the model using a particular type of MCMC algo-
rithm known as Hamiltonian Monte Carlo, and we refer
to the online supplementary material for a description of
the method and its implementation in our analysis. Once
the model is fitted, we save the posterior distributions of
all model parameters p(ujeit, cit) and retrieve the marginal
mean effectiveness and cost through the following steps.
First, at each iteration of the MCMC output, we use the
posterior estimates of the model parameters to draw
l= 1, . . . , L new samples for each type of effectiveness
(~etl) and cost (~ctl) variable. Second, at each iteration, we
take the average across the newly sampled values for each
variable to approximate the posterior distributions of the
marginal mean effectiveness and cost parameters. For
example, the posterior distribution of the marginal mean
preprogression QAS and drug costs are obtain as

mPFS
et =

PL
l = 1 ~ePFS

tl

L
and m

drug
ct =

PL
l = 1 ~cdrug

tl

L
:

This approach is known as Monte Carlo integration and
allows the approximation of the posterior distributions
of the marginal means of the modeled variables by taking
the average over a large number of randomly drawn sam-
ples from their target distribution. Finally, we derive the
overall marginal means m=(met,mct) by summing up the
marginal mean estimates for the different components of
the effectiveness and costs, that is,

met =mPFS
et +mPPS

et and mct =m
drug
ct +mhos

ct +mae
ct , ð17Þ

where mPFS
et and mPPS

et are the pre- and postprogression
mean QAS, whereas m

drug
ct , mhos

ct , and mae
ct are the means

of the three different cost components (drug, hospital,
and adverse events) in TOPICAL.

Computation

We fitted the model in STAN,31 which is a software spe-
cifically designed for the analysis of Bayesian models
using Hamiltonian Monte Carlo algorithms and which is
interfaced with R through the package rstan.32 Samples

from the posterior distribution of the parameters of inter-
est generated by STAN and saved to the R workspace
are then used to produce summary statistics and plots.
We ran 2 chains with 15,000 iterations per chain, using a
burn-in of 3000, for a total sample of 24,000 iterations
for posterior inference. For each unknown quantity in
the model, we assessed convergence and autocorrelation
of the MCMC simulations using diagnostic measures
such as density and trace plots, the potential scale reduc-
tion factor, and the effective sample size.33 A summary of
the results from these convergence checks for the para-
meters of the model and the STAN code used to fit the
model are provided in the supplementary material.

Model Assessment

We compute 2 relative measures of predictive accuracy
to assess the fit of the proposed model specification
(denoted as ‘‘original’’) with respect to a second para-
metric specification (denoted as ‘‘alternative’’), in which
we replace the Gumbel distribution for ePFSit with a logis-
tic distribution, the exponential distribution for ePPSit .0

with a Weibull distribution, and the log-normal distribu-
tions for cit.0 with Gamma distributions. We specifi-
cally rely on the widely applicable information criterion
(WAIC)34 and the leave-one-out information criterion
(LOOIC),35 which provide estimates for the pointwise
out-of-sample prediction accuracy from a fitted Bayesian
model using the log-likelihood evaluated at the posterior
simulations of the parameter values. Both measures can
be viewed as an improvement on the popular deviance
information criterion36 in that they use the entire poster-
ior distribution, are invariant to parametrization, and
are asymptotically equal to Bayesian cross-validation.37

These information criteria are obtained based on the
model deviance and a penalty for model complexity
known as effective number of parameters (pD) and, when
comparing a set of models based on the same data, the
one associated with the lowest WAIC or LOOIC is the
best-performing, among those assessed.

Results between the 2 alternative specifications are
reported in Table 1. For both criteria, the values associ-
ated with the ‘‘original’’ specification of the model are
systematically lower compared with those from the ‘‘alter-
native’’ parameterization and result in an overall better fit
to the data for the first model. We have also explored
alternative model specifications based on different distri-
butions for the effectiveness and cost variables. For ePFS ,
the distributions compared were normal, Gumbel, and
logistic; for all other variablesm the distributions assessed
were exponential, Weibull, log-logistic, Gamma, and log-
normal. Model selection was performed based on both
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predictive information criteria (lowest WAIC and
LOOIC) and posterior predictive checks (best visual fit).
These comparisons suggested that the original specifica-
tion was the one associated with the best performance.

We additionally assess the absolute fit of the model
using the observed and replicated data, the latter being
generated from the posterior predictive distribution using
the posterior samples of the parameters in each effective-
ness and cost module. We use the posterior estimates of
the parameters to sample 10,000 replications of the data,
which are then used for model assessment. We computed
different types of graphical posterior predictive checks,
either in terms of the entire distributions via density and
cumulative density plots or in terms of the marginal
mean estimates between the real and replicated data
(provided in the supplementary material). Overall, these
checks suggest a relatively good fit of the model for each
modelled variable.

Results

This section presents the results of the analysis from a 2-
fold perspective. First, the posterior distribution of the
marginal means of each component of the effectiveness
(mPFS

et ,mPPS
et ) and costs (mdrug

ct ,mhos
ct ,mae

ct ) as well as the
marginal aggregated means (met,mct) is summarized. Sec-
ond, the economic results are discussed by computing
the probability that the new intervention is cost-effective
with respect to the control.

Posterior Estimates

Figure 4 compares the posterior means (squares) and the
50% (thick lines) and 95% (thin lines) highest posterior
density (HPD) credible intervals for the marginal means
of each effectiveness and cost components, obtained after
fitting the model to all cases under an MAR assumption.

Results associated with the control (t= 1) and interven-
tion (t = 2) group are indicated with red and blue colors,
respectively. The posterior mean QAS is on average
higher for the PFS as compared with the PPS component
in both treatment groups. However, both 50% and 95%
HPD intervals suggest that the estimates associated with
the intervention group have a much higher degree of varia-
bility compared with those from the control, especially for
the PPS component. The posterior mean costs for each
component show that the intervention group is associated
with systematically higher values with respect to the con-
trol, especially in terms of drug costs, which cover most of
the total costs in the intervention. HPD intervals for mean
costs show a relatively high degree of skewness, with pos-
terior mean estimates being closer to the upper bounds of
the 50% intervals compared with the lower bounds.

We derived the aggregated mean QAS and costs for
each treatment group (met,mct) by summing up the pos-
terior mean estimates of the different components for
each type of variable. We then computed the incremental
mean estimates between the 2 groups, denoted with
De =me2 � me1 and Dc =mc2 � mc1, together with the
incremental cost-effectiveness ratio (ICER), which repre-
sents the cost per QAS gained between the 2 groups.
Table 2 shows selected posterior summaries, including
means, medians, standard deviations, and 95% HPD
intervals, for the marginal and incremental mean esti-
mates. Overall, the posterior results indicate that the new
intervention has systematically higher QAS and costs
compared with the control, with a positive mean QAS
increment of 0.14, a positive mean cost increment of
£11,460, and with 95% intervals that exclude zero for
both quantities. We note that posterior estimates for the
marginal means in the control group show a consider-
ably lower degree of variability (standard deviations of
0:02 and £424) as compared with those from the inter-
vention group (standard deviations of 0:05 and £2628).

Table 1 WAIC, LOOIC, and Effective Number of Parameter (pD ) Estimates for Each Variable in the Modela

Original Alternative

Variable Distribution WAIC (pD) LOOIC (pD) Distribution WAIC (pD) LOOIC (pD)

ePFS Gumbel –109 (11) –107 (12) Logistic –68 (8) –68 (8)
ePPSjePFS Exponential 34 (10) 35 (10) Weibull 36 (8) 38 (9)
cdrugje Lognormal 3283 (16) 3286 (17) Gamma 3361 (26) 3365 (28)
chosje, cdrug Lognormal 3437 (15) 3438 (15) Gamma 3659 (15) 3660 (16)
caeje, cdrug, chos Lognormal 3208 (22) 3211 (23) Gamma 3437 (38) 3433 (36)
Total 9853 (74) 9863 (77) 10,425 (95) 10,428 (97)

aThe ‘‘original’’ and ‘‘alternative’’ model specifications are assessed using different distributions for the pre-/postprogression quality-adjusted

survival and the cost data. Total widely applicable information criterion (WAIC), leave-one-out information criterion (LOOIC), and pD values

are reported at the bottom of the table.
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Finally, the additional cost per unit of QAS gained is
estimated to be roughly £79, 000 for t= 2 compared with
t= 1.

Economic Evaluation

We complete the analysis by assessing the probability of
cost-effectiveness for the new intervention with respect to

the control. An advantage of using a Bayesian approach
is that the economic analysis can be easily performed
without the need to use ad hoc methods to represent
uncertainty around point estimates (e.g., bootstrapping).
Indeed, once the statistical model is fitted to the data, the
samples from the posterior distributions of the para-
meters of interest can be used to compute different types
of summary measures of cost-effectiveness.

Figure 4 Posterior means (squares), 50% (thick lines) and 95% (thin lines) highest posterior density credible intervals for the
marginal means of pre- and postprogression quality-adjusted survival (a) and for the marginal means of the drug, hospital, and
adverse events cost (b) in the control (red) and the intervention (blue) group in the TOPICAL trial.

Table 2 Posterior Means, Medians, Standard Deviations, and 95% Highest Posterior Density Credible Intervals for the Marginal
(met,mct) and Incremental (De,Dc) Mean Total Quality-Adjusted Survival and Cost Estimates Associated with the Control (t= 1)
and Intervention (t= 2) Group in the TOPICAL triala

Parameter Mean Median SD 95% CI

Control (t = 1)
me1 0.24 0.23 0.02 0.20 0.27
mc1 3059 3001 424 2329 3898

Intervention (t= 2)
me2 0.38 0.38 0.05 0.29 0.47
mc2 14,519 14,055 2628 10,235 19,681

Incremental
De 0.14 0.14 0.05 0.05 0.24
Dc 11,460 11,013 2666 7282 16,983

Incremental cost-effectiveness ratio 79,233

a
For clarity, values are rounded up to 2 and 0 decimal places for e and c quantities, respectively. Costs are expressed in £.
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We specifically rely on the examination of the cost-
effectiveness plane (CEP)38 and the cost-effectiveness
acceptability curve (CEAC)39 to summarize the economic
analysis. Results in terms of the expected incremental
benefit are also provided in the online supplementary
material. Figure 5a shows the CEP, which is a graphical
representation of the joint distribution of the mean effec-
tiveness and cost increments between the 2 groups. The
slope of the straight line crossing the plane is the
willingness-to-pay threshold (often indicated with k).
This can be considered as the amount of budget that the
decision maker is willing to spend to increase the health
outcome of 1 unit and, effectively, is used to trade clini-
cal benefits for money. Current recommendations for
generic interventions suggest a value of k between
£20,000 and £30,000. However, for end-of-life treat-
ments, such as cancer treatments, the recommended
threshold values are typically higher and lie in a range
between £50,000 and to 60,000 or greater.40 Points lying
below this straight line fall in the so-called sustainability
area13 and suggest that the new intervention is more
cost-effective than the control. In our analysis, almost
all samples fall in the north-east quadrant of the plane.
This suggests that the intervention is likely to be more

effective and more expensive compared with the control.
At k = £55,000, the ICER (and the majority of the sam-
ples) falls outside the sustainability area, therefore indi-
cating that the new intervention is unlikely to be
considered cost-effective at the chosen value of k. Figure
5b shows the CEAC, which is obtained by computing the
proportion of points lying in the sustainability area on
varying the willingness-to-pay threshold k. The CEAC
estimates the probability of cost-effectiveness, thus pro-
viding a simple summary of the uncertainty that is asso-
ciated with the ‘‘optimal’’ decision suggested by the
ICER. The graph shows that, as the value of the
willingness-to-pay threshold is increased, the chance that
the new intervention becomes cost-effective rises up to
near full certainty for k = £150,000.

Discussion

In this article, we proposed a general framework for par-
titioned survival cost-utility analysis using patient-level
data (e.g., from a trial), which takes into account the
correlation between costs and effectiveness, skewness in
the distribution of the observed data, the presence of
structural zeros, and missing data. Although alternative

Figure 5 (a) Cost-effectiveness plane and (b) cost-effectiveness acceptability curve (CEAC) graphs associated with the 2
interventions in the TOPICAL trial. In the CEP, the value of the incremental cost-effectiveness ratio is reported (darker green
dot), while the portion of the plane on the right-hand side of the straight line passing through the origin (evaluated at k =
£55,000) denotes the sustainability area; in the CEAC, the probability of cost-effectiveness is shown for willingness-to-pay
threshold values up to £200,000.
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approaches have been proposed in the literature to han-
dle the statistical issues affecting cost-effectiveness data,
they had either considered some of these issues sepa-
rately19,21,27 or did not specifically focus on partitioned
survival analyses.22,23 The approach developed in the
‘‘Methods’’ section uses a flexible structure that allows
for handling the typical idiosyncrasies affecting effective-
ness and costs within a joint probabilistic framework.
This is a key advantage of the Bayesian approach com-
pared with other approaches, especially in health eco-
nomic evaluations in which the main objective is not
statistical inference per se but rather assessing the uncer-
tainty in decision making induced by the uncertainty in
the model inputs.41,42

The economic results from our case study should be
interpreted with caution, and some potential limitations
in terms of the generalizability of the proposed frame-
work should be highlighted. First, our analysis of TOPI-
CAL is based on a subset of the individuals in the
original trial (made available to us), and therefore, it is
difficult to draw any cost-effectiveness conclusions about
the trial from this analysis. Second, although the results
are obtained under a MAR assumption, which is typi-
cally considered more plausible than just focusing on the
complete cases, missingness assumptions can never be
checked from the data at hand. It is possible that the
assumption of MAR is not tenable, which may therefore
introduce some bias. It is recommended that departures
from MAR are explored in sensitivity analysis to assess
the robustness of the conclusions to some plausible
MNAR scenarios.26 However, given the limitations of
our analysis in terms of the interpretation of the
trial results and the lack of any external information to
guide the choice of the MNAR departures, we decided
not to pursue these analyses here. We note that different
approaches are available to conduct sensitivity analysis
to MNAR, some of which can be implemented within a
Bayesian framework, for example, through the elicitation
of expert opinions using prior distributions.26,43

Finally, although in our analysis no censoring of sur-
vival time was observed, in many studies, a considerable
proportion of patients may be censored when they do
not progress/die during the follow-up. When this
occurs, the calculation of patient-level QAS data is
typically invalid as it may introduce informative cen-
soring, which distorts the inferences.5 A possible strat-
egy to deal with censored survival data is to specify 2
different models to separately estimate the marginal
mean utilities and the proportion of patients still alive
at each follow-up point and then combine these esti-
mates to obtain results on a QAS scale. For example,
linear mixed models can be used for estimating the

mean utilities, while Kaplan-Meier or other parametric
survival functions can be used to estimate the survival
probabilities at each time point.6 In future work, we
hope to extend the proposed framework to handle cen-
sored survival data and assess the robustness of the
results to alternative assumptions, including informa-
tive censoring (e.g., using expert opinion).

In conclusion, although our approach may not be
applicable to all cases, the data analyzed are very much
representative of the typical data used in partitioned sur-
vival cost-utility analysis alongside clinical trials. Thus, it
is highly likely that the same features apply to other real
cases. This is a very important if somewhat overlooked
problem, as methods that do not take into account the
complexities affecting patient-level data, while being easier
to implement and well established among practitioners,
may ultimately mislead cost-effectiveness conclusions and
bias the decision-making process.
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